net: bcmgenet: Software reset EPHY after power on
[deliverable/linux.git] / arch / powerpc / mm / init_64.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 *
9 * Derived from "arch/i386/mm/init.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
11 *
12 * Dave Engebretsen <engebret@us.ibm.com>
13 * Rework for PPC64 port.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 */
21
22 #undef DEBUG
23
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45
46 #include <asm/pgalloc.h>
47 #include <asm/page.h>
48 #include <asm/prom.h>
49 #include <asm/rtas.h>
50 #include <asm/io.h>
51 #include <asm/mmu_context.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu.h>
54 #include <asm/uaccess.h>
55 #include <asm/smp.h>
56 #include <asm/machdep.h>
57 #include <asm/tlb.h>
58 #include <asm/eeh.h>
59 #include <asm/processor.h>
60 #include <asm/mmzone.h>
61 #include <asm/cputable.h>
62 #include <asm/sections.h>
63 #include <asm/iommu.h>
64 #include <asm/vdso.h>
65
66 #include "mmu_decl.h"
67
68 #ifdef CONFIG_PPC_STD_MMU_64
69 #if PGTABLE_RANGE > USER_VSID_RANGE
70 #warning Limited user VSID range means pagetable space is wasted
71 #endif
72
73 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
74 #warning TASK_SIZE is smaller than it needs to be.
75 #endif
76 #endif /* CONFIG_PPC_STD_MMU_64 */
77
78 phys_addr_t memstart_addr = ~0;
79 EXPORT_SYMBOL_GPL(memstart_addr);
80 phys_addr_t kernstart_addr;
81 EXPORT_SYMBOL_GPL(kernstart_addr);
82
83 static void pgd_ctor(void *addr)
84 {
85 memset(addr, 0, PGD_TABLE_SIZE);
86 }
87
88 static void pmd_ctor(void *addr)
89 {
90 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
91 memset(addr, 0, PMD_TABLE_SIZE * 2);
92 #else
93 memset(addr, 0, PMD_TABLE_SIZE);
94 #endif
95 }
96
97 struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
98
99 /*
100 * Create a kmem_cache() for pagetables. This is not used for PTE
101 * pages - they're linked to struct page, come from the normal free
102 * pages pool and have a different entry size (see real_pte_t) to
103 * everything else. Caches created by this function are used for all
104 * the higher level pagetables, and for hugepage pagetables.
105 */
106 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
107 {
108 char *name;
109 unsigned long table_size = sizeof(void *) << shift;
110 unsigned long align = table_size;
111
112 /* When batching pgtable pointers for RCU freeing, we store
113 * the index size in the low bits. Table alignment must be
114 * big enough to fit it.
115 *
116 * Likewise, hugeapge pagetable pointers contain a (different)
117 * shift value in the low bits. All tables must be aligned so
118 * as to leave enough 0 bits in the address to contain it. */
119 unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
120 HUGEPD_SHIFT_MASK + 1);
121 struct kmem_cache *new;
122
123 /* It would be nice if this was a BUILD_BUG_ON(), but at the
124 * moment, gcc doesn't seem to recognize is_power_of_2 as a
125 * constant expression, so so much for that. */
126 BUG_ON(!is_power_of_2(minalign));
127 BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
128
129 if (PGT_CACHE(shift))
130 return; /* Already have a cache of this size */
131
132 align = max_t(unsigned long, align, minalign);
133 name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
134 new = kmem_cache_create(name, table_size, align, 0, ctor);
135 kfree(name);
136 pgtable_cache[shift - 1] = new;
137 pr_debug("Allocated pgtable cache for order %d\n", shift);
138 }
139
140
141 void pgtable_cache_init(void)
142 {
143 pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
144 pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
145 if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
146 panic("Couldn't allocate pgtable caches");
147 /* In all current configs, when the PUD index exists it's the
148 * same size as either the pgd or pmd index. Verify that the
149 * initialization above has also created a PUD cache. This
150 * will need re-examiniation if we add new possibilities for
151 * the pagetable layout. */
152 BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
153 }
154
155 #ifdef CONFIG_SPARSEMEM_VMEMMAP
156 /*
157 * Given an address within the vmemmap, determine the pfn of the page that
158 * represents the start of the section it is within. Note that we have to
159 * do this by hand as the proffered address may not be correctly aligned.
160 * Subtraction of non-aligned pointers produces undefined results.
