Introduce flags for reserve_bootmem()
[deliverable/linux.git] / arch / powerpc / mm / mem.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
9 *
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 *
18 */
19
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/stddef.h>
28 #include <linux/init.h>
29 #include <linux/bootmem.h>
30 #include <linux/highmem.h>
31 #include <linux/initrd.h>
32 #include <linux/pagemap.h>
33 #include <linux/suspend.h>
34
35 #include <asm/pgalloc.h>
36 #include <asm/prom.h>
37 #include <asm/io.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/smp.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
44 #include <asm/tlb.h>
45 #include <asm/lmb.h>
46 #include <asm/sections.h>
47 #include <asm/vdso.h>
48
49 #include "mmu_decl.h"
50
51 #ifndef CPU_FTR_COHERENT_ICACHE
52 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
53 #define CPU_FTR_NOEXECUTE 0
54 #endif
55
56 int init_bootmem_done;
57 int mem_init_done;
58 unsigned long memory_limit;
59
60 int page_is_ram(unsigned long pfn)
61 {
62 unsigned long paddr = (pfn << PAGE_SHIFT);
63
64 #ifndef CONFIG_PPC64 /* XXX for now */
65 return paddr < __pa(high_memory);
66 #else
67 int i;
68 for (i=0; i < lmb.memory.cnt; i++) {
69 unsigned long base;
70
71 base = lmb.memory.region[i].base;
72
73 if ((paddr >= base) &&
74 (paddr < (base + lmb.memory.region[i].size))) {
75 return 1;
76 }
77 }
78
79 return 0;
80 #endif
81 }
82
83 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
84 unsigned long size, pgprot_t vma_prot)
85 {
86 if (ppc_md.phys_mem_access_prot)
87 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
88
89 if (!page_is_ram(pfn))
90 vma_prot = __pgprot(pgprot_val(vma_prot)
91 | _PAGE_GUARDED | _PAGE_NO_CACHE);
92 return vma_prot;
93 }
94 EXPORT_SYMBOL(phys_mem_access_prot);
95
96 #ifdef CONFIG_MEMORY_HOTPLUG
97
98 void online_page(struct page *page)
99 {
100 ClearPageReserved(page);
101 init_page_count(page);
102 __free_page(page);
103 totalram_pages++;
104 num_physpages++;
105 }
106
107 #ifdef CONFIG_NUMA
108 int memory_add_physaddr_to_nid(u64 start)
109 {
110 return hot_add_scn_to_nid(start);
111 }
112 #endif
113
114 int __devinit arch_add_memory(int nid, u64 start, u64 size)
115 {
116 struct pglist_data *pgdata;
117 struct zone *zone;
118 unsigned long start_pfn = start >> PAGE_SHIFT;
119 unsigned long nr_pages = size >> PAGE_SHIFT;
120
121 pgdata = NODE_DATA(nid);
122
123 start = (unsigned long)__va(start);
124 create_section_mapping(start, start + size);
125
126 /* this should work for most non-highmem platforms */
127 zone = pgdata->node_zones;
128
129 return __add_pages(zone, start_pfn, nr_pages);
130 }
131
132 #endif /* CONFIG_MEMORY_HOTPLUG */
133
134 void show_mem(void)
135 {
136 unsigned long total = 0, reserved = 0;
137 unsigned long shared = 0, cached = 0;
138 unsigned long highmem = 0;
139 struct page *page;
140 pg_data_t *pgdat;
141 unsigned long i;
142
143 printk("Mem-info:\n");
144 show_free_areas();
145 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
146 for_each_online_pgdat(pgdat) {
147 unsigned long flags;
148 pgdat_resize_lock(pgdat, &flags);
149 for (i = 0; i < pgdat->node_spanned_pages; i++) {
150 if (!pfn_valid(pgdat->node_start_pfn + i))
151 continue;
152 page = pgdat_page_nr(pgdat, i);
153 total++;
154 if (PageHighMem(page))
155 highmem++;
156 if (PageReserved(page))
157 reserved++;
158 else if (PageSwapCache(page))
159 cached++;
160 else if (page_count(page))
161 shared += page_count(page) - 1;
162 }
163 pgdat_resize_unlock(pgdat, &flags);
164 }
165 printk("%ld pages of RAM\n", total);
166 #ifdef CONFIG_HIGHMEM
167 printk("%ld pages of HIGHMEM\n", highmem);
168 #endif
169 printk("%ld reserved pages\n", reserved);
170 printk("%ld pages shared\n", shared);
171 printk("%ld pages swap cached\n", cached);
172 }
173
174 /*
175 * Initialize the bootmem system and give it all the memory we
176 * have available. If we are using highmem, we only put the
177 * lowmem into the bootmem system.
