[POWERPC] Remove the dregs of APUS support from arch/powerpc
[deliverable/linux.git] / arch / powerpc / mm / mem.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
9 *
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 *
18 */
19
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/stddef.h>
28 #include <linux/init.h>
29 #include <linux/bootmem.h>
30 #include <linux/highmem.h>
31 #include <linux/initrd.h>
32 #include <linux/pagemap.h>
33 #include <linux/suspend.h>
34
35 #include <asm/pgalloc.h>
36 #include <asm/prom.h>
37 #include <asm/io.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/smp.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
44 #include <asm/tlb.h>
45 #include <asm/prom.h>
46 #include <asm/lmb.h>
47 #include <asm/sections.h>
48 #include <asm/vdso.h>
49
50 #include "mmu_decl.h"
51
52 #ifndef CPU_FTR_COHERENT_ICACHE
53 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
54 #define CPU_FTR_NOEXECUTE 0
55 #endif
56
57 int init_bootmem_done;
58 int mem_init_done;
59 unsigned long memory_limit;
60
61 int page_is_ram(unsigned long pfn)
62 {
63 unsigned long paddr = (pfn << PAGE_SHIFT);
64
65 #ifndef CONFIG_PPC64 /* XXX for now */
66 return paddr < __pa(high_memory);
67 #else
68 int i;
69 for (i=0; i < lmb.memory.cnt; i++) {
70 unsigned long base;
71
72 base = lmb.memory.region[i].base;
73
74 if ((paddr >= base) &&
75 (paddr < (base + lmb.memory.region[i].size))) {
76 return 1;
77 }
78 }
79
80 return 0;
81 #endif
82 }
83
84 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
85 unsigned long size, pgprot_t vma_prot)
86 {
87 if (ppc_md.phys_mem_access_prot)
88 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
89
90 if (!page_is_ram(pfn))
91 vma_prot = __pgprot(pgprot_val(vma_prot)
92 | _PAGE_GUARDED | _PAGE_NO_CACHE);
93 return vma_prot;
94 }
95 EXPORT_SYMBOL(phys_mem_access_prot);
96
97 #ifdef CONFIG_MEMORY_HOTPLUG
98
99 void online_page(struct page *page)
100 {
101 ClearPageReserved(page);
102 init_page_count(page);
103 __free_page(page);
104 totalram_pages++;
105 num_physpages++;
106 }
107
108 #ifdef CONFIG_NUMA
109 int memory_add_physaddr_to_nid(u64 start)
110 {
111 return hot_add_scn_to_nid(start);
112 }
113 #endif
114
115 int __devinit arch_add_memory(int nid, u64 start, u64 size)
116 {
117 struct pglist_data *pgdata;
118 struct zone *zone;
119 unsigned long start_pfn = start >> PAGE_SHIFT;
120 unsigned long nr_pages = size >> PAGE_SHIFT;
121
122 pgdata = NODE_DATA(nid);
123
124 start = (unsigned long)__va(start);
125 create_section_mapping(start, start + size);
126
127 /* this should work for most non-highmem platforms */
128 zone = pgdata->node_zones;
129
130 return __add_pages(zone, start_pfn, nr_pages);
131
132 return 0;
133 }
134
135 /*
136 * First pass at this code will check to determine if the remove
137 * request is within the RMO. Do not allow removal within the RMO.
