Merge tag 'stable/for-linus-3.14-rc2-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / arch / powerpc / mm / slb.c
1 /*
2 * PowerPC64 SLB support.
3 *
4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5 * Based on earlier code written by:
6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7 * Copyright (c) 2001 Dave Engebretsen
8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/smp.h>
24 #include <linux/compiler.h>
25 #include <asm/udbg.h>
26 #include <asm/code-patching.h>
27
28
29 extern void slb_allocate_realmode(unsigned long ea);
30 extern void slb_allocate_user(unsigned long ea);
31
32 static void slb_allocate(unsigned long ea)
33 {
34 /* Currently, we do real mode for all SLBs including user, but
35 * that will change if we bring back dynamic VSIDs
36 */
37 slb_allocate_realmode(ea);
38 }
39
40 #define slb_esid_mask(ssize) \
41 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
42
43 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
44 unsigned long slot)
45 {
46 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | slot;
47 }
48
49 #define slb_vsid_shift(ssize) \
50 ((ssize) == MMU_SEGSIZE_256M? SLB_VSID_SHIFT: SLB_VSID_SHIFT_1T)
51
52 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
53 unsigned long flags)
54 {
55 return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
56 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
57 }
58
59 static inline void slb_shadow_update(unsigned long ea, int ssize,
60 unsigned long flags,
61 unsigned long entry)
62 {
63 /*
64 * Clear the ESID first so the entry is not valid while we are
65 * updating it. No write barriers are needed here, provided
66 * we only update the current CPU's SLB shadow buffer.
67 */
68 get_slb_shadow()->save_area[entry].esid = 0;
69 get_slb_shadow()->save_area[entry].vsid =
70 cpu_to_be64(mk_vsid_data(ea, ssize, flags));
71 get_slb_shadow()->save_area[entry].esid =
72 cpu_to_be64(mk_esid_data(ea, ssize, entry));
73 }
74
75 static inline void slb_shadow_clear(unsigned long entry)
76 {
77 get_slb_shadow()->save_area[entry].esid = 0;
78 }
79
80 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
81 unsigned long flags,
82 unsigned long entry)
83 {
84 /*
85 * Updating the shadow buffer before writing the SLB ensures
86 * we don't get a stale entry here if we get preempted by PHYP
87 * between these two statements.
88 */
89 slb_shadow_update(ea, ssize, flags, entry);
90
91 asm volatile("slbmte %0,%1" :
92 : "r" (mk_vsid_data(ea, ssize, flags)),
93 "r" (mk_esid_data(ea, ssize, entry))
94 : "memory" );
95 }
96
97 static void __slb_flush_and_rebolt(void)
98 {
99 /* If you change this make sure you change SLB_NUM_BOLTED
100 * appropriately too. */
101 unsigned long linear_llp, vmalloc_llp, lflags, vflags;
102 unsigned long ksp_esid_data, ksp_vsid_data;
103
104 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
105 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
106 lflags = SLB_VSID_KERNEL | linear_llp;
107 vflags = SLB_VSID_KERNEL | vmalloc_llp;
108
109 ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2);
110 if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
111 ksp_esid_data &= ~SLB_ESID_V;
112 ksp_vsid_data = 0;
113 slb_shadow_clear(2);
114 } else {
115 /* Update stack entry; others don't change */
116 slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2);
117 ksp_vsid_data =
118 be64_to_cpu(get_slb_shadow()->save_area[2].vsid);
119 }
120
121 /* We need to do this all in asm, so we're sure we don't touch
122 * the stack between the slbia and rebolting it. */
123 asm volatile("isync\n"
124 "slbia\n"
125 /* Slot 1 - first VMALLOC segment */
126 "slbmte %0,%1\n"
127 /* Slot 2 - kernel stack */
128 "slbmte %2,%3\n"
129 "isync"
130 :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
131 "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
132 "r"(ksp_vsid_data),
133 "r"(ksp_esid_data)
134 : "memory");
135 }
136
137 void slb_flush_and_rebolt(void)
138 {
139
140 WARN_ON(!irqs_disabled());
141
142 /*
143 * We can't take a PMU exception in the following code, so hard
144 * disable interrupts.
145 */
146 hard_irq_disable();
147
148 __slb_flush_and_rebolt();
149 get_paca()->slb_cache_ptr = 0;
150 }
151
152 void slb_vmalloc_update(void)
153 {
154 unsigned long vflags;
155
156 vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
157 slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
158 slb_flush_and_rebolt();
159 }
160
161 /* Helper function to compare esids. There are four cases to handle.
