net: bcmgenet: Software reset EPHY after power on
[deliverable/linux.git] / arch / powerpc / mm / numa.c
1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #define pr_fmt(fmt) "numa: " fmt
12
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43
44 static int numa_enabled = 1;
45
46 static char *cmdline __initdata;
47
48 static int numa_debug;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50
51 int numa_cpu_lookup_table[NR_CPUS];
52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53 struct pglist_data *node_data[MAX_NUMNODES];
54
55 EXPORT_SYMBOL(numa_cpu_lookup_table);
56 EXPORT_SYMBOL(node_to_cpumask_map);
57 EXPORT_SYMBOL(node_data);
58
59 static int min_common_depth;
60 static int n_mem_addr_cells, n_mem_size_cells;
61 static int form1_affinity;
62
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth;
65 static const __be32 *distance_ref_points;
66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67
68 /*
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
71 *
72 * Note: cpumask_of_node() is not valid until after this is done.
73 */
74 static void __init setup_node_to_cpumask_map(void)
75 {
76 unsigned int node;
77
78 /* setup nr_node_ids if not done yet */
79 if (nr_node_ids == MAX_NUMNODES)
80 setup_nr_node_ids();
81
82 /* allocate the map */
83 for (node = 0; node < nr_node_ids; node++)
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86 /* cpumask_of_node() will now work */
87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88 }
89
90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 unsigned int *nid)
92 {
93 unsigned long long mem;
94 char *p = cmdline;
95 static unsigned int fake_nid;
96 static unsigned long long curr_boundary;
97
98 /*
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
101 */
102 if (fake_nid)
103 *nid = fake_nid;
104 /*
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
108 */
109 if (!p)
110 return 0;
111
112 mem = memparse(p, &p);
113 if (!mem)
114 return 0;
115
116 if (mem < curr_boundary)
117 return 0;
118
119 curr_boundary = mem;
120
121 if ((end_pfn << PAGE_SHIFT) > mem) {
122 /*
123 * Skip commas and spaces
124 */
125 while (*p == ',' || *p == ' ' || *p == '\t')
126 p++;
127
128 cmdline = p;
129 fake_nid++;
130 *nid = fake_nid;
131 dbg("created new fake_node with id %d\n", fake_nid);
132 return 1;
133 }
134 return 0;
135 }
136
137 static void reset_numa_cpu_lookup_table(void)
138 {
139 unsigned int cpu;
140
141 for_each_possible_cpu(cpu)
142 numa_cpu_lookup_table[cpu] = -1;
143 }
144
145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
146 {
147 numa_cpu_lookup_table[cpu] = node;
148 }
149
150 static void map_cpu_to_node(int cpu, int node)
151 {
152 update_numa_cpu_lookup_table(cpu, node);
153
154 dbg("adding cpu %d to node %d\n", cpu, node);
155
156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
158 }
159
160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
161 static void unmap_cpu_from_node(unsigned long cpu)
162 {
163 int node = numa_cpu_lookup_table[cpu];
164
165 dbg("removing cpu %lu from node %d\n", cpu, node);
166
167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
169 } else {
170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171 cpu, node);
172 }
173 }
174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
175
176 /* must hold reference to node during call */
177 static const __be32 *of_get_associativity(struct device_node *dev)
178 {
179 return of_get_property(dev, "ibm,associativity", NULL);
180 }
181
182 /*
183 * Returns the property linux,drconf-usable-memory if
184 * it exists (the property exists only in kexec/kdump kernels,
185 * added by kexec-tools)
186 */
187 static const __be32 *of_get_usable_memory(struct device_node *memory)
188 {
189 const __be32 *prop;
190 u32 len;
191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192 if (!prop || len < sizeof(unsigned int))
193 return NULL;
194 return prop;
195 }
196
197 int __node_distance(int a, int b)
198 {
199 int i;
200 int distance = LOCAL_DISTANCE;
201
202 if (!form1_affinity)
203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204
205 for (i = 0; i < distance_ref_points_depth; i++) {
206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207 break;
208
209 /* Double the distance for each NUMA level */
210 distance *= 2;
211 }
212
213 return distance;
214 }
215 EXPORT_SYMBOL(__node_distance);
216
217 static void initialize_distance_lookup_table(int nid,
218 const __be32 *associativity)
219 {
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 const __be32 *entry;
227
228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229 distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 }
231 }
232
233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234 * info is found.
235 */
236 static int associativity_to_nid(const __be32 *associativity)
237 {
238 int nid = -1;
239
240 if (min_common_depth == -1)
241 goto out;
242
243 if (of_read_number(associativity, 1) >= min_common_depth)
244 nid = of_read_number(&associativity[min_common_depth], 1);
245
246 /* POWER4 LPAR uses 0xffff as invalid node */
247 if (nid == 0xffff || nid >= MAX_NUMNODES)
248 nid = -1;
249
250 if (nid > 0 &&
251 of_read_number(associativity, 1) >= distance_ref_points_depth) {
252 /*
253 * Skip the length field and send start of associativity array
254 */
255 initialize_distance_lookup_table(nid, associativity + 1);
256 }
257
258 out:
259 return nid;
260 }
261
262 /* Returns the nid associated with the given device tree node,
263 * or -1 if not found.