138 */
139 int __devinit remove_memory(u64 start, u64 size)
140 {
141 struct zone *zone;
142 unsigned long start_pfn, end_pfn, nr_pages;
143
144 start_pfn = start >> PAGE_SHIFT;
145 nr_pages = size >> PAGE_SHIFT;
146 end_pfn = start_pfn + nr_pages;
147
148 printk("%s(): Attempting to remove memoy in range "
149 "%lx to %lx\n", __func__, start, start+size);
150 /*
151 * check for range within RMO
152 */
153 zone = page_zone(pfn_to_page(start_pfn));
154
155 printk("%s(): memory will be removed from "
156 "the %s zone\n", __func__, zone->name);
157
158 /*
159 * not handling removing memory ranges that
160 * overlap multiple zones yet
161 */
162 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
163 goto overlap;
164
165 /* make sure it is NOT in RMO */
166 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
167 printk("%s(): range to be removed must NOT be in RMO!\n",
168 __func__);
169 goto in_rmo;
170 }
171
172 return __remove_pages(zone, start_pfn, nr_pages);
173
174 overlap:
175 printk("%s(): memory range to be removed overlaps "
176 "multiple zones!!!\n", __func__);
177 in_rmo:
178 return -1;
179 }
180 #endif /* CONFIG_MEMORY_HOTPLUG */
181
182 void show_mem(void)
183 {
184 unsigned long total = 0, reserved = 0;
185 unsigned long shared = 0, cached = 0;
186 unsigned long highmem = 0;
187 struct page *page;
188 pg_data_t *pgdat;
189 unsigned long i;
190
191 printk("Mem-info:\n");
192 show_free_areas();
193 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
194 for_each_online_pgdat(pgdat) {
195 unsigned long flags;
196 pgdat_resize_lock(pgdat, &flags);
197 for (i = 0; i < pgdat->node_spanned_pages; i++) {
198 if (!pfn_valid(pgdat->node_start_pfn + i))
199 continue;
200 page = pgdat_page_nr(pgdat, i);
201 total++;
202 if (PageHighMem(page))
203 highmem++;
204 if (PageReserved(page))
205 reserved++;
206 else if (PageSwapCache(page))
207 cached++;
208 else if (page_count(page))
209 shared += page_count(page) - 1;
210 }
211 pgdat_resize_unlock(pgdat, &flags);
212 }
213 printk("%ld pages of RAM\n", total);
214 #ifdef CONFIG_HIGHMEM
215 printk("%ld pages of HIGHMEM\n", highmem);
216 #endif
217 printk("%ld reserved pages\n", reserved);
218 printk("%ld pages shared\n", shared);
219 printk("%ld pages swap cached\n", cached);
220 }
221
222 /*
223 * Initialize the bootmem system and give it all the memory we
224 * have available. If we are using highmem, we only put the
225 * lowmem into the bootmem system.
226 */
227 #ifndef CONFIG_NEED_MULTIPLE_NODES
228 void __init do_init_bootmem(void)
229 {
230 unsigned long i;
231 unsigned long start, bootmap_pages;
232 unsigned long total_pages;
233 int boot_mapsize;
234
235 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
236 #ifdef CONFIG_HIGHMEM
237 total_pages = total_lowmem >> PAGE_SHIFT;
238 #endif
239
240 /*
241 * Find an area to use for the bootmem bitmap. Calculate the size of
242 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
243 * Add 1 additional page in case the address isn't page-aligned.
244 */
245 bootmap_pages = bootmem_bootmap_pages(total_pages);
246
247 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
248
249 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
250
251 /* Add active regions with valid PFNs */
252 for (i = 0; i < lmb.memory.cnt; i++) {
253 unsigned long start_pfn, end_pfn;
254 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
255 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
256 add_active_range(0, start_pfn, end_pfn);
257 }
258
259 /* Add all physical memory to the bootmem map, mark each area
260 * present.
261 */
262 #ifdef CONFIG_HIGHMEM
263 free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT);
264 #else
265 free_bootmem_with_active_regions(0, max_pfn);
266 #endif
267
268 /* reserve the sections we're already using */
269 for (i = 0; i < lmb.reserved.cnt; i++)
270 reserve_bootmem(lmb.reserved.region[i].base,
271 lmb_size_bytes(&lmb.reserved, i));
272
273 /* XXX need to clip this if using highmem? */
274 sparse_memory_present_with_active_regions(0);
275
276 init_bootmem_done = 1;
277 }
278
279 /* mark pages that don't exist as nosave */
280 static int __init mark_nonram_nosave(void)
281 {
282 unsigned long lmb_next_region_start_pfn,
283 lmb_region_max_pfn;
284 int i;
285
286 for (i = 0; i < lmb.memory.cnt - 1; i++) {
287 lmb_region_max_pfn =
288 (lmb.memory.region[i].base >> PAGE_SHIFT) +
289 (lmb.memory.region[i].size >> PAGE_SHIFT);
290 lmb_next_region_start_pfn =
291 lmb.memory.region[i+1].base >> PAGE_SHIFT;
292
293 if (lmb_region_max_pfn < lmb_next_region_start_pfn)
294 register_nosave_region(lmb_region_max_pfn,
295 lmb_next_region_start_pfn);
296 }
297
298 return 0;
299 }
300
301 /*
302 * paging_init() sets up the page tables - in fact we've already done this.
