Merge tag 'asoc-fix-v4.6-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/brooni...
[deliverable/linux.git] / arch / powerpc / mm / numa.c
1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #define pr_fmt(fmt) "numa: " fmt
12
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43
44 static int numa_enabled = 1;
45
46 static char *cmdline __initdata;
47
48 static int numa_debug;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50
51 int numa_cpu_lookup_table[NR_CPUS];
52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53 struct pglist_data *node_data[MAX_NUMNODES];
54
55 EXPORT_SYMBOL(numa_cpu_lookup_table);
56 EXPORT_SYMBOL(node_to_cpumask_map);
57 EXPORT_SYMBOL(node_data);
58
59 static int min_common_depth;
60 static int n_mem_addr_cells, n_mem_size_cells;
61 static int form1_affinity;
62
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth;
65 static const __be32 *distance_ref_points;
66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67
68 /*
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
71 *
72 * Note: cpumask_of_node() is not valid until after this is done.
73 */
74 static void __init setup_node_to_cpumask_map(void)
75 {
76 unsigned int node;
77
78 /* setup nr_node_ids if not done yet */
79 if (nr_node_ids == MAX_NUMNODES)
80 setup_nr_node_ids();
81
82 /* allocate the map */
83 for_each_node(node)
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86 /* cpumask_of_node() will now work */
87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88 }
89
90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 unsigned int *nid)
92 {
93 unsigned long long mem;
94 char *p = cmdline;
95 static unsigned int fake_nid;
96 static unsigned long long curr_boundary;
97
98 /*
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
101 */
102 if (fake_nid)
103 *nid = fake_nid;
104 /*
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
108 */
109 if (!p)
110 return 0;
111
112 mem = memparse(p, &p);
113 if (!mem)
114 return 0;
115
116 if (mem < curr_boundary)
117 return 0;
118
119 curr_boundary = mem;
120
121 if ((end_pfn << PAGE_SHIFT) > mem) {
122 /*
123 * Skip commas and spaces
124 */
125 while (*p == ',' || *p == ' ' || *p == '\t')
126 p++;
127
128 cmdline = p;
129 fake_nid++;
130 *nid = fake_nid;
131 dbg("created new fake_node with id %d\n", fake_nid);
132 return 1;
133 }
134 return 0;
135 }
136
137 static void reset_numa_cpu_lookup_table(void)
138 {
139 unsigned int cpu;
140
141 for_each_possible_cpu(cpu)
142 numa_cpu_lookup_table[cpu] = -1;
143 }
144
145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
146 {
147 numa_cpu_lookup_table[cpu] = node;
148 }
149
150 static void map_cpu_to_node(int cpu, int node)
151 {
152 update_numa_cpu_lookup_table(cpu, node);
153
154 dbg("adding cpu %d to node %d\n", cpu, node);
155
156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
158 }
159
160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
161 static void unmap_cpu_from_node(unsigned long cpu)
162 {
163 int node = numa_cpu_lookup_table[cpu];
164
165 dbg("removing cpu %lu from node %d\n", cpu, node);
166
167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
169 } else {
170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171 cpu, node);
172 }
173 }
174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
175
176 /* must hold reference to node during call */
177 static const __be32 *of_get_associativity(struct device_node *dev)
178 {
179 return of_get_property(dev, "ibm,associativity", NULL);
180 }
181
182 /*
183 * Returns the property linux,drconf-usable-memory if
184 * it exists (the property exists only in kexec/kdump kernels,
185 * added by kexec-tools)
186 */
187 static const __be32 *of_get_usable_memory(struct device_node *memory)
188 {
189 const __be32 *prop;
190 u32 len;
191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192 if (!prop || len < sizeof(unsigned int))
193 return NULL;
194 return prop;
195 }
196
197 int __node_distance(int a, int b)
198 {
199 int i;
200 int distance = LOCAL_DISTANCE;
201
202 if (!form1_affinity)
203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204
205 for (i = 0; i < distance_ref_points_depth; i++) {
206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207 break;
208
209 /* Double the distance for each NUMA level */
210 distance *= 2;
211 }
212
213 return distance;
214 }
215 EXPORT_SYMBOL(__node_distance);
216
217 static void initialize_distance_lookup_table(int nid,
218 const __be32 *associativity)
219 {
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 const __be32 *entry;
227
228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229 distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 }
231 }
232
233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234 * info is found.
235 */
236 static int associativity_to_nid(const __be32 *associativity)
237 {
238 int nid = -1;
239
240 if (min_common_depth == -1)
241 goto out;
242
243 if (of_read_number(associativity, 1) >= min_common_depth)
244 nid = of_read_number(&associativity[min_common_depth], 1);
245
246 /* POWER4 LPAR uses 0xffff as invalid node */
247 if (nid == 0xffff || nid >= MAX_NUMNODES)
248 nid = -1;
249
250 if (nid > 0 &&
251 of_read_number(associativity, 1) >= distance_ref_points_depth) {
252 /*
253 * Skip the length field and send start of associativity array
254 */
255 initialize_distance_lookup_table(nid, associativity + 1);
256 }
257
258 out:
259 return nid;
260 }
261
262 /* Returns the nid associated with the given device tree node,
263 * or -1 if not found.