264 */
265 static int of_node_to_nid_single(struct device_node *device)
266 {
267 int nid = -1;
268 const __be32 *tmp;
269
270 tmp = of_get_associativity(device);
271 if (tmp)
272 nid = associativity_to_nid(tmp);
273 return nid;
274 }
275
276 /* Walk the device tree upwards, looking for an associativity id */
277 int of_node_to_nid(struct device_node *device)
278 {
279 struct device_node *tmp;
280 int nid = -1;
281
282 of_node_get(device);
283 while (device) {
284 nid = of_node_to_nid_single(device);
285 if (nid != -1)
286 break;
287
288 tmp = device;
289 device = of_get_parent(tmp);
290 of_node_put(tmp);
291 }
292 of_node_put(device);
293
294 return nid;
295 }
296 EXPORT_SYMBOL_GPL(of_node_to_nid);
297
298 static int __init find_min_common_depth(void)
299 {
300 int depth;
301 struct device_node *root;
302
303 if (firmware_has_feature(FW_FEATURE_OPAL))
304 root = of_find_node_by_path("/ibm,opal");
305 else
306 root = of_find_node_by_path("/rtas");
307 if (!root)
308 root = of_find_node_by_path("/");
309
310 /*
311 * This property is a set of 32-bit integers, each representing
312 * an index into the ibm,associativity nodes.
313 *
314 * With form 0 affinity the first integer is for an SMP configuration
315 * (should be all 0's) and the second is for a normal NUMA
316 * configuration. We have only one level of NUMA.
317 *
318 * With form 1 affinity the first integer is the most significant
319 * NUMA boundary and the following are progressively less significant
320 * boundaries. There can be more than one level of NUMA.
321 */
322 distance_ref_points = of_get_property(root,
323 "ibm,associativity-reference-points",
324 &distance_ref_points_depth);
325
326 if (!distance_ref_points) {
327 dbg("NUMA: ibm,associativity-reference-points not found.\n");
328 goto err;
329 }
330
331 distance_ref_points_depth /= sizeof(int);
332
333 if (firmware_has_feature(FW_FEATURE_OPAL) ||
334 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
335 dbg("Using form 1 affinity\n");
336 form1_affinity = 1;
337 }
338
339 if (form1_affinity) {
340 depth = of_read_number(distance_ref_points, 1);
341 } else {
342 if (distance_ref_points_depth < 2) {
343 printk(KERN_WARNING "NUMA: "
344 "short ibm,associativity-reference-points\n");
345 goto err;
346 }
347
348 depth = of_read_number(&distance_ref_points[1], 1);
349 }
350
351 /*
352 * Warn and cap if the hardware supports more than
353 * MAX_DISTANCE_REF_POINTS domains.
354 */
355 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
356 printk(KERN_WARNING "NUMA: distance array capped at "
357 "%d entries\n", MAX_DISTANCE_REF_POINTS);
358 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
359 }
360
361 of_node_put(root);
362 return depth;
363
364 err:
365 of_node_put(root);
366 return -1;
367 }
368
369 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
370 {
371 struct device_node *memory = NULL;
372
373 memory = of_find_node_by_type(memory, "memory");
374 if (!memory)
375 panic("numa.c: No memory nodes found!");
376
377 *n_addr_cells = of_n_addr_cells(memory);
378 *n_size_cells = of_n_size_cells(memory);
379 of_node_put(memory);
380 }
381
382 static unsigned long read_n_cells(int n, const __be32 **buf)
383 {
384 unsigned long result = 0;
385
386 while (n--) {
387 result = (result << 32) | of_read_number(*buf, 1);
388 (*buf)++;
389 }
390 return result;
391 }
392
393 /*
394 * Read the next memblock list entry from the ibm,dynamic-memory property
395 * and return the information in the provided of_drconf_cell structure.
396 */
397 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
398 {
399 const __be32 *cp;
400
401 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
402
403 cp = *cellp;
404 drmem->drc_index = of_read_number(cp, 1);
405 drmem->reserved = of_read_number(&cp[1], 1);
406 drmem->aa_index = of_read_number(&cp[2], 1);
407 drmem->flags = of_read_number(&cp[3], 1);
408
409 *cellp = cp + 4;
410 }
411
412 /*
413 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
414 *
415 * The layout of the ibm,dynamic-memory property is a number N of memblock
416 * list entries followed by N memblock list entries. Each memblock list entry
417 * contains information as laid out in the of_drconf_cell struct above.
418 */
419 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
420 {
421 const __be32 *prop;
422 u32 len, entries;
423
424 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
425 if (!prop || len < sizeof(unsigned int))
426 return 0;
427
428 entries = of_read_number(prop++, 1);
429
430 /* Now that we know the number of entries, revalidate the size
431 * of the property read in to ensure we have everything
432 */
433 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
434 return 0;
435
436 *dm = prop;
437 return entries;
438 }
439
440 /*
441 * Retrieve and validate the ibm,lmb-size property for drconf memory
442 * from the device tree.
443 */
444 static u64 of_get_lmb_size(struct device_node *memory)
445 {
446 const __be32 *prop;
447 u32 len;
448
449 prop = of_get_property(memory, "ibm,lmb-size", &len);
450 if (!prop || len < sizeof(unsigned int))
451 return 0;
452
453 return read_n_cells(n_mem_size_cells, &prop);
454 }
455
456 struct assoc_arrays {
457 u32 n_arrays;
458 u32 array_sz;
459 const __be32 *arrays;
460 };
461
462 /*
463 * Retrieve and validate the list of associativity arrays for drconf
464 * memory from the ibm,associativity-lookup-arrays property of the
465 * device tree..
466 *
467 * The layout of the ibm,associativity-lookup-arrays property is a number N
468 * indicating the number of associativity arrays, followed by a number M
469 * indicating the size of each associativity array, followed by a list
470 * of N associativity arrays.
471 */
472 static int of_get_assoc_arrays(struct device_node *memory,
473 struct assoc_arrays *aa)
474 {
475 const __be32 *prop;
476 u32 len;
477
478 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
479 if (!prop || len < 2 * sizeof(unsigned int))
480 return -1;
481
482 aa->n_arrays = of_read_number(prop++, 1);
483 aa->array_sz = of_read_number(prop++, 1);
484
485 /* Now that we know the number of arrays and size of each array,
486 * revalidate the size of the property read in.
