Merge branch 'topic/livepatch' of git://git.kernel.org/pub/scm/linux/kernel/git/power...
[deliverable/linux.git] / arch / powerpc / mm / init_64.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 *
9 * Derived from "arch/i386/mm/init.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
11 *
12 * Dave Engebretsen <engebret@us.ibm.com>
13 * Rework for PPC64 port.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 */
21
22 #undef DEBUG
23
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45
46 #include <asm/pgalloc.h>
47 #include <asm/page.h>
48 #include <asm/prom.h>
49 #include <asm/rtas.h>
50 #include <asm/io.h>
51 #include <asm/mmu_context.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu.h>
54 #include <asm/uaccess.h>
55 #include <asm/smp.h>
56 #include <asm/machdep.h>
57 #include <asm/tlb.h>
58 #include <asm/eeh.h>
59 #include <asm/processor.h>
60 #include <asm/mmzone.h>
61 #include <asm/cputable.h>
62 #include <asm/sections.h>
63 #include <asm/iommu.h>
64 #include <asm/vdso.h>
65
66 #include "mmu_decl.h"
67
68 #ifdef CONFIG_PPC_STD_MMU_64
69 #if PGTABLE_RANGE > USER_VSID_RANGE
70 #warning Limited user VSID range means pagetable space is wasted
71 #endif
72
73 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
74 #warning TASK_SIZE is smaller than it needs to be.
75 #endif
76 #endif /* CONFIG_PPC_STD_MMU_64 */
77
78 phys_addr_t memstart_addr = ~0;
79 EXPORT_SYMBOL_GPL(memstart_addr);
80 phys_addr_t kernstart_addr;
81 EXPORT_SYMBOL_GPL(kernstart_addr);
82
83 static void pgd_ctor(void *addr)
84 {
85 memset(addr, 0, PGD_TABLE_SIZE);
86 }
87
88 static void pmd_ctor(void *addr)
89 {
90 memset(addr, 0, PMD_TABLE_SIZE);
91 }
92
93 struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
94
95 /*
96 * Create a kmem_cache() for pagetables. This is not used for PTE
97 * pages - they're linked to struct page, come from the normal free
98 * pages pool and have a different entry size (see real_pte_t) to
99 * everything else. Caches created by this function are used for all
100 * the higher level pagetables, and for hugepage pagetables.
101 */
102 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
103 {
104 char *name;
105 unsigned long table_size = sizeof(void *) << shift;
106 unsigned long align = table_size;
107
108 /* When batching pgtable pointers for RCU freeing, we store
109 * the index size in the low bits. Table alignment must be
110 * big enough to fit it.
111 *
112 * Likewise, hugeapge pagetable pointers contain a (different)
113 * shift value in the low bits. All tables must be aligned so
114 * as to leave enough 0 bits in the address to contain it. */
115 unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
116 HUGEPD_SHIFT_MASK + 1);
117 struct kmem_cache *new;
118
119 /* It would be nice if this was a BUILD_BUG_ON(), but at the
120 * moment, gcc doesn't seem to recognize is_power_of_2 as a
121 * constant expression, so so much for that. */
122 BUG_ON(!is_power_of_2(minalign));
123 BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
124
125 if (PGT_CACHE(shift))
126 return; /* Already have a cache of this size */
127
128 align = max_t(unsigned long, align, minalign);
129 name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
130 new = kmem_cache_create(name, table_size, align, 0, ctor);
131 kfree(name);
132 pgtable_cache[shift - 1] = new;
133 pr_debug("Allocated pgtable cache for order %d\n", shift);
134 }
135
136
137 void pgtable_cache_init(void)
138 {
139 pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
140 pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
141 if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
142 panic("Couldn't allocate pgtable caches");
143 /* In all current configs, when the PUD index exists it's the
144 * same size as either the pgd or pmd index. Verify that the
145 * initialization above has also created a PUD cache. This
146 * will need re-examiniation if we add new possibilities for
147 * the pagetable layout. */
148 BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
149 }
150
151 #ifdef CONFIG_SPARSEMEM_VMEMMAP
152 /*
153 * Given an address within the vmemmap, determine the pfn of the page that
154 * represents the start of the section it is within. Note that we have to
155 * do this by hand as the proffered address may not be correctly aligned.
156 * Subtraction of non-aligned pointers produces undefined results.