264 */
265 static int of_node_to_nid_single(struct device_node *device)
266 {
267 int nid = -1;
268 const __be32 *tmp;
269
270 tmp = of_get_associativity(device);
271 if (tmp)
272 nid = associativity_to_nid(tmp);
273 return nid;
274 }
275
276 /* Walk the device tree upwards, looking for an associativity id */
277 int of_node_to_nid(struct device_node *device)
278 {
279 int nid = -1;
280
281 of_node_get(device);
282 while (device) {
283 nid = of_node_to_nid_single(device);
284 if (nid != -1)
285 break;
286
287 device = of_get_next_parent(device);
288 }
289 of_node_put(device);
290
291 return nid;
292 }
293 EXPORT_SYMBOL_GPL(of_node_to_nid);
294
295 static int __init find_min_common_depth(void)
296 {
297 int depth;
298 struct device_node *root;
299
300 if (firmware_has_feature(FW_FEATURE_OPAL))
301 root = of_find_node_by_path("/ibm,opal");
302 else
303 root = of_find_node_by_path("/rtas");
304 if (!root)
305 root = of_find_node_by_path("/");
306
307 /*
308 * This property is a set of 32-bit integers, each representing
309 * an index into the ibm,associativity nodes.
310 *
311 * With form 0 affinity the first integer is for an SMP configuration
312 * (should be all 0's) and the second is for a normal NUMA
313 * configuration. We have only one level of NUMA.
314 *
315 * With form 1 affinity the first integer is the most significant
316 * NUMA boundary and the following are progressively less significant
317 * boundaries. There can be more than one level of NUMA.
318 */
319 distance_ref_points = of_get_property(root,
320 "ibm,associativity-reference-points",
321 &distance_ref_points_depth);
322
323 if (!distance_ref_points) {
324 dbg("NUMA: ibm,associativity-reference-points not found.\n");
325 goto err;
326 }
327
328 distance_ref_points_depth /= sizeof(int);
329
330 if (firmware_has_feature(FW_FEATURE_OPAL) ||
331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332 dbg("Using form 1 affinity\n");
333 form1_affinity = 1;
334 }
335
336 if (form1_affinity) {
337 depth = of_read_number(distance_ref_points, 1);
338 } else {
339 if (distance_ref_points_depth < 2) {
340 printk(KERN_WARNING "NUMA: "
341 "short ibm,associativity-reference-points\n");
342 goto err;
343 }
344
345 depth = of_read_number(&distance_ref_points[1], 1);
346 }
347
348 /*
349 * Warn and cap if the hardware supports more than
350 * MAX_DISTANCE_REF_POINTS domains.
351 */
352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353 printk(KERN_WARNING "NUMA: distance array capped at "
354 "%d entries\n", MAX_DISTANCE_REF_POINTS);
355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356 }
357
358 of_node_put(root);
359 return depth;
360
361 err:
362 of_node_put(root);
363 return -1;
364 }
365
366 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
367 {
368 struct device_node *memory = NULL;
369
370 memory = of_find_node_by_type(memory, "memory");
371 if (!memory)
372 panic("numa.c: No memory nodes found!");
373
374 *n_addr_cells = of_n_addr_cells(memory);
375 *n_size_cells = of_n_size_cells(memory);
376 of_node_put(memory);
377 }
378
379 static unsigned long read_n_cells(int n, const __be32 **buf)
380 {
381 unsigned long result = 0;
382
383 while (n--) {
384 result = (result << 32) | of_read_number(*buf, 1);
385 (*buf)++;
386 }
387 return result;
388 }
389
390 /*
391 * Read the next memblock list entry from the ibm,dynamic-memory property
392 * and return the information in the provided of_drconf_cell structure.
393 */
394 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
395 {
396 const __be32 *cp;
397
398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399
400 cp = *cellp;
401 drmem->drc_index = of_read_number(cp, 1);
402 drmem->reserved = of_read_number(&cp[1], 1);
403 drmem->aa_index = of_read_number(&cp[2], 1);
404 drmem->flags = of_read_number(&cp[3], 1);
405
406 *cellp = cp + 4;
407 }
408
409 /*
410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411 *
412 * The layout of the ibm,dynamic-memory property is a number N of memblock
413 * list entries followed by N memblock list entries. Each memblock list entry
414 * contains information as laid out in the of_drconf_cell struct above.
415 */
416 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
417 {
418 const __be32 *prop;
419 u32 len, entries;
420
421 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422 if (!prop || len < sizeof(unsigned int))
423 return 0;
424
425 entries = of_read_number(prop++, 1);
426
427 /* Now that we know the number of entries, revalidate the size
428 * of the property read in to ensure we have everything
429 */
430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431 return 0;
432
433 *dm = prop;
434 return entries;
435 }
436
437 /*
438 * Retrieve and validate the ibm,lmb-size property for drconf memory
439 * from the device tree.
440 */
441 static u64 of_get_lmb_size(struct device_node *memory)
442 {
443 const __be32 *prop;
444 u32 len;
445
446 prop = of_get_property(memory, "ibm,lmb-size", &len);
447 if (!prop || len < sizeof(unsigned int))
448 return 0;
449
450 return read_n_cells(n_mem_size_cells, &prop);
451 }
452
453 struct assoc_arrays {
454 u32 n_arrays;
455 u32 array_sz;
456 const __be32 *arrays;
457 };
458
459 /*
460 * Retrieve and validate the list of associativity arrays for drconf
461 * memory from the ibm,associativity-lookup-arrays property of the
462 * device tree..
463 *
464 * The layout of the ibm,associativity-lookup-arrays property is a number N
465 * indicating the number of associativity arrays, followed by a number M
466 * indicating the size of each associativity array, followed by a list
467 * of N associativity arrays.
468 */
469 static int of_get_assoc_arrays(struct device_node *memory,
470 struct assoc_arrays *aa)
471 {
472 const __be32 *prop;
473 u32 len;
474
475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476 if (!prop || len < 2 * sizeof(unsigned int))
477 return -1;
478
479 aa->n_arrays = of_read_number(prop++, 1);
480 aa->array_sz = of_read_number(prop++, 1);
481
482 /* Now that we know the number of arrays and size of each array,
483 * revalidate the size of the property read in.