161 */
162 static unsigned long __meminit vmemmap_section_start(unsigned long page)
163 {
164 unsigned long offset = page - ((unsigned long)(vmemmap));
165
166 /* Return the pfn of the start of the section. */
167 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
168 }
169
170 /*
171 * Check if this vmemmap page is already initialised. If any section
172 * which overlaps this vmemmap page is initialised then this page is
173 * initialised already.
174 */
175 static int __meminit vmemmap_populated(unsigned long start, int page_size)
176 {
177 unsigned long end = start + page_size;
178 start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
179
180 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
181 if (pfn_valid(page_to_pfn((struct page *)start)))
182 return 1;
183
184 return 0;
185 }
186
187 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
188 *
189 * On Book3E CPUs, the vmemmap is currently mapped in the top half of
190 * the vmalloc space using normal page tables, though the size of
191 * pages encoded in the PTEs can be different
192 */
193
194 #ifdef CONFIG_PPC_BOOK3E
195 static void __meminit vmemmap_create_mapping(unsigned long start,
196 unsigned long page_size,
197 unsigned long phys)
198 {
199 /* Create a PTE encoding without page size */
200 unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
201 _PAGE_KERNEL_RW;
202
203 /* PTEs only contain page size encodings up to 32M */
204 BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
205
206 /* Encode the size in the PTE */
207 flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
208
209 /* For each PTE for that area, map things. Note that we don't
210 * increment phys because all PTEs are of the large size and
211 * thus must have the low bits clear
212 */
213 for (i = 0; i < page_size; i += PAGE_SIZE)
214 BUG_ON(map_kernel_page(start + i, phys, flags));
215 }
216
217 #ifdef CONFIG_MEMORY_HOTPLUG
218 static void vmemmap_remove_mapping(unsigned long start,
219 unsigned long page_size)
220 {
221 }
222 #endif
223 #else /* CONFIG_PPC_BOOK3E */
224 static void __meminit vmemmap_create_mapping(unsigned long start,
225 unsigned long page_size,
226 unsigned long phys)
227 {
228 int mapped = htab_bolt_mapping(start, start + page_size, phys,
229 pgprot_val(PAGE_KERNEL),
230 mmu_vmemmap_psize,
231 mmu_kernel_ssize);
232 BUG_ON(mapped < 0);
233 }
234
235 #ifdef CONFIG_MEMORY_HOTPLUG
236 static void vmemmap_remove_mapping(unsigned long start,
237 unsigned long page_size)
238 {
239 int mapped = htab_remove_mapping(start, start + page_size,
240 mmu_vmemmap_psize,
241 mmu_kernel_ssize);
242 BUG_ON(mapped < 0);
243 }
244 #endif
245
246 #endif /* CONFIG_PPC_BOOK3E */
247
248 struct vmemmap_backing *vmemmap_list;
249 static struct vmemmap_backing *next;
250 static int num_left;
251 static int num_freed;
252
253 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
254 {
255 struct vmemmap_backing *vmem_back;
256 /* get from freed entries first */
257 if (num_freed) {
258 num_freed--;
259 vmem_back = next;
260 next = next->list;
261
262 return vmem_back;
263 }
264
265 /* allocate a page when required and hand out chunks */
266 if (!num_left) {
267 next = vmemmap_alloc_block(PAGE_SIZE, node);
268 if (unlikely(!next)) {
269 WARN_ON(1);
270 return NULL;
271 }
272 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
273 }
274
275 num_left--;
276
277 return next++;
278 }
279
280 static __meminit void vmemmap_list_populate(unsigned long phys,
281 unsigned long start,
282 int node)
283 {
284 struct vmemmap_backing *vmem_back;
285
286 vmem_back = vmemmap_list_alloc(node);
287 if (unlikely(!vmem_back)) {
288 WARN_ON(1);
289 return;
290 }
291
292 vmem_back->phys = phys;
293 vmem_back->virt_addr = start;
294 vmem_back->list = vmemmap_list;
295
296 vmemmap_list = vmem_back;
297 }
298
299 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
300 {
301 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
302
303 /* Align to the page size of the linear mapping. */
304 start = _ALIGN_DOWN(start, page_size);
305
306 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
307
308 for (; start < end; start += page_size) {
309 void *p;
310
311 if (vmemmap_populated(start, page_size))
312 continue;
313
314 p = vmemmap_alloc_block(page_size, node);