178 */
179 #ifndef CONFIG_NEED_MULTIPLE_NODES
180 void __init do_init_bootmem(void)
181 {
182 unsigned long i;
183 unsigned long start, bootmap_pages;
184 unsigned long total_pages;
185 int boot_mapsize;
186
187 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
188 #ifdef CONFIG_HIGHMEM
189 total_pages = total_lowmem >> PAGE_SHIFT;
190 #endif
191
192 /*
193 * Find an area to use for the bootmem bitmap. Calculate the size of
194 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
195 * Add 1 additional page in case the address isn't page-aligned.
196 */
197 bootmap_pages = bootmem_bootmap_pages(total_pages);
198
199 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
200
201 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
202
203 /* Add active regions with valid PFNs */
204 for (i = 0; i < lmb.memory.cnt; i++) {
205 unsigned long start_pfn, end_pfn;
206 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
207 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
208 add_active_range(0, start_pfn, end_pfn);
209 }
210
211 /* Add all physical memory to the bootmem map, mark each area
212 * present.
213 */
214 #ifdef CONFIG_HIGHMEM
215 free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT);
216
217 /* reserve the sections we're already using */
218 for (i = 0; i < lmb.reserved.cnt; i++) {
219 unsigned long addr = lmb.reserved.region[i].base +
220 lmb_size_bytes(&lmb.reserved, i) - 1;
221 if (addr < total_lowmem)
222 reserve_bootmem(lmb.reserved.region[i].base,
223 lmb_size_bytes(&lmb.reserved, i),
224 BOOTMEM_DEFAULT);
225 else if (lmb.reserved.region[i].base < total_lowmem) {
226 unsigned long adjusted_size = total_lowmem -
227 lmb.reserved.region[i].base;
228 reserve_bootmem(lmb.reserved.region[i].base,
229 adjusted_size, BOOTMEM_DEFAULT);
230 }
231 }
232 #else
233 free_bootmem_with_active_regions(0, max_pfn);
234
235 /* reserve the sections we're already using */
236 for (i = 0; i < lmb.reserved.cnt; i++)
237 reserve_bootmem(lmb.reserved.region[i].base,
238 lmb_size_bytes(&lmb.reserved, i),
239 BOOTMEM_DEFAULT);
240
241 #endif
242 /* XXX need to clip this if using highmem? */
243 sparse_memory_present_with_active_regions(0);
244
245 init_bootmem_done = 1;
246 }
247
248 /* mark pages that don't exist as nosave */
249 static int __init mark_nonram_nosave(void)
250 {
251 unsigned long lmb_next_region_start_pfn,
252 lmb_region_max_pfn;
253 int i;
254
255 for (i = 0; i < lmb.memory.cnt - 1; i++) {
256 lmb_region_max_pfn =
257 (lmb.memory.region[i].base >> PAGE_SHIFT) +
258 (lmb.memory.region[i].size >> PAGE_SHIFT);
259 lmb_next_region_start_pfn =
260 lmb.memory.region[i+1].base >> PAGE_SHIFT;
261
262 if (lmb_region_max_pfn < lmb_next_region_start_pfn)
263 register_nosave_region(lmb_region_max_pfn,
264 lmb_next_region_start_pfn);
265 }
266
267 return 0;
268 }
269
270 /*
271 * paging_init() sets up the page tables - in fact we've already done this.