484 */
485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486 return -1;
487
488 aa->arrays = prop;
489 return 0;
490 }
491
492 /*
493 * This is like of_node_to_nid_single() for memory represented in the
494 * ibm,dynamic-reconfiguration-memory node.
495 */
496 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497 struct assoc_arrays *aa)
498 {
499 int default_nid = 0;
500 int nid = default_nid;
501 int index;
502
503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505 drmem->aa_index < aa->n_arrays) {
506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507 nid = of_read_number(&aa->arrays[index], 1);
508
509 if (nid == 0xffff || nid >= MAX_NUMNODES)
510 nid = default_nid;
511
512 if (nid > 0) {
513 index = drmem->aa_index * aa->array_sz;
514 initialize_distance_lookup_table(nid,
515 &aa->arrays[index]);
516 }
517 }
518
519 return nid;
520 }
521
522 /*
523 * Figure out to which domain a cpu belongs and stick it there.
524 * Return the id of the domain used.
525 */
526 static int numa_setup_cpu(unsigned long lcpu)
527 {
528 int nid = -1;
529 struct device_node *cpu;
530
531 /*
532 * If a valid cpu-to-node mapping is already available, use it
533 * directly instead of querying the firmware, since it represents
534 * the most recent mapping notified to us by the platform (eg: VPHN).
535 */
536 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
537 map_cpu_to_node(lcpu, nid);
538 return nid;
539 }
540
541 cpu = of_get_cpu_node(lcpu, NULL);
542
543 if (!cpu) {
544 WARN_ON(1);
545 if (cpu_present(lcpu))
546 goto out_present;
547 else
548 goto out;
549 }
550
551 nid = of_node_to_nid_single(cpu);
552
553 out_present:
554 if (nid < 0 || !node_online(nid))
555 nid = first_online_node;
556
557 map_cpu_to_node(lcpu, nid);
558 of_node_put(cpu);
559 out:
560 return nid;
561 }
562
563 static void verify_cpu_node_mapping(int cpu, int node)
564 {
565 int base, sibling, i;
566
567 /* Verify that all the threads in the core belong to the same node */
568 base = cpu_first_thread_sibling(cpu);
569
570 for (i = 0; i < threads_per_core; i++) {
571 sibling = base + i;
572
573 if (sibling == cpu || cpu_is_offline(sibling))
574 continue;
575
576 if (cpu_to_node(sibling) != node) {
577 WARN(1, "CPU thread siblings %d and %d don't belong"
578 " to the same node!\n", cpu, sibling);
579 break;
580 }
581 }
582 }
583
584 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
585 void *hcpu)
586 {
587 unsigned long lcpu = (unsigned long)hcpu;
588 int ret = NOTIFY_DONE, nid;
589
590 switch (action) {
591 case CPU_UP_PREPARE:
592 case CPU_UP_PREPARE_FROZEN:
593 nid = numa_setup_cpu(lcpu);
594 verify_cpu_node_mapping((int)lcpu, nid);
595 ret = NOTIFY_OK;
596 break;
597 #ifdef CONFIG_HOTPLUG_CPU
598 case CPU_DEAD:
599 case CPU_DEAD_FROZEN:
600 case CPU_UP_CANCELED:
601 case CPU_UP_CANCELED_FROZEN:
602 unmap_cpu_from_node(lcpu);
603 ret = NOTIFY_OK;
604 break;
605 #endif
606 }
607 return ret;
608 }
609
610 /*
611 * Check and possibly modify a memory region to enforce the memory limit.
612 *
613 * Returns the size the region should have to enforce the memory limit.
614 * This will either be the original value of size, a truncated value,
615 * or zero. If the returned value of size is 0 the region should be
616 * discarded as it lies wholly above the memory limit.
617 */
618 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
619 unsigned long size)
620 {
621 /*
622 * We use memblock_end_of_DRAM() in here instead of memory_limit because
623 * we've already adjusted it for the limit and it takes care of
624 * having memory holes below the limit. Also, in the case of
625 * iommu_is_off, memory_limit is not set but is implicitly enforced.
626 */
627
628 if (start + size <= memblock_end_of_DRAM())
629 return size;
630
631 if (start >= memblock_end_of_DRAM())
632 return 0;
633
634 return memblock_end_of_DRAM() - start;
635 }
636
637 /*
638 * Reads the counter for a given entry in
639 * linux,drconf-usable-memory property
640 */
641 static inline int __init read_usm_ranges(const __be32 **usm)
642 {
643 /*
644 * For each lmb in ibm,dynamic-memory a corresponding
645 * entry in linux,drconf-usable-memory property contains
646 * a counter followed by that many (base, size) duple.
647 * read the counter from linux,drconf-usable-memory
648 */
649 return read_n_cells(n_mem_size_cells, usm);
650 }
651
652 /*
653 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
654 * node. This assumes n_mem_{addr,size}_cells have been set.