303 */
304 void __init paging_init(void)
305 {
306 unsigned long total_ram = lmb_phys_mem_size();
307 unsigned long top_of_ram = lmb_end_of_DRAM();
308 unsigned long max_zone_pfns[MAX_NR_ZONES];
309
310 #ifdef CONFIG_HIGHMEM
311 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
312 pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
313 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
314 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
315 kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
316 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN),
317 KMAP_FIX_BEGIN);
318 kmap_prot = PAGE_KERNEL;
319 #endif /* CONFIG_HIGHMEM */
320
321 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
322 top_of_ram, total_ram);
323 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
324 (top_of_ram - total_ram) >> 20);
325 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
326 #ifdef CONFIG_HIGHMEM
327 max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
328 max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
329 #else
330 max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
331 #endif
332 free_area_init_nodes(max_zone_pfns);
333
334 mark_nonram_nosave();
335 }
336 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
337
338 void __init mem_init(void)
339 {
340 #ifdef CONFIG_NEED_MULTIPLE_NODES
341 int nid;
342 #endif
343 pg_data_t *pgdat;
344 unsigned long i;
345 struct page *page;
346 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
347
348 num_physpages = lmb.memory.size >> PAGE_SHIFT;
349 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
350
351 #ifdef CONFIG_NEED_MULTIPLE_NODES
352 for_each_online_node(nid) {
353 if (NODE_DATA(nid)->node_spanned_pages != 0) {
354 printk("freeing bootmem node %d\n", nid);
355 totalram_pages +=
356 free_all_bootmem_node(NODE_DATA(nid));
357 }
358 }
359 #else
360 max_mapnr = max_pfn;
361 totalram_pages += free_all_bootmem();
362 #endif
363 for_each_online_pgdat(pgdat) {
364 for (i = 0; i < pgdat->node_spanned_pages; i++) {
365 if (!pfn_valid(pgdat->node_start_pfn + i))
366 continue;
367 page = pgdat_page_nr(pgdat, i);
368 if (PageReserved(page))
369 reservedpages++;
370 }
371 }
372
373 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
374 datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
375 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
376 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
377
378 #ifdef CONFIG_HIGHMEM
379 {
380 unsigned long pfn, highmem_mapnr;
381
382 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
383 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
384 struct page *page = pfn_to_page(pfn);
385
386 ClearPageReserved(page);
387 init_page_count(page);
388 __free_page(page);
389 totalhigh_pages++;
390 }
391 totalram_pages += totalhigh_pages;
392 printk(KERN_DEBUG "High memory: %luk\n",
393 totalhigh_pages << (PAGE_SHIFT-10));
394 }
395 #endif /* CONFIG_HIGHMEM */
396
397 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
398 "%luk reserved, %luk data, %luk bss, %luk init)\n",
399 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
400 num_physpages << (PAGE_SHIFT-10),
401 codesize >> 10,
402 reservedpages << (PAGE_SHIFT-10),
403 datasize >> 10,
404 bsssize >> 10,
405 initsize >> 10);
406
407 mem_init_done = 1;
408 }
409
410 /*
411 * This is called when a page has been modified by the kernel.
412 * It just marks the page as not i-cache clean. We do the i-cache
413 * flush later when the page is given to a user process, if necessary.