162 * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
163 * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
164 * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
165 * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
166 */
167 static inline int esids_match(unsigned long addr1, unsigned long addr2)
168 {
169 int esid_1t_count;
170
171 /* System is not 1T segment size capable. */
172 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
173 return (GET_ESID(addr1) == GET_ESID(addr2));
174
175 esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
176 ((addr2 >> SID_SHIFT_1T) != 0));
177
178 /* both addresses are < 1T */
179 if (esid_1t_count == 0)
180 return (GET_ESID(addr1) == GET_ESID(addr2));
181
182 /* One address < 1T, the other > 1T. Not a match */
183 if (esid_1t_count == 1)
184 return 0;
185
186 /* Both addresses are > 1T. */
187 return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
188 }
189
190 /* Flush all user entries from the segment table of the current processor. */
191 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
192 {
193 unsigned long offset;
194 unsigned long slbie_data = 0;
195 unsigned long pc = KSTK_EIP(tsk);
196 unsigned long stack = KSTK_ESP(tsk);
197 unsigned long exec_base;
198
199 /*
200 * We need interrupts hard-disabled here, not just soft-disabled,
201 * so that a PMU interrupt can't occur, which might try to access
202 * user memory (to get a stack trace) and possible cause an SLB miss
203 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
204 */
205 hard_irq_disable();
206 offset = get_paca()->slb_cache_ptr;
207 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
208 offset <= SLB_CACHE_ENTRIES) {
209 int i;
210 asm volatile("isync" : : : "memory");
211 for (i = 0; i < offset; i++) {
212 slbie_data = (unsigned long)get_paca()->slb_cache[i]
213 << SID_SHIFT; /* EA */
214 slbie_data |= user_segment_size(slbie_data)
215 << SLBIE_SSIZE_SHIFT;
216 slbie_data |= SLBIE_C; /* C set for user addresses */
217 asm volatile("slbie %0" : : "r" (slbie_data));
218 }
219 asm volatile("isync" : : : "memory");
220 } else {
221 __slb_flush_and_rebolt();
222 }
223
224 /* Workaround POWER5 < DD2.1 issue */
225 if (offset == 1 || offset > SLB_CACHE_ENTRIES)
226 asm volatile("slbie %0" : : "r" (slbie_data));
227
228 get_paca()->slb_cache_ptr = 0;
229 get_paca()->context = mm->context;
230
231 /*
232 * preload some userspace segments into the SLB.
233 * Almost all 32 and 64bit PowerPC executables are linked at
234 * 0x10000000 so it makes sense to preload this segment.
235 */
236 exec_base = 0x10000000;
237
238 if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
239 is_kernel_addr(exec_base))
240 return;
241
242 slb_allocate(pc);
243
244 if (!esids_match(pc, stack))
245 slb_allocate(stack);
246
247 if (!esids_match(pc, exec_base) &&
248 !esids_match(stack, exec_base))
249 slb_allocate(exec_base);
250 }
251
252 static inline void patch_slb_encoding(unsigned int *insn_addr,
253 unsigned int immed)
254 {
255 int insn = (*insn_addr & 0xffff0000) | immed;
256 patch_instruction(insn_addr, insn);
257 }
258
259 void slb_set_size(u16 size)
260 {
261 extern unsigned int *slb_compare_rr_to_size;
262
263 if (mmu_slb_size == size)
264 return;
265
266 mmu_slb_size = size;
267 patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
268 }
269
270 void slb_initialize(void)
271 {
272 unsigned long linear_llp, vmalloc_llp, io_llp;
273 unsigned long lflags, vflags;
274 static int slb_encoding_inited;
275 extern unsigned int *slb_miss_kernel_load_linear;
276 extern unsigned int *slb_miss_kernel_load_io;
277 extern unsigned int *slb_compare_rr_to_size;
278 #ifdef CONFIG_SPARSEMEM_VMEMMAP
279 extern unsigned int *slb_miss_kernel_load_vmemmap;
280 unsigned long vmemmap_llp;
281 #endif
282
283 /* Prepare our SLB miss handler based on our page size */
284 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
285 io_llp = mmu_psize_defs[mmu_io_psize].sllp;
286 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
287 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
288 #ifdef CONFIG_SPARSEMEM_VMEMMAP
289 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
290 #endif
291 if (!slb_encoding_inited) {
292 slb_encoding_inited = 1;
293 patch_slb_encoding(slb_miss_kernel_load_linear,
294 SLB_VSID_KERNEL | linear_llp);
295 patch_slb_encoding(slb_miss_kernel_load_io,
296 SLB_VSID_KERNEL | io_llp);
297 patch_slb_encoding(slb_compare_rr_to_size,
298 mmu_slb_size);
299
300 pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
301 pr_devel("SLB: io LLP = %04lx\n", io_llp);
302
303 #ifdef CONFIG_SPARSEMEM_VMEMMAP
304 patch_slb_encoding(slb_miss_kernel_load_vmemmap,
305 SLB_VSID_KERNEL | vmemmap_llp);
306 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
307 #endif
308 }
309
310 get_paca()->stab_rr = SLB_NUM_BOLTED;
311
312 lflags = SLB_VSID_KERNEL | linear_llp;
313 vflags = SLB_VSID_KERNEL | vmalloc_llp;
314
315 /* Invalidate the entire SLB (even slot 0) & all the ERATS */
316 asm volatile("isync":::"memory");
317 asm volatile("slbmte %0,%0"::"r" (0) : "memory");
318 asm volatile("isync; slbia; isync":::"memory");
319 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0);
320
321 create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
322
323 /* For the boot cpu, we're running on the stack in init_thread_union,
324 * which is in the first segment of the linear mapping, and also
325 * get_paca()->kstack hasn't been initialized yet.
326 * For secondary cpus, we need to bolt the kernel stack entry now.
327 */
328 slb_shadow_clear(2);
329 if (raw_smp_processor_id() != boot_cpuid &&
330 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
331 create_shadowed_slbe(get_paca()->kstack,
332 mmu_kernel_ssize, lflags, 2);
333
334 asm volatile("isync":::"memory");
335 }
This page took 0.03641 seconds and 5 git commands to generate.