655 */
656 static void __init parse_drconf_memory(struct device_node *memory)
657 {
658 const __be32 *uninitialized_var(dm), *usm;
659 unsigned int n, rc, ranges, is_kexec_kdump = 0;
660 unsigned long lmb_size, base, size, sz;
661 int nid;
662 struct assoc_arrays aa = { .arrays = NULL };
663
664 n = of_get_drconf_memory(memory, &dm);
665 if (!n)
666 return;
667
668 lmb_size = of_get_lmb_size(memory);
669 if (!lmb_size)
670 return;
671
672 rc = of_get_assoc_arrays(memory, &aa);
673 if (rc)
674 return;
675
676 /* check if this is a kexec/kdump kernel */
677 usm = of_get_usable_memory(memory);
678 if (usm != NULL)
679 is_kexec_kdump = 1;
680
681 for (; n != 0; --n) {
682 struct of_drconf_cell drmem;
683
684 read_drconf_cell(&drmem, &dm);
685
686 /* skip this block if the reserved bit is set in flags (0x80)
687 or if the block is not assigned to this partition (0x8) */
688 if ((drmem.flags & DRCONF_MEM_RESERVED)
689 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
690 continue;
691
692 base = drmem.base_addr;
693 size = lmb_size;
694 ranges = 1;
695
696 if (is_kexec_kdump) {
697 ranges = read_usm_ranges(&usm);
698 if (!ranges) /* there are no (base, size) duple */
699 continue;
700 }
701 do {
702 if (is_kexec_kdump) {
703 base = read_n_cells(n_mem_addr_cells, &usm);
704 size = read_n_cells(n_mem_size_cells, &usm);
705 }
706 nid = of_drconf_to_nid_single(&drmem, &aa);
707 fake_numa_create_new_node(
708 ((base + size) >> PAGE_SHIFT),
709 &nid);
710 node_set_online(nid);
711 sz = numa_enforce_memory_limit(base, size);
712 if (sz)
713 memblock_set_node(base, sz,
714 &memblock.memory, nid);
715 } while (--ranges);
716 }
717 }
718
719 static int __init parse_numa_properties(void)
720 {
721 struct device_node *memory;
722 int default_nid = 0;
723 unsigned long i;
724
725 if (numa_enabled == 0) {
726 printk(KERN_WARNING "NUMA disabled by user\n");
727 return -1;
728 }
729
730 min_common_depth = find_min_common_depth();
731
732 if (min_common_depth < 0)
733 return min_common_depth;
734
735 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
736
737 /*
738 * Even though we connect cpus to numa domains later in SMP
739 * init, we need to know the node ids now. This is because
740 * each node to be onlined must have NODE_DATA etc backing it.
741 */
742 for_each_present_cpu(i) {
743 struct device_node *cpu;
744 int nid;
745
746 cpu = of_get_cpu_node(i, NULL);
747 BUG_ON(!cpu);
748 nid = of_node_to_nid_single(cpu);
749 of_node_put(cpu);
750
751 /*
752 * Don't fall back to default_nid yet -- we will plug
753 * cpus into nodes once the memory scan has discovered
754 * the topology.
755 */
756 if (nid < 0)
757 continue;
758 node_set_online(nid);
759 }
760
761 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
762
763 for_each_node_by_type(memory, "memory") {
764 unsigned long start;
765 unsigned long size;
766 int nid;
767 int ranges;
768 const __be32 *memcell_buf;
769 unsigned int len;
770
771 memcell_buf = of_get_property(memory,
772 "linux,usable-memory", &len);
773 if (!memcell_buf || len <= 0)
774 memcell_buf = of_get_property(memory, "reg", &len);
775 if (!memcell_buf || len <= 0)
776 continue;
777
778 /* ranges in cell */
779 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
780 new_range:
781 /* these are order-sensitive, and modify the buffer pointer */
782 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
783 size = read_n_cells(n_mem_size_cells, &memcell_buf);
784
785 /*
786 * Assumption: either all memory nodes or none will
787 * have associativity properties. If none, then
788 * everything goes to default_nid.
789 */
790 nid = of_node_to_nid_single(memory);
791 if (nid < 0)
792 nid = default_nid;
793
794 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
795 node_set_online(nid);
796
797 if (!(size = numa_enforce_memory_limit(start, size))) {
798 if (--ranges)
799 goto new_range;
800 else
801 continue;
802 }
803
804 memblock_set_node(start, size, &memblock.memory, nid);
805
806 if (--ranges)
807 goto new_range;
808 }
809
810 /*
811 * Now do the same thing for each MEMBLOCK listed in the
812 * ibm,dynamic-memory property in the
813 * ibm,dynamic-reconfiguration-memory node.
814 */
815 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
816 if (memory)
817 parse_drconf_memory(memory);
818
819 return 0;
820 }
821
822 static void __init setup_nonnuma(void)
823 {
824 unsigned long top_of_ram = memblock_end_of_DRAM();
825 unsigned long total_ram = memblock_phys_mem_size();
826 unsigned long start_pfn, end_pfn;
827 unsigned int nid = 0;
828 struct memblock_region *reg;
829
830 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
831 top_of_ram, total_ram);
832 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
833 (top_of_ram - total_ram) >> 20);
834
835 for_each_memblock(memory, reg) {
836 start_pfn = memblock_region_memory_base_pfn(reg);
837 end_pfn = memblock_region_memory_end_pfn(reg);
838
839 fake_numa_create_new_node(end_pfn, &nid);
840 memblock_set_node(PFN_PHYS(start_pfn),
841 PFN_PHYS(end_pfn - start_pfn),
842 &memblock.memory, nid);
843 node_set_online(nid);
844 }
845 }
846
847 void __init dump_numa_cpu_topology(void)
848 {
849 unsigned int node;
850 unsigned int cpu, count;
851
852 if (min_common_depth == -1 || !numa_enabled)
853 return;
854
855 for_each_online_node(node) {
856 printk(KERN_DEBUG "Node %d CPUs:", node);
857
858 count = 0;
859 /*
860 * If we used a CPU iterator here we would miss printing
861 * the holes in the cpumap.