487 */
488 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
489 return -1;
490
491 aa->arrays = prop;
492 return 0;
493 }
494
495 /*
496 * This is like of_node_to_nid_single() for memory represented in the
497 * ibm,dynamic-reconfiguration-memory node.
498 */
499 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
500 struct assoc_arrays *aa)
501 {
502 int default_nid = 0;
503 int nid = default_nid;
504 int index;
505
506 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
507 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
508 drmem->aa_index < aa->n_arrays) {
509 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
510 nid = of_read_number(&aa->arrays[index], 1);
511
512 if (nid == 0xffff || nid >= MAX_NUMNODES)
513 nid = default_nid;
514
515 if (nid > 0) {
516 index = drmem->aa_index * aa->array_sz;
517 initialize_distance_lookup_table(nid,
518 &aa->arrays[index]);
519 }
520 }
521
522 return nid;
523 }
524
525 /*
526 * Figure out to which domain a cpu belongs and stick it there.
527 * Return the id of the domain used.
528 */
529 static int numa_setup_cpu(unsigned long lcpu)
530 {
531 int nid = -1;
532 struct device_node *cpu;
533
534 /*
535 * If a valid cpu-to-node mapping is already available, use it
536 * directly instead of querying the firmware, since it represents
537 * the most recent mapping notified to us by the platform (eg: VPHN).
538 */
539 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
540 map_cpu_to_node(lcpu, nid);
541 return nid;
542 }
543
544 cpu = of_get_cpu_node(lcpu, NULL);
545
546 if (!cpu) {
547 WARN_ON(1);
548 if (cpu_present(lcpu))
549 goto out_present;
550 else
551 goto out;
552 }
553
554 nid = of_node_to_nid_single(cpu);
555
556 out_present:
557 if (nid < 0 || !node_online(nid))
558 nid = first_online_node;
559
560 map_cpu_to_node(lcpu, nid);
561 of_node_put(cpu);
562 out:
563 return nid;
564 }
565
566 static void verify_cpu_node_mapping(int cpu, int node)
567 {
568 int base, sibling, i;
569
570 /* Verify that all the threads in the core belong to the same node */
571 base = cpu_first_thread_sibling(cpu);
572
573 for (i = 0; i < threads_per_core; i++) {
574 sibling = base + i;
575
576 if (sibling == cpu || cpu_is_offline(sibling))
577 continue;
578
579 if (cpu_to_node(sibling) != node) {
580 WARN(1, "CPU thread siblings %d and %d don't belong"
581 " to the same node!\n", cpu, sibling);
582 break;
583 }
584 }
585 }
586
587 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
588 void *hcpu)
589 {
590 unsigned long lcpu = (unsigned long)hcpu;
591 int ret = NOTIFY_DONE, nid;
592
593 switch (action) {
594 case CPU_UP_PREPARE:
595 case CPU_UP_PREPARE_FROZEN:
596 nid = numa_setup_cpu(lcpu);
597 verify_cpu_node_mapping((int)lcpu, nid);
598 ret = NOTIFY_OK;
599 break;
600 #ifdef CONFIG_HOTPLUG_CPU
601 case CPU_DEAD:
602 case CPU_DEAD_FROZEN:
603 case CPU_UP_CANCELED:
604 case CPU_UP_CANCELED_FROZEN:
605 unmap_cpu_from_node(lcpu);
606 ret = NOTIFY_OK;
607 break;
608 #endif
609 }
610 return ret;
611 }
612
613 /*
614 * Check and possibly modify a memory region to enforce the memory limit.
615 *
616 * Returns the size the region should have to enforce the memory limit.
617 * This will either be the original value of size, a truncated value,
618 * or zero. If the returned value of size is 0 the region should be
619 * discarded as it lies wholly above the memory limit.
620 */
621 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
622 unsigned long size)
623 {
624 /*
625 * We use memblock_end_of_DRAM() in here instead of memory_limit because
626 * we've already adjusted it for the limit and it takes care of
627 * having memory holes below the limit. Also, in the case of
628 * iommu_is_off, memory_limit is not set but is implicitly enforced.
629 */
630
631 if (start + size <= memblock_end_of_DRAM())
632 return size;
633
634 if (start >= memblock_end_of_DRAM())
635 return 0;
636
637 return memblock_end_of_DRAM() - start;
638 }
639
640 /*
641 * Reads the counter for a given entry in
642 * linux,drconf-usable-memory property
643 */
644 static inline int __init read_usm_ranges(const __be32 **usm)
645 {
646 /*
647 * For each lmb in ibm,dynamic-memory a corresponding
648 * entry in linux,drconf-usable-memory property contains
649 * a counter followed by that many (base, size) duple.
650 * read the counter from linux,drconf-usable-memory
651 */
652 return read_n_cells(n_mem_size_cells, usm);
653 }
654
655 /*
656 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
657 * node. This assumes n_mem_{addr,size}_cells have been set.