157 */
158 static unsigned long __meminit vmemmap_section_start(unsigned long page)
159 {
160 unsigned long offset = page - ((unsigned long)(vmemmap));
161
162 /* Return the pfn of the start of the section. */
163 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
164 }
165
166 /*
167 * Check if this vmemmap page is already initialised. If any section
168 * which overlaps this vmemmap page is initialised then this page is
169 * initialised already.
170 */
171 static int __meminit vmemmap_populated(unsigned long start, int page_size)
172 {
173 unsigned long end = start + page_size;
174 start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
175
176 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
177 if (pfn_valid(page_to_pfn((struct page *)start)))
178 return 1;
179
180 return 0;
181 }
182
183 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
184 *
185 * On Book3E CPUs, the vmemmap is currently mapped in the top half of
186 * the vmalloc space using normal page tables, though the size of
187 * pages encoded in the PTEs can be different
188 */
189
190 #ifdef CONFIG_PPC_BOOK3E
191 static void __meminit vmemmap_create_mapping(unsigned long start,
192 unsigned long page_size,
193 unsigned long phys)
194 {
195 /* Create a PTE encoding without page size */
196 unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
197 _PAGE_KERNEL_RW;
198
199 /* PTEs only contain page size encodings up to 32M */
200 BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
201
202 /* Encode the size in the PTE */
203 flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
204
205 /* For each PTE for that area, map things. Note that we don't
206 * increment phys because all PTEs are of the large size and
207 * thus must have the low bits clear
208 */
209 for (i = 0; i < page_size; i += PAGE_SIZE)
210 BUG_ON(map_kernel_page(start + i, phys, flags));
211 }
212
213 #ifdef CONFIG_MEMORY_HOTPLUG
214 static void vmemmap_remove_mapping(unsigned long start,
215 unsigned long page_size)
216 {
217 }
218 #endif
219 #else /* CONFIG_PPC_BOOK3E */
220 static void __meminit vmemmap_create_mapping(unsigned long start,
221 unsigned long page_size,
222 unsigned long phys)
223 {
224 int mapped = htab_bolt_mapping(start, start + page_size, phys,
225 pgprot_val(PAGE_KERNEL),
226 mmu_vmemmap_psize,
227 mmu_kernel_ssize);
228 BUG_ON(mapped < 0);
229 }
230
231 #ifdef CONFIG_MEMORY_HOTPLUG
232 static void vmemmap_remove_mapping(unsigned long start,
233 unsigned long page_size)
234 {
235 int mapped = htab_remove_mapping(start, start + page_size,
236 mmu_vmemmap_psize,
237 mmu_kernel_ssize);
238 BUG_ON(mapped < 0);
239 }
240 #endif
241
242 #endif /* CONFIG_PPC_BOOK3E */
243
244 struct vmemmap_backing *vmemmap_list;
245 static struct vmemmap_backing *next;
246 static int num_left;
247 static int num_freed;
248
249 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
250 {
251 struct vmemmap_backing *vmem_back;
252 /* get from freed entries first */
253 if (num_freed) {
254 num_freed--;
255 vmem_back = next;
256 next = next->list;
257
258 return vmem_back;
259 }
260
261 /* allocate a page when required and hand out chunks */
262 if (!num_left) {
263 next = vmemmap_alloc_block(PAGE_SIZE, node);
264 if (unlikely(!next)) {
265 WARN_ON(1);
266 return NULL;
267 }
268 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
269 }
270
271 num_left--;
272
273 return next++;
274 }
275
276 static __meminit void vmemmap_list_populate(unsigned long phys,
277 unsigned long start,
278 int node)
279 {
280 struct vmemmap_backing *vmem_back;
281
282 vmem_back = vmemmap_list_alloc(node);
283 if (unlikely(!vmem_back)) {
284 WARN_ON(1);
285 return;
286 }
287
288 vmem_back->phys = phys;
289 vmem_back->virt_addr = start;
290 vmem_back->list = vmemmap_list;
291
292 vmemmap_list = vmem_back;
293 }
294
295 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
296 {
297 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
298
299 /* Align to the page size of the linear mapping. */
300 start = _ALIGN_DOWN(start, page_size);
301
302 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
303
304 for (; start < end; start += page_size) {
305 void *p;
306
307 if (vmemmap_populated(start, page_size))
308 continue;
309
310 p = vmemmap_alloc_block(page_size, node);