862 */
863 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
864 if (cpumask_test_cpu(cpu,
865 node_to_cpumask_map[node])) {
866 if (count == 0)
867 printk(" %u", cpu);
868 ++count;
869 } else {
870 if (count > 1)
871 printk("-%u", cpu - 1);
872 count = 0;
873 }
874 }
875
876 if (count > 1)
877 printk("-%u", nr_cpu_ids - 1);
878 printk("\n");
879 }
880 }
881
882 static void __init dump_numa_memory_topology(void)
883 {
884 unsigned int node;
885 unsigned int count;
886
887 if (min_common_depth == -1 || !numa_enabled)
888 return;
889
890 for_each_online_node(node) {
891 unsigned long i;
892
893 printk(KERN_DEBUG "Node %d Memory:", node);
894
895 count = 0;
896
897 for (i = 0; i < memblock_end_of_DRAM();
898 i += (1 << SECTION_SIZE_BITS)) {
899 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
900 if (count == 0)
901 printk(" 0x%lx", i);
902 ++count;
903 } else {
904 if (count > 0)
905 printk("-0x%lx", i);
906 count = 0;
907 }
908 }
909
910 if (count > 0)
911 printk("-0x%lx", i);
912 printk("\n");
913 }
914 }
915
916 static struct notifier_block ppc64_numa_nb = {
917 .notifier_call = cpu_numa_callback,
918 .priority = 1 /* Must run before sched domains notifier. */
919 };
920
921 /* Initialize NODE_DATA for a node on the local memory */
922 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
923 {
924 u64 spanned_pages = end_pfn - start_pfn;
925 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
926 u64 nd_pa;
927 void *nd;
928 int tnid;
929
930 if (spanned_pages)
931 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
932 nid, start_pfn << PAGE_SHIFT,
933 (end_pfn << PAGE_SHIFT) - 1);
934 else
935 pr_info("Initmem setup node %d\n", nid);
936
937 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
938 nd = __va(nd_pa);
939
940 /* report and initialize */
941 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
942 nd_pa, nd_pa + nd_size - 1);
943 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
944 if (tnid != nid)
945 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
946
947 node_data[nid] = nd;
948 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
949 NODE_DATA(nid)->node_id = nid;
950 NODE_DATA(nid)->node_start_pfn = start_pfn;
951 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
952 }
953
954 void __init initmem_init(void)
955 {
956 int nid, cpu;
957
958 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
959 max_pfn = max_low_pfn;
960
961 if (parse_numa_properties())
962 setup_nonnuma();
963 else
964 dump_numa_memory_topology();
965
966 memblock_dump_all();
967
968 /*
969 * Reduce the possible NUMA nodes to the online NUMA nodes,
970 * since we do not support node hotplug. This ensures that we
971 * lower the maximum NUMA node ID to what is actually present.
972 */
973 nodes_and(node_possible_map, node_possible_map, node_online_map);
974
975 for_each_online_node(nid) {
976 unsigned long start_pfn, end_pfn;
977
978 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
979 setup_node_data(nid, start_pfn, end_pfn);
980 sparse_memory_present_with_active_regions(nid);
981 }
982
983 sparse_init();
984
985 setup_node_to_cpumask_map();
986
987 reset_numa_cpu_lookup_table();
988 register_cpu_notifier(&ppc64_numa_nb);
989 /*
990 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
991 * even before we online them, so that we can use cpu_to_{node,mem}
992 * early in boot, cf. smp_prepare_cpus().
993 */
994 for_each_present_cpu(cpu) {
995 numa_setup_cpu((unsigned long)cpu);
996 }
997 }
998
999 static int __init early_numa(char *p)
1000 {
1001 if (!p)
1002 return 0;
1003
1004 if (strstr(p, "off"))
1005 numa_enabled = 0;
1006
1007 if (strstr(p, "debug"))
1008 numa_debug = 1;
1009
1010 p = strstr(p, "fake=");
1011 if (p)
1012 cmdline = p + strlen("fake=");
1013
1014 return 0;
1015 }
1016 early_param("numa", early_numa);
1017
1018 static bool topology_updates_enabled = true;
1019
1020 static int __init early_topology_updates(char *p)
1021 {
1022 if (!p)
1023 return 0;
1024
1025 if (!strcmp(p, "off")) {
1026 pr_info("Disabling topology updates\n");
1027 topology_updates_enabled = false;
1028 }
1029
1030 return 0;
1031 }
1032 early_param("topology_updates", early_topology_updates);
1033
1034 #ifdef CONFIG_MEMORY_HOTPLUG
1035 /*
1036 * Find the node associated with a hot added memory section for
1037 * memory represented in the device tree by the property
1038 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1039 */
1040 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1041 unsigned long scn_addr)
1042 {
1043 const __be32 *dm;
1044 unsigned int drconf_cell_cnt, rc;
1045 unsigned long lmb_size;
1046 struct assoc_arrays aa;
1047 int nid = -1;
1048
1049 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1050 if (!drconf_cell_cnt)
1051 return -1;
1052
1053 lmb_size = of_get_lmb_size(memory);
1054 if (!lmb_size)
1055 return -1;
1056
1057 rc = of_get_assoc_arrays(memory, &aa);
1058 if (rc)
1059 return -1;
1060
1061 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1062 struct of_drconf_cell drmem;
1063
1064 read_drconf_cell(&drmem, &dm);
1065
1066 /* skip this block if it is reserved or not assigned to
1067 * this partition */
1068 if ((drmem.flags & DRCONF_MEM_RESERVED)
1069 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1070 continue;
1071
1072 if ((scn_addr < drmem.base_addr)
1073 || (scn_addr >= (drmem.base_addr + lmb_size)))
1074 continue;
1075
1076 nid = of_drconf_to_nid_single(&drmem, &aa);
1077 break;
1078 }
1079
1080 return nid;
1081 }
1082
1083 /*
1084 * Find the node associated with a hot added memory section for memory
1085 * represented in the device tree as a node (i.e. memory@XXXX) for
1086 * each memblock.