315 if (!p)
316 return -ENOMEM;
317
318 vmemmap_list_populate(__pa(p), start, node);
319
320 pr_debug(" * %016lx..%016lx allocated at %p\n",
321 start, start + page_size, p);
322
323 vmemmap_create_mapping(start, page_size, __pa(p));
324 }
325
326 return 0;
327 }
328
329 #ifdef CONFIG_MEMORY_HOTPLUG
330 static unsigned long vmemmap_list_free(unsigned long start)
331 {
332 struct vmemmap_backing *vmem_back, *vmem_back_prev;
333
334 vmem_back_prev = vmem_back = vmemmap_list;
335
336 /* look for it with prev pointer recorded */
337 for (; vmem_back; vmem_back = vmem_back->list) {
338 if (vmem_back->virt_addr == start)
339 break;
340 vmem_back_prev = vmem_back;
341 }
342
343 if (unlikely(!vmem_back)) {
344 WARN_ON(1);
345 return 0;
346 }
347
348 /* remove it from vmemmap_list */
349 if (vmem_back == vmemmap_list) /* remove head */
350 vmemmap_list = vmem_back->list;
351 else
352 vmem_back_prev->list = vmem_back->list;
353
354 /* next point to this freed entry */
355 vmem_back->list = next;
356 next = vmem_back;
357 num_freed++;
358
359 return vmem_back->phys;
360 }
361
362 void __ref vmemmap_free(unsigned long start, unsigned long end)
363 {
364 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
365
366 start = _ALIGN_DOWN(start, page_size);
367
368 pr_debug("vmemmap_free %lx...%lx\n", start, end);
369
370 for (; start < end; start += page_size) {
371 unsigned long addr;
372
373 /*
374 * the section has already be marked as invalid, so
375 * vmemmap_populated() true means some other sections still
376 * in this page, so skip it.
377 */
378 if (vmemmap_populated(start, page_size))
379 continue;
380
381 addr = vmemmap_list_free(start);
382 if (addr) {
383 struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
384
385 if (PageReserved(page)) {
386 /* allocated from bootmem */
387 if (page_size < PAGE_SIZE) {
388 /*
389 * this shouldn't happen, but if it is
390 * the case, leave the memory there
391 */
392 WARN_ON_ONCE(1);
393 } else {
394 unsigned int nr_pages =
395 1 << get_order(page_size);
396 while (nr_pages--)
397 free_reserved_page(page++);
398 }
399 } else
400 free_pages((unsigned long)(__va(addr)),
401 get_order(page_size));
402
403 vmemmap_remove_mapping(start, page_size);
404 }
405 }
406 }
407 #endif
408 void register_page_bootmem_memmap(unsigned long section_nr,
409 struct page *start_page, unsigned long size)
410 {
411 }
412
413 /*
414 * We do not have access to the sparsemem vmemmap, so we fallback to
415 * walking the list of sparsemem blocks which we already maintain for
416 * the sake of crashdump. In the long run, we might want to maintain
417 * a tree if performance of that linear walk becomes a problem.
418 *
419 * realmode_pfn_to_page functions can fail due to:
420 * 1) As real sparsemem blocks do not lay in RAM continously (they
421 * are in virtual address space which is not available in the real mode),
422 * the requested page struct can be split between blocks so get_page/put_page
423 * may fail.
424 * 2) When huge pages are used, the get_page/put_page API will fail
425 * in real mode as the linked addresses in the page struct are virtual
426 * too.
427 */
428 struct page *realmode_pfn_to_page(unsigned long pfn)
429 {
430 struct vmemmap_backing *vmem_back;
431 struct page *page;
432 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
433 unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
434
435 for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
436 if (pg_va < vmem_back->virt_addr)
437 continue;
438
439 /* After vmemmap_list entry free is possible, need check all */
440 if ((pg_va + sizeof(struct page)) <=
441 (vmem_back->virt_addr + page_size)) {
442 page = (struct page *) (vmem_back->phys + pg_va -
443 vmem_back->virt_addr);
444 return page;
445 }
446 }
447
448 /* Probably that page struct is split between real pages */
449 return NULL;
450 }
451 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
452
453 #elif defined(CONFIG_FLATMEM)
454
455 struct page *realmode_pfn_to_page(unsigned long pfn)
456 {
457 struct page *page = pfn_to_page(pfn);
458 return page;
459 }
460 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
461
462 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
This page took 0.067331 seconds and 5 git commands to generate.