658 */
659 static void __init parse_drconf_memory(struct device_node *memory)
660 {
661 const __be32 *uninitialized_var(dm), *usm;
662 unsigned int n, rc, ranges, is_kexec_kdump = 0;
663 unsigned long lmb_size, base, size, sz;
664 int nid;
665 struct assoc_arrays aa = { .arrays = NULL };
666
667 n = of_get_drconf_memory(memory, &dm);
668 if (!n)
669 return;
670
671 lmb_size = of_get_lmb_size(memory);
672 if (!lmb_size)
673 return;
674
675 rc = of_get_assoc_arrays(memory, &aa);
676 if (rc)
677 return;
678
679 /* check if this is a kexec/kdump kernel */
680 usm = of_get_usable_memory(memory);
681 if (usm != NULL)
682 is_kexec_kdump = 1;
683
684 for (; n != 0; --n) {
685 struct of_drconf_cell drmem;
686
687 read_drconf_cell(&drmem, &dm);
688
689 /* skip this block if the reserved bit is set in flags (0x80)
690 or if the block is not assigned to this partition (0x8) */
691 if ((drmem.flags & DRCONF_MEM_RESERVED)
692 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
693 continue;
694
695 base = drmem.base_addr;
696 size = lmb_size;
697 ranges = 1;
698
699 if (is_kexec_kdump) {
700 ranges = read_usm_ranges(&usm);
701 if (!ranges) /* there are no (base, size) duple */
702 continue;
703 }
704 do {
705 if (is_kexec_kdump) {
706 base = read_n_cells(n_mem_addr_cells, &usm);
707 size = read_n_cells(n_mem_size_cells, &usm);
708 }
709 nid = of_drconf_to_nid_single(&drmem, &aa);
710 fake_numa_create_new_node(
711 ((base + size) >> PAGE_SHIFT),
712 &nid);
713 node_set_online(nid);
714 sz = numa_enforce_memory_limit(base, size);
715 if (sz)
716 memblock_set_node(base, sz,
717 &memblock.memory, nid);
718 } while (--ranges);
719 }
720 }
721
722 static int __init parse_numa_properties(void)
723 {
724 struct device_node *memory;
725 int default_nid = 0;
726 unsigned long i;
727
728 if (numa_enabled == 0) {
729 printk(KERN_WARNING "NUMA disabled by user\n");
730 return -1;
731 }
732
733 min_common_depth = find_min_common_depth();
734
735 if (min_common_depth < 0)
736 return min_common_depth;
737
738 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
739
740 /*
741 * Even though we connect cpus to numa domains later in SMP
742 * init, we need to know the node ids now. This is because
743 * each node to be onlined must have NODE_DATA etc backing it.
744 */
745 for_each_present_cpu(i) {
746 struct device_node *cpu;
747 int nid;
748
749 cpu = of_get_cpu_node(i, NULL);
750 BUG_ON(!cpu);
751 nid = of_node_to_nid_single(cpu);
752 of_node_put(cpu);
753
754 /*
755 * Don't fall back to default_nid yet -- we will plug
756 * cpus into nodes once the memory scan has discovered
757 * the topology.
758 */
759 if (nid < 0)
760 continue;
761 node_set_online(nid);
762 }
763
764 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
765
766 for_each_node_by_type(memory, "memory") {
767 unsigned long start;
768 unsigned long size;
769 int nid;
770 int ranges;
771 const __be32 *memcell_buf;
772 unsigned int len;
773
774 memcell_buf = of_get_property(memory,
775 "linux,usable-memory", &len);
776 if (!memcell_buf || len <= 0)
777 memcell_buf = of_get_property(memory, "reg", &len);
778 if (!memcell_buf || len <= 0)
779 continue;
780
781 /* ranges in cell */
782 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
783 new_range:
784 /* these are order-sensitive, and modify the buffer pointer */
785 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
786 size = read_n_cells(n_mem_size_cells, &memcell_buf);
787
788 /*
789 * Assumption: either all memory nodes or none will
790 * have associativity properties. If none, then
791 * everything goes to default_nid.
792 */
793 nid = of_node_to_nid_single(memory);
794 if (nid < 0)
795 nid = default_nid;
796
797 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
798 node_set_online(nid);
799
800 if (!(size = numa_enforce_memory_limit(start, size))) {
801 if (--ranges)
802 goto new_range;
803 else
804 continue;
805 }
806
807 memblock_set_node(start, size, &memblock.memory, nid);
808
809 if (--ranges)
810 goto new_range;
811 }
812
813 /*
814 * Now do the same thing for each MEMBLOCK listed in the
815 * ibm,dynamic-memory property in the
816 * ibm,dynamic-reconfiguration-memory node.
817 */
818 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
819 if (memory)
820 parse_drconf_memory(memory);
821
822 return 0;
823 }
824
825 static void __init setup_nonnuma(void)
826 {
827 unsigned long top_of_ram = memblock_end_of_DRAM();
828 unsigned long total_ram = memblock_phys_mem_size();
829 unsigned long start_pfn, end_pfn;
830 unsigned int nid = 0;
831 struct memblock_region *reg;
832
833 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
834 top_of_ram, total_ram);
835 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
836 (top_of_ram - total_ram) >> 20);
837
838 for_each_memblock(memory, reg) {
839 start_pfn = memblock_region_memory_base_pfn(reg);
840 end_pfn = memblock_region_memory_end_pfn(reg);
841
842 fake_numa_create_new_node(end_pfn, &nid);
843 memblock_set_node(PFN_PHYS(start_pfn),
844 PFN_PHYS(end_pfn - start_pfn),
845 &memblock.memory, nid);
846 node_set_online(nid);
847 }
848 }
849
850 void __init dump_numa_cpu_topology(void)
851 {
852 unsigned int node;
853 unsigned int cpu, count;
854
855 if (min_common_depth == -1 || !numa_enabled)
856 return;
857
858 for_each_online_node(node) {
859 printk(KERN_DEBUG "Node %d CPUs:", node);
860
861 count = 0;
862 /*
863 * If we used a CPU iterator here we would miss printing
864 * the holes in the cpumap.