1087 */
1088 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1089 {
1090 struct device_node *memory;
1091 int nid = -1;
1092
1093 for_each_node_by_type(memory, "memory") {
1094 unsigned long start, size;
1095 int ranges;
1096 const __be32 *memcell_buf;
1097 unsigned int len;
1098
1099 memcell_buf = of_get_property(memory, "reg", &len);
1100 if (!memcell_buf || len <= 0)
1101 continue;
1102
1103 /* ranges in cell */
1104 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1105
1106 while (ranges--) {
1107 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1108 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1109
1110 if ((scn_addr < start) || (scn_addr >= (start + size)))
1111 continue;
1112
1113 nid = of_node_to_nid_single(memory);
1114 break;
1115 }
1116
1117 if (nid >= 0)
1118 break;
1119 }
1120
1121 of_node_put(memory);
1122
1123 return nid;
1124 }
1125
1126 /*
1127 * Find the node associated with a hot added memory section. Section
1128 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1129 * sections are fully contained within a single MEMBLOCK.
1130 */
1131 int hot_add_scn_to_nid(unsigned long scn_addr)
1132 {
1133 struct device_node *memory = NULL;
1134 int nid, found = 0;
1135
1136 if (!numa_enabled || (min_common_depth < 0))
1137 return first_online_node;
1138
1139 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1140 if (memory) {
1141 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1142 of_node_put(memory);
1143 } else {
1144 nid = hot_add_node_scn_to_nid(scn_addr);
1145 }
1146
1147 if (nid < 0 || !node_online(nid))
1148 nid = first_online_node;
1149
1150 if (NODE_DATA(nid)->node_spanned_pages)
1151 return nid;
1152
1153 for_each_online_node(nid) {
1154 if (NODE_DATA(nid)->node_spanned_pages) {
1155 found = 1;
1156 break;
1157 }
1158 }
1159
1160 BUG_ON(!found);
1161 return nid;
1162 }
1163
1164 static u64 hot_add_drconf_memory_max(void)
1165 {
1166 struct device_node *memory = NULL;
1167 unsigned int drconf_cell_cnt = 0;
1168 u64 lmb_size = 0;
1169 const __be32 *dm = NULL;
1170
1171 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1172 if (memory) {
1173 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1174 lmb_size = of_get_lmb_size(memory);
1175 of_node_put(memory);
1176 }
1177 return lmb_size * drconf_cell_cnt;
1178 }
1179
1180 /*
1181 * memory_hotplug_max - return max address of memory that may be added
1182 *
1183 * This is currently only used on systems that support drconfig memory
1184 * hotplug.
1185 */
1186 u64 memory_hotplug_max(void)
1187 {
1188 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1189 }
1190 #endif /* CONFIG_MEMORY_HOTPLUG */
1191
1192 /* Virtual Processor Home Node (VPHN) support */
1193 #ifdef CONFIG_PPC_SPLPAR
1194
1195 #include "vphn.h"
1196
1197 struct topology_update_data {
1198 struct topology_update_data *next;
1199 unsigned int cpu;
1200 int old_nid;
1201 int new_nid;
1202 };
1203
1204 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1205 static cpumask_t cpu_associativity_changes_mask;
1206 static int vphn_enabled;
1207 static int prrn_enabled;
1208 static void reset_topology_timer(void);
1209
1210 /*
1211 * Store the current values of the associativity change counters in the
1212 * hypervisor.
1213 */
1214 static void setup_cpu_associativity_change_counters(void)
1215 {
1216 int cpu;
1217
1218 /* The VPHN feature supports a maximum of 8 reference points */
1219 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1220
1221 for_each_possible_cpu(cpu) {
1222 int i;
1223 u8 *counts = vphn_cpu_change_counts[cpu];
1224 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1225
1226 for (i = 0; i < distance_ref_points_depth; i++)
1227 counts[i] = hypervisor_counts[i];
1228 }
1229 }
1230
1231 /*
1232 * The hypervisor maintains a set of 8 associativity change counters in
1233 * the VPA of each cpu that correspond to the associativity levels in the
1234 * ibm,associativity-reference-points property. When an associativity
1235 * level changes, the corresponding counter is incremented.
1236 *
1237 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1238 * node associativity levels have changed.
1239 *
1240 * Returns the number of cpus with unhandled associativity changes.
1241 */
1242 static int update_cpu_associativity_changes_mask(void)
1243 {
1244 int cpu;
1245 cpumask_t *changes = &cpu_associativity_changes_mask;
1246
1247 for_each_possible_cpu(cpu) {
1248 int i, changed = 0;
1249 u8 *counts = vphn_cpu_change_counts[cpu];
1250 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1251
1252 for (i = 0; i < distance_ref_points_depth; i++) {
1253 if (hypervisor_counts[i] != counts[i]) {
1254 counts[i] = hypervisor_counts[i];
1255 changed = 1;
1256 }
1257 }
1258 if (changed) {
1259 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1260 cpu = cpu_last_thread_sibling(cpu);
1261 }
1262 }
1263
1264 return cpumask_weight(changes);
1265 }
1266
1267 /*
1268 * Retrieve the new associativity information for a virtual processor's
1269 * home node.