311 if (!p)
312 return -ENOMEM;
313
314 vmemmap_list_populate(__pa(p), start, node);
315
316 pr_debug(" * %016lx..%016lx allocated at %p\n",
317 start, start + page_size, p);
318
319 vmemmap_create_mapping(start, page_size, __pa(p));
320 }
321
322 return 0;
323 }
324
325 #ifdef CONFIG_MEMORY_HOTPLUG
326 static unsigned long vmemmap_list_free(unsigned long start)
327 {
328 struct vmemmap_backing *vmem_back, *vmem_back_prev;
329
330 vmem_back_prev = vmem_back = vmemmap_list;
331
332 /* look for it with prev pointer recorded */
333 for (; vmem_back; vmem_back = vmem_back->list) {
334 if (vmem_back->virt_addr == start)
335 break;
336 vmem_back_prev = vmem_back;
337 }
338
339 if (unlikely(!vmem_back)) {
340 WARN_ON(1);
341 return 0;
342 }
343
344 /* remove it from vmemmap_list */
345 if (vmem_back == vmemmap_list) /* remove head */
346 vmemmap_list = vmem_back->list;
347 else
348 vmem_back_prev->list = vmem_back->list;
349
350 /* next point to this freed entry */
351 vmem_back->list = next;
352 next = vmem_back;
353 num_freed++;
354
355 return vmem_back->phys;
356 }
357
358 void __ref vmemmap_free(unsigned long start, unsigned long end)
359 {
360 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
361
362 start = _ALIGN_DOWN(start, page_size);
363
364 pr_debug("vmemmap_free %lx...%lx\n", start, end);
365
366 for (; start < end; start += page_size) {
367 unsigned long addr;
368
369 /*
370 * the section has already be marked as invalid, so
371 * vmemmap_populated() true means some other sections still
372 * in this page, so skip it.
373 */
374 if (vmemmap_populated(start, page_size))
375 continue;
376
377 addr = vmemmap_list_free(start);
378 if (addr) {
379 struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
380
381 if (PageReserved(page)) {
382 /* allocated from bootmem */
383 if (page_size < PAGE_SIZE) {
384 /*
385 * this shouldn't happen, but if it is
386 * the case, leave the memory there
387 */
388 WARN_ON_ONCE(1);
389 } else {
390 unsigned int nr_pages =
391 1 << get_order(page_size);
392 while (nr_pages--)
393 free_reserved_page(page++);
394 }
395 } else
396 free_pages((unsigned long)(__va(addr)),
397 get_order(page_size));
398
399 vmemmap_remove_mapping(start, page_size);
400 }
401 }
402 }
403 #endif
404 void register_page_bootmem_memmap(unsigned long section_nr,
405 struct page *start_page, unsigned long size)
406 {
407 }
408
409 /*
410 * We do not have access to the sparsemem vmemmap, so we fallback to
411 * walking the list of sparsemem blocks which we already maintain for
412 * the sake of crashdump. In the long run, we might want to maintain
413 * a tree if performance of that linear walk becomes a problem.
414 *
415 * realmode_pfn_to_page functions can fail due to:
416 * 1) As real sparsemem blocks do not lay in RAM continously (they
417 * are in virtual address space which is not available in the real mode),
418 * the requested page struct can be split between blocks so get_page/put_page
419 * may fail.
420 * 2) When huge pages are used, the get_page/put_page API will fail
421 * in real mode as the linked addresses in the page struct are virtual
422 * too.
423 */
424 struct page *realmode_pfn_to_page(unsigned long pfn)
425 {
426 struct vmemmap_backing *vmem_back;
427 struct page *page;
428 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
429 unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
430
431 for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
432 if (pg_va < vmem_back->virt_addr)
433 continue;
434
435 /* After vmemmap_list entry free is possible, need check all */
436 if ((pg_va + sizeof(struct page)) <=
437 (vmem_back->virt_addr + page_size)) {
438 page = (struct page *) (vmem_back->phys + pg_va -
439 vmem_back->virt_addr);
440 return page;
441 }
442 }
443
444 /* Probably that page struct is split between real pages */
445 return NULL;
446 }
447 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
448
449 #elif defined(CONFIG_FLATMEM)
450
451 struct page *realmode_pfn_to_page(unsigned long pfn)
452 {
453 struct page *page = pfn_to_page(pfn);
454 return page;
455 }
456 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
457
458 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
This page took 0.066531 seconds and 5 git commands to generate.