865 */
866 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
867 if (cpumask_test_cpu(cpu,
868 node_to_cpumask_map[node])) {
869 if (count == 0)
870 printk(" %u", cpu);
871 ++count;
872 } else {
873 if (count > 1)
874 printk("-%u", cpu - 1);
875 count = 0;
876 }
877 }
878
879 if (count > 1)
880 printk("-%u", nr_cpu_ids - 1);
881 printk("\n");
882 }
883 }
884
885 static void __init dump_numa_memory_topology(void)
886 {
887 unsigned int node;
888 unsigned int count;
889
890 if (min_common_depth == -1 || !numa_enabled)
891 return;
892
893 for_each_online_node(node) {
894 unsigned long i;
895
896 printk(KERN_DEBUG "Node %d Memory:", node);
897
898 count = 0;
899
900 for (i = 0; i < memblock_end_of_DRAM();
901 i += (1 << SECTION_SIZE_BITS)) {
902 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
903 if (count == 0)
904 printk(" 0x%lx", i);
905 ++count;
906 } else {
907 if (count > 0)
908 printk("-0x%lx", i);
909 count = 0;
910 }
911 }
912
913 if (count > 0)
914 printk("-0x%lx", i);
915 printk("\n");
916 }
917 }
918
919 static struct notifier_block ppc64_numa_nb = {
920 .notifier_call = cpu_numa_callback,
921 .priority = 1 /* Must run before sched domains notifier. */
922 };
923
924 /* Initialize NODE_DATA for a node on the local memory */
925 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
926 {
927 u64 spanned_pages = end_pfn - start_pfn;
928 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
929 u64 nd_pa;
930 void *nd;
931 int tnid;
932
933 if (spanned_pages)
934 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
935 nid, start_pfn << PAGE_SHIFT,
936 (end_pfn << PAGE_SHIFT) - 1);
937 else
938 pr_info("Initmem setup node %d\n", nid);
939
940 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
941 nd = __va(nd_pa);
942
943 /* report and initialize */
944 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
945 nd_pa, nd_pa + nd_size - 1);
946 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
947 if (tnid != nid)
948 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
949
950 node_data[nid] = nd;
951 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
952 NODE_DATA(nid)->node_id = nid;
953 NODE_DATA(nid)->node_start_pfn = start_pfn;
954 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
955 }
956
957 void __init initmem_init(void)
958 {
959 int nid, cpu;
960
961 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
962 max_pfn = max_low_pfn;
963
964 if (parse_numa_properties())
965 setup_nonnuma();
966 else
967 dump_numa_memory_topology();
968
969 memblock_dump_all();
970
971 /*
972 * Reduce the possible NUMA nodes to the online NUMA nodes,
973 * since we do not support node hotplug. This ensures that we
974 * lower the maximum NUMA node ID to what is actually present.
975 */
976 nodes_and(node_possible_map, node_possible_map, node_online_map);
977
978 for_each_online_node(nid) {
979 unsigned long start_pfn, end_pfn;
980
981 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
982 setup_node_data(nid, start_pfn, end_pfn);
983 sparse_memory_present_with_active_regions(nid);
984 }
985
986 sparse_init();
987
988 setup_node_to_cpumask_map();
989
990 reset_numa_cpu_lookup_table();
991 register_cpu_notifier(&ppc64_numa_nb);
992 /*
993 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
994 * even before we online them, so that we can use cpu_to_{node,mem}
995 * early in boot, cf. smp_prepare_cpus().
996 */
997 for_each_present_cpu(cpu) {
998 numa_setup_cpu((unsigned long)cpu);
999 }
1000 }
1001
1002 static int __init early_numa(char *p)
1003 {
1004 if (!p)
1005 return 0;
1006
1007 if (strstr(p, "off"))
1008 numa_enabled = 0;
1009
1010 if (strstr(p, "debug"))
1011 numa_debug = 1;
1012
1013 p = strstr(p, "fake=");
1014 if (p)
1015 cmdline = p + strlen("fake=");
1016
1017 return 0;
1018 }
1019 early_param("numa", early_numa);
1020
1021 static bool topology_updates_enabled = true;
1022
1023 static int __init early_topology_updates(char *p)
1024 {
1025 if (!p)
1026 return 0;
1027
1028 if (!strcmp(p, "off")) {
1029 pr_info("Disabling topology updates\n");
1030 topology_updates_enabled = false;
1031 }
1032
1033 return 0;
1034 }
1035 early_param("topology_updates", early_topology_updates);
1036
1037 #ifdef CONFIG_MEMORY_HOTPLUG
1038 /*
1039 * Find the node associated with a hot added memory section for
1040 * memory represented in the device tree by the property
1041 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1042 */
1043 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1044 unsigned long scn_addr)
1045 {
1046 const __be32 *dm;
1047 unsigned int drconf_cell_cnt, rc;
1048 unsigned long lmb_size;
1049 struct assoc_arrays aa;
1050 int nid = -1;
1051
1052 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1053 if (!drconf_cell_cnt)
1054 return -1;
1055
1056 lmb_size = of_get_lmb_size(memory);
1057 if (!lmb_size)
1058 return -1;
1059
1060 rc = of_get_assoc_arrays(memory, &aa);
1061 if (rc)
1062 return -1;
1063
1064 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1065 struct of_drconf_cell drmem;
1066
1067 read_drconf_cell(&drmem, &dm);
1068
1069 /* skip this block if it is reserved or not assigned to
1070 * this partition */
1071 if ((drmem.flags & DRCONF_MEM_RESERVED)
1072 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1073 continue;
1074
1075 if ((scn_addr < drmem.base_addr)
1076 || (scn_addr >= (drmem.base_addr + lmb_size)))
1077 continue;
1078
1079 nid = of_drconf_to_nid_single(&drmem, &aa);
1080 break;
1081 }
1082
1083 return nid;
1084 }
1085
1086 /*
1087 * Find the node associated with a hot added memory section for memory
1088 * represented in the device tree as a node (i.e. memory@XXXX) for
1089 * each memblock.