1270 */
1271 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1272 {
1273 long rc;
1274 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1275 u64 flags = 1;
1276 int hwcpu = get_hard_smp_processor_id(cpu);
1277
1278 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1279 vphn_unpack_associativity(retbuf, associativity);
1280
1281 return rc;
1282 }
1283
1284 static long vphn_get_associativity(unsigned long cpu,
1285 __be32 *associativity)
1286 {
1287 long rc;
1288
1289 rc = hcall_vphn(cpu, associativity);
1290
1291 switch (rc) {
1292 case H_FUNCTION:
1293 printk(KERN_INFO
1294 "VPHN is not supported. Disabling polling...\n");
1295 stop_topology_update();
1296 break;
1297 case H_HARDWARE:
1298 printk(KERN_ERR
1299 "hcall_vphn() experienced a hardware fault "
1300 "preventing VPHN. Disabling polling...\n");
1301 stop_topology_update();
1302 }
1303
1304 return rc;
1305 }
1306
1307 /*
1308 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1309 * characteristics change. This function doesn't perform any locking and is
1310 * only safe to call from stop_machine().
1311 */
1312 static int update_cpu_topology(void *data)
1313 {
1314 struct topology_update_data *update;
1315 unsigned long cpu;
1316
1317 if (!data)
1318 return -EINVAL;
1319
1320 cpu = smp_processor_id();
1321
1322 for (update = data; update; update = update->next) {
1323 int new_nid = update->new_nid;
1324 if (cpu != update->cpu)
1325 continue;
1326
1327 unmap_cpu_from_node(cpu);
1328 map_cpu_to_node(cpu, new_nid);
1329 set_cpu_numa_node(cpu, new_nid);
1330 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1331 vdso_getcpu_init();
1332 }
1333
1334 return 0;
1335 }
1336
1337 static int update_lookup_table(void *data)
1338 {
1339 struct topology_update_data *update;
1340
1341 if (!data)
1342 return -EINVAL;
1343
1344 /*
1345 * Upon topology update, the numa-cpu lookup table needs to be updated
1346 * for all threads in the core, including offline CPUs, to ensure that
1347 * future hotplug operations respect the cpu-to-node associativity
1348 * properly.
1349 */
1350 for (update = data; update; update = update->next) {
1351 int nid, base, j;
1352
1353 nid = update->new_nid;
1354 base = cpu_first_thread_sibling(update->cpu);
1355
1356 for (j = 0; j < threads_per_core; j++) {
1357 update_numa_cpu_lookup_table(base + j, nid);
1358 }
1359 }
1360
1361 return 0;
1362 }
1363
1364 /*
1365 * Update the node maps and sysfs entries for each cpu whose home node
1366 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1367 */
1368 int arch_update_cpu_topology(void)
1369 {
1370 unsigned int cpu, sibling, changed = 0;
1371 struct topology_update_data *updates, *ud;
1372 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1373 cpumask_t updated_cpus;
1374 struct device *dev;
1375 int weight, new_nid, i = 0;
1376
1377 if (!prrn_enabled && !vphn_enabled)
1378 return 0;
1379
1380 weight = cpumask_weight(&cpu_associativity_changes_mask);
1381 if (!weight)
1382 return 0;
1383
1384 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1385 if (!updates)
1386 return 0;
1387
1388 cpumask_clear(&updated_cpus);
1389
1390 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1391 /*
1392 * If siblings aren't flagged for changes, updates list
1393 * will be too short. Skip on this update and set for next
1394 * update.
1395 */
1396 if (!cpumask_subset(cpu_sibling_mask(cpu),
1397 &cpu_associativity_changes_mask)) {
1398 pr_info("Sibling bits not set for associativity "
1399 "change, cpu%d\n", cpu);
1400 cpumask_or(&cpu_associativity_changes_mask,
1401 &cpu_associativity_changes_mask,
1402 cpu_sibling_mask(cpu));
1403 cpu = cpu_last_thread_sibling(cpu);
1404 continue;
1405 }
1406
1407 /* Use associativity from first thread for all siblings */
1408 vphn_get_associativity(cpu, associativity);
1409 new_nid = associativity_to_nid(associativity);
1410 if (new_nid < 0 || !node_online(new_nid))
1411 new_nid = first_online_node;
1412
1413 if (new_nid == numa_cpu_lookup_table[cpu]) {
1414 cpumask_andnot(&cpu_associativity_changes_mask,
1415 &cpu_associativity_changes_mask,
1416 cpu_sibling_mask(cpu));
1417 cpu = cpu_last_thread_sibling(cpu);
1418 continue;
1419 }
1420
1421 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1422 ud = &updates[i++];
1423 ud->cpu = sibling;
1424 ud->new_nid = new_nid;
1425 ud->old_nid = numa_cpu_lookup_table[sibling];
1426 cpumask_set_cpu(sibling, &updated_cpus);
1427 if (i < weight)
1428 ud->next = &updates[i];
1429 }
1430 cpu = cpu_last_thread_sibling(cpu);
1431 }
1432
1433 pr_debug("Topology update for the following CPUs:\n");
1434 if (cpumask_weight(&updated_cpus)) {
1435 for (ud = &updates[0]; ud; ud = ud->next) {
1436 pr_debug("cpu %d moving from node %d "
1437 "to %d\n", ud->cpu,
1438 ud->old_nid, ud->new_nid);
1439 }
1440 }
1441
1442 /*
1443 * In cases where we have nothing to update (because the updates list
1444 * is too short or because the new topology is same as the old one),
1445 * skip invoking update_cpu_topology() via stop-machine(). This is
1446 * necessary (and not just a fast-path optimization) since stop-machine
1447 * can end up electing a random CPU to run update_cpu_topology(), and
1448 * thus trick us into setting up incorrect cpu-node mappings (since
1449 * 'updates' is kzalloc()'ed).
1450 *
1451 * And for the similar reason, we will skip all the following updating.
1452 */
1453 if (!cpumask_weight(&updated_cpus))
1454 goto out;
1455
1456 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1457
1458 /*
1459 * Update the numa-cpu lookup table with the new mappings, even for
1460 * offline CPUs. It is best to perform this update from the stop-
1461 * machine context.