272 */
273 void __init paging_init(void)
274 {
275 unsigned long total_ram = lmb_phys_mem_size();
276 unsigned long top_of_ram = lmb_end_of_DRAM();
277 unsigned long max_zone_pfns[MAX_NR_ZONES];
278
279 #ifdef CONFIG_HIGHMEM
280 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
281 pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
282 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
283 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
284 kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
285 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN),
286 KMAP_FIX_BEGIN);
287 kmap_prot = PAGE_KERNEL;
288 #endif /* CONFIG_HIGHMEM */
289
290 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
291 top_of_ram, total_ram);
292 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
293 (top_of_ram - total_ram) >> 20);
294 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
295 #ifdef CONFIG_HIGHMEM
296 max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
297 max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
298 #else
299 max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
300 #endif
301 free_area_init_nodes(max_zone_pfns);
302
303 mark_nonram_nosave();
304 }
305 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
306
307 void __init mem_init(void)
308 {
309 #ifdef CONFIG_NEED_MULTIPLE_NODES
310 int nid;
311 #endif
312 pg_data_t *pgdat;
313 unsigned long i;
314 struct page *page;
315 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
316
317 num_physpages = lmb.memory.size >> PAGE_SHIFT;
318 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
319
320 #ifdef CONFIG_NEED_MULTIPLE_NODES
321 for_each_online_node(nid) {
322 if (NODE_DATA(nid)->node_spanned_pages != 0) {
323 printk("freeing bootmem node %d\n", nid);
324 totalram_pages +=
325 free_all_bootmem_node(NODE_DATA(nid));
326 }
327 }
328 #else
329 max_mapnr = max_pfn;
330 totalram_pages += free_all_bootmem();
331 #endif
332 for_each_online_pgdat(pgdat) {
333 for (i = 0; i < pgdat->node_spanned_pages; i++) {
334 if (!pfn_valid(pgdat->node_start_pfn + i))
335 continue;
336 page = pgdat_page_nr(pgdat, i);
337 if (PageReserved(page))
338 reservedpages++;
339 }
340 }
341
342 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
343 datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
344 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
345 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
346
347 #ifdef CONFIG_HIGHMEM
348 {
349 unsigned long pfn, highmem_mapnr;
350
351 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
352 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
353 struct page *page = pfn_to_page(pfn);
354 if (lmb_is_reserved(pfn << PAGE_SHIFT))
355 continue;
356 ClearPageReserved(page);
357 init_page_count(page);
358 __free_page(page);
359 totalhigh_pages++;
360 reservedpages--;
361 }
362 totalram_pages += totalhigh_pages;
363 printk(KERN_DEBUG "High memory: %luk\n",
364 totalhigh_pages << (PAGE_SHIFT-10));
365 }
366 #endif /* CONFIG_HIGHMEM */
367
368 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
369 "%luk reserved, %luk data, %luk bss, %luk init)\n",
370 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
371 num_physpages << (PAGE_SHIFT-10),
372 codesize >> 10,
373 reservedpages << (PAGE_SHIFT-10),
374 datasize >> 10,
375 bsssize >> 10,
376 initsize >> 10);
377
378 mem_init_done = 1;
379 }
380
381 /*
382 * This is called when a page has been modified by the kernel.
383 * It just marks the page as not i-cache clean. We do the i-cache
384 * flush later when the page is given to a user process, if necessary.