1090 */
1091 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1092 {
1093 struct device_node *memory;
1094 int nid = -1;
1095
1096 for_each_node_by_type(memory, "memory") {
1097 unsigned long start, size;
1098 int ranges;
1099 const __be32 *memcell_buf;
1100 unsigned int len;
1101
1102 memcell_buf = of_get_property(memory, "reg", &len);
1103 if (!memcell_buf || len <= 0)
1104 continue;
1105
1106 /* ranges in cell */
1107 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1108
1109 while (ranges--) {
1110 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1111 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1112
1113 if ((scn_addr < start) || (scn_addr >= (start + size)))
1114 continue;
1115
1116 nid = of_node_to_nid_single(memory);
1117 break;
1118 }
1119
1120 if (nid >= 0)
1121 break;
1122 }
1123
1124 of_node_put(memory);
1125
1126 return nid;
1127 }
1128
1129 /*
1130 * Find the node associated with a hot added memory section. Section
1131 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1132 * sections are fully contained within a single MEMBLOCK.
1133 */
1134 int hot_add_scn_to_nid(unsigned long scn_addr)
1135 {
1136 struct device_node *memory = NULL;
1137 int nid, found = 0;
1138
1139 if (!numa_enabled || (min_common_depth < 0))
1140 return first_online_node;
1141
1142 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1143 if (memory) {
1144 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1145 of_node_put(memory);
1146 } else {
1147 nid = hot_add_node_scn_to_nid(scn_addr);
1148 }
1149
1150 if (nid < 0 || !node_online(nid))
1151 nid = first_online_node;
1152
1153 if (NODE_DATA(nid)->node_spanned_pages)
1154 return nid;
1155
1156 for_each_online_node(nid) {
1157 if (NODE_DATA(nid)->node_spanned_pages) {
1158 found = 1;
1159 break;
1160 }
1161 }
1162
1163 BUG_ON(!found);
1164 return nid;
1165 }
1166
1167 static u64 hot_add_drconf_memory_max(void)
1168 {
1169 struct device_node *memory = NULL;
1170 unsigned int drconf_cell_cnt = 0;
1171 u64 lmb_size = 0;
1172 const __be32 *dm = NULL;
1173
1174 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1175 if (memory) {
1176 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1177 lmb_size = of_get_lmb_size(memory);
1178 of_node_put(memory);
1179 }
1180 return lmb_size * drconf_cell_cnt;
1181 }
1182
1183 /*
1184 * memory_hotplug_max - return max address of memory that may be added
1185 *
1186 * This is currently only used on systems that support drconfig memory
1187 * hotplug.
1188 */
1189 u64 memory_hotplug_max(void)
1190 {
1191 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1192 }
1193 #endif /* CONFIG_MEMORY_HOTPLUG */
1194
1195 /* Virtual Processor Home Node (VPHN) support */
1196 #ifdef CONFIG_PPC_SPLPAR
1197
1198 #include "vphn.h"
1199
1200 struct topology_update_data {
1201 struct topology_update_data *next;
1202 unsigned int cpu;
1203 int old_nid;
1204 int new_nid;
1205 };
1206
1207 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1208 static cpumask_t cpu_associativity_changes_mask;
1209 static int vphn_enabled;
1210 static int prrn_enabled;
1211 static void reset_topology_timer(void);
1212
1213 /*
1214 * Store the current values of the associativity change counters in the
1215 * hypervisor.
1216 */
1217 static void setup_cpu_associativity_change_counters(void)
1218 {
1219 int cpu;
1220
1221 /* The VPHN feature supports a maximum of 8 reference points */
1222 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1223
1224 for_each_possible_cpu(cpu) {
1225 int i;
1226 u8 *counts = vphn_cpu_change_counts[cpu];
1227 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1228
1229 for (i = 0; i < distance_ref_points_depth; i++)
1230 counts[i] = hypervisor_counts[i];
1231 }
1232 }
1233
1234 /*
1235 * The hypervisor maintains a set of 8 associativity change counters in
1236 * the VPA of each cpu that correspond to the associativity levels in the
1237 * ibm,associativity-reference-points property. When an associativity
1238 * level changes, the corresponding counter is incremented.
1239 *
1240 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1241 * node associativity levels have changed.
1242 *
1243 * Returns the number of cpus with unhandled associativity changes.
1244 */
1245 static int update_cpu_associativity_changes_mask(void)
1246 {
1247 int cpu;
1248 cpumask_t *changes = &cpu_associativity_changes_mask;
1249
1250 for_each_possible_cpu(cpu) {
1251 int i, changed = 0;
1252 u8 *counts = vphn_cpu_change_counts[cpu];
1253 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1254
1255 for (i = 0; i < distance_ref_points_depth; i++) {
1256 if (hypervisor_counts[i] != counts[i]) {
1257 counts[i] = hypervisor_counts[i];
1258 changed = 1;
1259 }
1260 }
1261 if (changed) {
1262 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1263 cpu = cpu_last_thread_sibling(cpu);
1264 }
1265 }
1266
1267 return cpumask_weight(changes);
1268 }
1269
1270 /*
1271 * Retrieve the new associativity information for a virtual processor's
1272 * home node.