1462 */
1463 stop_machine(update_lookup_table, &updates[0],
1464 cpumask_of(raw_smp_processor_id()));
1465
1466 for (ud = &updates[0]; ud; ud = ud->next) {
1467 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1468 register_cpu_under_node(ud->cpu, ud->new_nid);
1469
1470 dev = get_cpu_device(ud->cpu);
1471 if (dev)
1472 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1473 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1474 changed = 1;
1475 }
1476
1477 out:
1478 kfree(updates);
1479 return changed;
1480 }
1481
1482 static void topology_work_fn(struct work_struct *work)
1483 {
1484 rebuild_sched_domains();
1485 }
1486 static DECLARE_WORK(topology_work, topology_work_fn);
1487
1488 static void topology_schedule_update(void)
1489 {
1490 schedule_work(&topology_work);
1491 }
1492
1493 static void topology_timer_fn(unsigned long ignored)
1494 {
1495 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1496 topology_schedule_update();
1497 else if (vphn_enabled) {
1498 if (update_cpu_associativity_changes_mask() > 0)
1499 topology_schedule_update();
1500 reset_topology_timer();
1501 }
1502 }
1503 static struct timer_list topology_timer =
1504 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1505
1506 static void reset_topology_timer(void)
1507 {
1508 topology_timer.data = 0;
1509 topology_timer.expires = jiffies + 60 * HZ;
1510 mod_timer(&topology_timer, topology_timer.expires);
1511 }
1512
1513 #ifdef CONFIG_SMP
1514
1515 static void stage_topology_update(int core_id)
1516 {
1517 cpumask_or(&cpu_associativity_changes_mask,
1518 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1519 reset_topology_timer();
1520 }
1521
1522 static int dt_update_callback(struct notifier_block *nb,
1523 unsigned long action, void *data)
1524 {
1525 struct of_reconfig_data *update = data;
1526 int rc = NOTIFY_DONE;
1527
1528 switch (action) {
1529 case OF_RECONFIG_UPDATE_PROPERTY:
1530 if (!of_prop_cmp(update->dn->type, "cpu") &&
1531 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1532 u32 core_id;
1533 of_property_read_u32(update->dn, "reg", &core_id);
1534 stage_topology_update(core_id);
1535 rc = NOTIFY_OK;
1536 }
1537 break;
1538 }
1539
1540 return rc;
1541 }
1542
1543 static struct notifier_block dt_update_nb = {
1544 .notifier_call = dt_update_callback,
1545 };
1546
1547 #endif
1548
1549 /*
1550 * Start polling for associativity changes.
1551 */
1552 int start_topology_update(void)
1553 {
1554 int rc = 0;
1555
1556 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1557 if (!prrn_enabled) {
1558 prrn_enabled = 1;
1559 vphn_enabled = 0;
1560 #ifdef CONFIG_SMP
1561 rc = of_reconfig_notifier_register(&dt_update_nb);
1562 #endif
1563 }
1564 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1565 lppaca_shared_proc(get_lppaca())) {
1566 if (!vphn_enabled) {
1567 prrn_enabled = 0;
1568 vphn_enabled = 1;
1569 setup_cpu_associativity_change_counters();
1570 init_timer_deferrable(&topology_timer);
1571 reset_topology_timer();
1572 }
1573 }
1574
1575 return rc;
1576 }
1577
1578 /*
1579 * Disable polling for VPHN associativity changes.
1580 */
1581 int stop_topology_update(void)
1582 {
1583 int rc = 0;
1584
1585 if (prrn_enabled) {
1586 prrn_enabled = 0;
1587 #ifdef CONFIG_SMP
1588 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1589 #endif
1590 } else if (vphn_enabled) {
1591 vphn_enabled = 0;
1592 rc = del_timer_sync(&topology_timer);
1593 }
1594
1595 return rc;
1596 }
1597
1598 int prrn_is_enabled(void)
1599 {
1600 return prrn_enabled;
1601 }
1602
1603 static int topology_read(struct seq_file *file, void *v)
1604 {
1605 if (vphn_enabled || prrn_enabled)
1606 seq_puts(file, "on\n");
1607 else
1608 seq_puts(file, "off\n");
1609
1610 return 0;
1611 }
1612
1613 static int topology_open(struct inode *inode, struct file *file)
1614 {
1615 return single_open(file, topology_read, NULL);
1616 }
1617
1618 static ssize_t topology_write(struct file *file, const char __user *buf,
1619 size_t count, loff_t *off)
1620 {
1621 char kbuf[4]; /* "on" or "off" plus null. */
1622 int read_len;
1623
1624 read_len = count < 3 ? count : 3;
1625 if (copy_from_user(kbuf, buf, read_len))
1626 return -EINVAL;
1627
1628 kbuf[read_len] = '\0';
1629
1630 if (!strncmp(kbuf, "on", 2))
1631 start_topology_update();
1632 else if (!strncmp(kbuf, "off", 3))
1633 stop_topology_update();
1634 else
1635 return -EINVAL;
1636
1637 return count;
1638 }
1639
1640 static const struct file_operations topology_ops = {
1641 .read = seq_read,
1642 .write = topology_write,
1643 .open = topology_open,
1644 .release = single_release
1645 };
1646
1647 static int topology_update_init(void)
1648 {
1649 /* Do not poll for changes if disabled at boot */
1650 if (topology_updates_enabled)
1651 start_topology_update();
1652
1653 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1654 return -ENOMEM;
1655
1656 return 0;
1657 }
1658 device_initcall(topology_update_init);
1659 #endif /* CONFIG_PPC_SPLPAR */
This page took 0.141013 seconds and 5 git commands to generate.