385 */
386 void flush_dcache_page(struct page *page)
387 {
388 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
389 return;
390 /* avoid an atomic op if possible */
391 if (test_bit(PG_arch_1, &page->flags))
392 clear_bit(PG_arch_1, &page->flags);
393 }
394 EXPORT_SYMBOL(flush_dcache_page);
395
396 void flush_dcache_icache_page(struct page *page)
397 {
398 #ifdef CONFIG_BOOKE
399 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
400 __flush_dcache_icache(start);
401 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
402 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
403 /* On 8xx there is no need to kmap since highmem is not supported */
404 __flush_dcache_icache(page_address(page));
405 #else
406 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
407 #endif
408
409 }
410 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
411 {
412 clear_page(page);
413
414 /*
415 * We shouldnt have to do this, but some versions of glibc
416 * require it (ld.so assumes zero filled pages are icache clean)
417 * - Anton
418 */
419 flush_dcache_page(pg);
420 }
421 EXPORT_SYMBOL(clear_user_page);
422
423 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
424 struct page *pg)
425 {
426 copy_page(vto, vfrom);
427
428 /*
429 * We should be able to use the following optimisation, however
430 * there are two problems.
431 * Firstly a bug in some versions of binutils meant PLT sections
432 * were not marked executable.
433 * Secondly the first word in the GOT section is blrl, used
434 * to establish the GOT address. Until recently the GOT was
435 * not marked executable.
436 * - Anton
437 */
438 #if 0
439 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
440 return;
441 #endif
442
443 flush_dcache_page(pg);
444 }
445
446 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
447 unsigned long addr, int len)
448 {
449 unsigned long maddr;
450
451 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
452 flush_icache_range(maddr, maddr + len);
453 kunmap(page);
454 }
455 EXPORT_SYMBOL(flush_icache_user_range);
456
457 /*
458 * This is called at the end of handling a user page fault, when the
459 * fault has been handled by updating a PTE in the linux page tables.
460 * We use it to preload an HPTE into the hash table corresponding to
461 * the updated linux PTE.
462 *
463 * This must always be called with the pte lock held.
464 */
465 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
466 pte_t pte)
467 {
468 #ifdef CONFIG_PPC_STD_MMU
469 unsigned long access = 0, trap;
470 #endif
471 unsigned long pfn = pte_pfn(pte);
472
473 /* handle i-cache coherency */
474 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
475 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
476 pfn_valid(pfn)) {
477 struct page *page = pfn_to_page(pfn);
478 #ifdef CONFIG_8xx
479 /* On 8xx, cache control instructions (particularly
480 * "dcbst" from flush_dcache_icache) fault as write
481 * operation if there is an unpopulated TLB entry
482 * for the address in question. To workaround that,
483 * we invalidate the TLB here, thus avoiding dcbst
484 * misbehaviour.
485 */
486 _tlbie(address, 0 /* 8xx doesn't care about PID */);
487 #endif
488 if (!PageReserved(page)
489 && !test_bit(PG_arch_1, &page->flags)) {
490 if (vma->vm_mm == current->active_mm) {
491 __flush_dcache_icache((void *) address);
492 } else
493 flush_dcache_icache_page(page);
494 set_bit(PG_arch_1, &page->flags);
495 }
496 }
497
498 #ifdef CONFIG_PPC_STD_MMU
499 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
500 if (!pte_young(pte) || address >= TASK_SIZE)
501 return;
502
503 /* We try to figure out if we are coming from an instruction
504 * access fault and pass that down to __hash_page so we avoid
505 * double-faulting on execution of fresh text. We have to test
506 * for regs NULL since init will get here first thing at boot
507 *
508 * We also avoid filling the hash if not coming from a fault
509 */
510 if (current->thread.regs == NULL)
511 return;
512 trap = TRAP(current->thread.regs);
513 if (trap == 0x400)
514 access |= _PAGE_EXEC;
515 else if (trap != 0x300)
516 return;
517 hash_preload(vma->vm_mm, address, access, trap);
518 #endif /* CONFIG_PPC_STD_MMU */
519 }
This page took 0.041906 seconds and 5 git commands to generate.