1273 */
1274 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1275 {
1276 long rc;
1277 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1278 u64 flags = 1;
1279 int hwcpu = get_hard_smp_processor_id(cpu);
1280
1281 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1282 vphn_unpack_associativity(retbuf, associativity);
1283
1284 return rc;
1285 }
1286
1287 static long vphn_get_associativity(unsigned long cpu,
1288 __be32 *associativity)
1289 {
1290 long rc;
1291
1292 rc = hcall_vphn(cpu, associativity);
1293
1294 switch (rc) {
1295 case H_FUNCTION:
1296 printk(KERN_INFO
1297 "VPHN is not supported. Disabling polling...\n");
1298 stop_topology_update();
1299 break;
1300 case H_HARDWARE:
1301 printk(KERN_ERR
1302 "hcall_vphn() experienced a hardware fault "
1303 "preventing VPHN. Disabling polling...\n");
1304 stop_topology_update();
1305 }
1306
1307 return rc;
1308 }
1309
1310 /*
1311 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1312 * characteristics change. This function doesn't perform any locking and is
1313 * only safe to call from stop_machine().
1314 */
1315 static int update_cpu_topology(void *data)
1316 {
1317 struct topology_update_data *update;
1318 unsigned long cpu;
1319
1320 if (!data)
1321 return -EINVAL;
1322
1323 cpu = smp_processor_id();
1324
1325 for (update = data; update; update = update->next) {
1326 int new_nid = update->new_nid;
1327 if (cpu != update->cpu)
1328 continue;
1329
1330 unmap_cpu_from_node(cpu);
1331 map_cpu_to_node(cpu, new_nid);
1332 set_cpu_numa_node(cpu, new_nid);
1333 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1334 vdso_getcpu_init();
1335 }
1336
1337 return 0;
1338 }
1339
1340 static int update_lookup_table(void *data)
1341 {
1342 struct topology_update_data *update;
1343
1344 if (!data)
1345 return -EINVAL;
1346
1347 /*
1348 * Upon topology update, the numa-cpu lookup table needs to be updated
1349 * for all threads in the core, including offline CPUs, to ensure that
1350 * future hotplug operations respect the cpu-to-node associativity
1351 * properly.
1352 */
1353 for (update = data; update; update = update->next) {
1354 int nid, base, j;
1355
1356 nid = update->new_nid;
1357 base = cpu_first_thread_sibling(update->cpu);
1358
1359 for (j = 0; j < threads_per_core; j++) {
1360 update_numa_cpu_lookup_table(base + j, nid);
1361 }
1362 }
1363
1364 return 0;
1365 }
1366
1367 /*
1368 * Update the node maps and sysfs entries for each cpu whose home node
1369 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1370 */
1371 int arch_update_cpu_topology(void)
1372 {
1373 unsigned int cpu, sibling, changed = 0;
1374 struct topology_update_data *updates, *ud;
1375 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1376 cpumask_t updated_cpus;
1377 struct device *dev;
1378 int weight, new_nid, i = 0;
1379
1380 if (!prrn_enabled && !vphn_enabled)
1381 return 0;
1382
1383 weight = cpumask_weight(&cpu_associativity_changes_mask);
1384 if (!weight)
1385 return 0;
1386
1387 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1388 if (!updates)
1389 return 0;
1390
1391 cpumask_clear(&updated_cpus);
1392
1393 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1394 /*
1395 * If siblings aren't flagged for changes, updates list
1396 * will be too short. Skip on this update and set for next
1397 * update.
1398 */
1399 if (!cpumask_subset(cpu_sibling_mask(cpu),
1400 &cpu_associativity_changes_mask)) {
1401 pr_info("Sibling bits not set for associativity "
1402 "change, cpu%d\n", cpu);
1403 cpumask_or(&cpu_associativity_changes_mask,
1404 &cpu_associativity_changes_mask,
1405 cpu_sibling_mask(cpu));
1406 cpu = cpu_last_thread_sibling(cpu);
1407 continue;
1408 }
1409
1410 /* Use associativity from first thread for all siblings */
1411 vphn_get_associativity(cpu, associativity);
1412 new_nid = associativity_to_nid(associativity);
1413 if (new_nid < 0 || !node_online(new_nid))
1414 new_nid = first_online_node;
1415
1416 if (new_nid == numa_cpu_lookup_table[cpu]) {
1417 cpumask_andnot(&cpu_associativity_changes_mask,
1418 &cpu_associativity_changes_mask,
1419 cpu_sibling_mask(cpu));
1420 cpu = cpu_last_thread_sibling(cpu);
1421 continue;
1422 }
1423
1424 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1425 ud = &updates[i++];
1426 ud->cpu = sibling;
1427 ud->new_nid = new_nid;
1428 ud->old_nid = numa_cpu_lookup_table[sibling];
1429 cpumask_set_cpu(sibling, &updated_cpus);
1430 if (i < weight)
1431 ud->next = &updates[i];
1432 }
1433 cpu = cpu_last_thread_sibling(cpu);
1434 }
1435
1436 pr_debug("Topology update for the following CPUs:\n");
1437 if (cpumask_weight(&updated_cpus)) {
1438 for (ud = &updates[0]; ud; ud = ud->next) {
1439 pr_debug("cpu %d moving from node %d "
1440 "to %d\n", ud->cpu,
1441 ud->old_nid, ud->new_nid);
1442 }
1443 }
1444
1445 /*
1446 * In cases where we have nothing to update (because the updates list
1447 * is too short or because the new topology is same as the old one),
1448 * skip invoking update_cpu_topology() via stop-machine(). This is
1449 * necessary (and not just a fast-path optimization) since stop-machine
1450 * can end up electing a random CPU to run update_cpu_topology(), and
1451 * thus trick us into setting up incorrect cpu-node mappings (since
1452 * 'updates' is kzalloc()'ed).
1453 *
1454 * And for the similar reason, we will skip all the following updating.
1455 */
1456 if (!cpumask_weight(&updated_cpus))
1457 goto out;
1458
1459 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1460
1461 /*
1462 * Update the numa-cpu lookup table with the new mappings, even for
1463 * offline CPUs. It is best to perform this update from the stop-
1464 * machine context.