414 */
415 void flush_dcache_page(struct page *page)
416 {
417 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
418 return;
419 /* avoid an atomic op if possible */
420 if (test_bit(PG_arch_1, &page->flags))
421 clear_bit(PG_arch_1, &page->flags);
422 }
423 EXPORT_SYMBOL(flush_dcache_page);
424
425 void flush_dcache_icache_page(struct page *page)
426 {
427 #ifdef CONFIG_BOOKE
428 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
429 __flush_dcache_icache(start);
430 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
431 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
432 /* On 8xx there is no need to kmap since highmem is not supported */
433 __flush_dcache_icache(page_address(page));
434 #else
435 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
436 #endif
437
438 }
439 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
440 {
441 clear_page(page);
442
443 /*
444 * We shouldnt have to do this, but some versions of glibc
445 * require it (ld.so assumes zero filled pages are icache clean)
446 * - Anton
447 */
448 flush_dcache_page(pg);
449 }
450 EXPORT_SYMBOL(clear_user_page);
451
452 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
453 struct page *pg)
454 {
455 copy_page(vto, vfrom);
456
457 /*
458 * We should be able to use the following optimisation, however
459 * there are two problems.
460 * Firstly a bug in some versions of binutils meant PLT sections
461 * were not marked executable.
462 * Secondly the first word in the GOT section is blrl, used
463 * to establish the GOT address. Until recently the GOT was
464 * not marked executable.
465 * - Anton
466 */
467 #if 0
468 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
469 return;
470 #endif
471
472 flush_dcache_page(pg);
473 }
474
475 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
476 unsigned long addr, int len)
477 {
478 unsigned long maddr;
479
480 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
481 flush_icache_range(maddr, maddr + len);
482 kunmap(page);
483 }
484 EXPORT_SYMBOL(flush_icache_user_range);
485
486 /*
487 * This is called at the end of handling a user page fault, when the
488 * fault has been handled by updating a PTE in the linux page tables.
489 * We use it to preload an HPTE into the hash table corresponding to
490 * the updated linux PTE.
491 *
492 * This must always be called with the pte lock held.
493 */
494 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
495 pte_t pte)
496 {
497 #ifdef CONFIG_PPC_STD_MMU
498 unsigned long access = 0, trap;
499 #endif
500 unsigned long pfn = pte_pfn(pte);
501
502 /* handle i-cache coherency */
503 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
504 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
505 pfn_valid(pfn)) {
506 struct page *page = pfn_to_page(pfn);
507 #ifdef CONFIG_8xx
508 /* On 8xx, cache control instructions (particularly
509 * "dcbst" from flush_dcache_icache) fault as write
510 * operation if there is an unpopulated TLB entry
511 * for the address in question. To workaround that,
512 * we invalidate the TLB here, thus avoiding dcbst
513 * misbehaviour.
514 */
515 _tlbie(address);
516 #endif
517 if (!PageReserved(page)
518 && !test_bit(PG_arch_1, &page->flags)) {
519 if (vma->vm_mm == current->active_mm) {
520 __flush_dcache_icache((void *) address);
521 } else
522 flush_dcache_icache_page(page);
523 set_bit(PG_arch_1, &page->flags);
524 }
525 }
526
527 #ifdef CONFIG_PPC_STD_MMU
528 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
529 if (!pte_young(pte) || address >= TASK_SIZE)
530 return;
531
532 /* We try to figure out if we are coming from an instruction
533 * access fault and pass that down to __hash_page so we avoid
534 * double-faulting on execution of fresh text. We have to test
535 * for regs NULL since init will get here first thing at boot
536 *
537 * We also avoid filling the hash if not coming from a fault
538 */
539 if (current->thread.regs == NULL)
540 return;
541 trap = TRAP(current->thread.regs);
542 if (trap == 0x400)
543 access |= _PAGE_EXEC;
544 else if (trap != 0x300)
545 return;
546 hash_preload(vma->vm_mm, address, access, trap);
547 #endif /* CONFIG_PPC_STD_MMU */
548 }
This page took 0.05563 seconds and 5 git commands to generate.