1465 */
1466 stop_machine(update_lookup_table, &updates[0],
1467 cpumask_of(raw_smp_processor_id()));
1468
1469 for (ud = &updates[0]; ud; ud = ud->next) {
1470 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1471 register_cpu_under_node(ud->cpu, ud->new_nid);
1472
1473 dev = get_cpu_device(ud->cpu);
1474 if (dev)
1475 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1476 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1477 changed = 1;
1478 }
1479
1480 out:
1481 kfree(updates);
1482 return changed;
1483 }
1484
1485 static void topology_work_fn(struct work_struct *work)
1486 {
1487 rebuild_sched_domains();
1488 }
1489 static DECLARE_WORK(topology_work, topology_work_fn);
1490
1491 static void topology_schedule_update(void)
1492 {
1493 schedule_work(&topology_work);
1494 }
1495
1496 static void topology_timer_fn(unsigned long ignored)
1497 {
1498 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1499 topology_schedule_update();
1500 else if (vphn_enabled) {
1501 if (update_cpu_associativity_changes_mask() > 0)
1502 topology_schedule_update();
1503 reset_topology_timer();
1504 }
1505 }
1506 static struct timer_list topology_timer =
1507 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1508
1509 static void reset_topology_timer(void)
1510 {
1511 topology_timer.data = 0;
1512 topology_timer.expires = jiffies + 60 * HZ;
1513 mod_timer(&topology_timer, topology_timer.expires);
1514 }
1515
1516 #ifdef CONFIG_SMP
1517
1518 static void stage_topology_update(int core_id)
1519 {
1520 cpumask_or(&cpu_associativity_changes_mask,
1521 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1522 reset_topology_timer();
1523 }
1524
1525 static int dt_update_callback(struct notifier_block *nb,
1526 unsigned long action, void *data)
1527 {
1528 struct of_reconfig_data *update = data;
1529 int rc = NOTIFY_DONE;
1530
1531 switch (action) {
1532 case OF_RECONFIG_UPDATE_PROPERTY:
1533 if (!of_prop_cmp(update->dn->type, "cpu") &&
1534 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1535 u32 core_id;
1536 of_property_read_u32(update->dn, "reg", &core_id);
1537 stage_topology_update(core_id);
1538 rc = NOTIFY_OK;
1539 }
1540 break;
1541 }
1542
1543 return rc;
1544 }
1545
1546 static struct notifier_block dt_update_nb = {
1547 .notifier_call = dt_update_callback,
1548 };
1549
1550 #endif
1551
1552 /*
1553 * Start polling for associativity changes.
1554 */
1555 int start_topology_update(void)
1556 {
1557 int rc = 0;
1558
1559 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1560 if (!prrn_enabled) {
1561 prrn_enabled = 1;
1562 vphn_enabled = 0;
1563 #ifdef CONFIG_SMP
1564 rc = of_reconfig_notifier_register(&dt_update_nb);
1565 #endif
1566 }
1567 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1568 lppaca_shared_proc(get_lppaca())) {
1569 if (!vphn_enabled) {
1570 prrn_enabled = 0;
1571 vphn_enabled = 1;
1572 setup_cpu_associativity_change_counters();
1573 init_timer_deferrable(&topology_timer);
1574 reset_topology_timer();
1575 }
1576 }
1577
1578 return rc;
1579 }
1580
1581 /*
1582 * Disable polling for VPHN associativity changes.
1583 */
1584 int stop_topology_update(void)
1585 {
1586 int rc = 0;
1587
1588 if (prrn_enabled) {
1589 prrn_enabled = 0;
1590 #ifdef CONFIG_SMP
1591 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1592 #endif
1593 } else if (vphn_enabled) {
1594 vphn_enabled = 0;
1595 rc = del_timer_sync(&topology_timer);
1596 }
1597
1598 return rc;
1599 }
1600
1601 int prrn_is_enabled(void)
1602 {
1603 return prrn_enabled;
1604 }
1605
1606 static int topology_read(struct seq_file *file, void *v)
1607 {
1608 if (vphn_enabled || prrn_enabled)
1609 seq_puts(file, "on\n");
1610 else
1611 seq_puts(file, "off\n");
1612
1613 return 0;
1614 }
1615
1616 static int topology_open(struct inode *inode, struct file *file)
1617 {
1618 return single_open(file, topology_read, NULL);
1619 }
1620
1621 static ssize_t topology_write(struct file *file, const char __user *buf,
1622 size_t count, loff_t *off)
1623 {
1624 char kbuf[4]; /* "on" or "off" plus null. */
1625 int read_len;
1626
1627 read_len = count < 3 ? count : 3;
1628 if (copy_from_user(kbuf, buf, read_len))
1629 return -EINVAL;
1630
1631 kbuf[read_len] = '\0';
1632
1633 if (!strncmp(kbuf, "on", 2))
1634 start_topology_update();
1635 else if (!strncmp(kbuf, "off", 3))
1636 stop_topology_update();
1637 else
1638 return -EINVAL;
1639
1640 return count;
1641 }
1642
1643 static const struct file_operations topology_ops = {
1644 .read = seq_read,
1645 .write = topology_write,
1646 .open = topology_open,
1647 .release = single_release
1648 };
1649
1650 static int topology_update_init(void)
1651 {
1652 /* Do not poll for changes if disabled at boot */
1653 if (topology_updates_enabled)
1654 start_topology_update();
1655
1656 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1657 return -ENOMEM;
1658
1659 return 0;
1660 }
1661 device_initcall(topology_update_init);
1662 #endif /* CONFIG_PPC_SPLPAR */
This page took 0.064948 seconds and 5 git commands to generate.