Merge tag 'stable/for-linus-3.14-rc2-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / arch / powerpc / mm / tlb_nohash.c
1 /*
2 * This file contains the routines for TLB flushing.
3 * On machines where the MMU does not use a hash table to store virtual to
4 * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5 * this does -not- include 603 however which shares the implementation with
6 * hash based processors)
7 *
8 * -- BenH
9 *
10 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
11 * IBM Corp.
12 *
13 * Derived from arch/ppc/mm/init.c:
14 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
15 *
16 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
17 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
18 * Copyright (C) 1996 Paul Mackerras
19 *
20 * Derived from "arch/i386/mm/init.c"
21 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
27 *
28 */
29
30 #include <linux/kernel.h>
31 #include <linux/export.h>
32 #include <linux/mm.h>
33 #include <linux/init.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/preempt.h>
37 #include <linux/spinlock.h>
38 #include <linux/memblock.h>
39 #include <linux/of_fdt.h>
40 #include <linux/hugetlb.h>
41
42 #include <asm/tlbflush.h>
43 #include <asm/tlb.h>
44 #include <asm/code-patching.h>
45 #include <asm/hugetlb.h>
46 #include <asm/paca.h>
47
48 #include "mmu_decl.h"
49
50 /*
51 * This struct lists the sw-supported page sizes. The hardawre MMU may support
52 * other sizes not listed here. The .ind field is only used on MMUs that have
53 * indirect page table entries.
54 */
55 #ifdef CONFIG_PPC_BOOK3E_MMU
56 #ifdef CONFIG_PPC_FSL_BOOK3E
57 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
58 [MMU_PAGE_4K] = {
59 .shift = 12,
60 .enc = BOOK3E_PAGESZ_4K,
61 },
62 [MMU_PAGE_2M] = {
63 .shift = 21,
64 .enc = BOOK3E_PAGESZ_2M,
65 },
66 [MMU_PAGE_4M] = {
67 .shift = 22,
68 .enc = BOOK3E_PAGESZ_4M,
69 },
70 [MMU_PAGE_16M] = {
71 .shift = 24,
72 .enc = BOOK3E_PAGESZ_16M,
73 },
74 [MMU_PAGE_64M] = {
75 .shift = 26,
76 .enc = BOOK3E_PAGESZ_64M,
77 },
78 [MMU_PAGE_256M] = {
79 .shift = 28,
80 .enc = BOOK3E_PAGESZ_256M,
81 },
82 [MMU_PAGE_1G] = {
83 .shift = 30,
84 .enc = BOOK3E_PAGESZ_1GB,
85 },
86 };
87 #else
88 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
89 [MMU_PAGE_4K] = {
90 .shift = 12,
91 .ind = 20,
92 .enc = BOOK3E_PAGESZ_4K,
93 },
94 [MMU_PAGE_16K] = {
95 .shift = 14,
96 .enc = BOOK3E_PAGESZ_16K,
97 },
98 [MMU_PAGE_64K] = {
99 .shift = 16,
100 .ind = 28,
101 .enc = BOOK3E_PAGESZ_64K,
102 },
103 [MMU_PAGE_1M] = {
104 .shift = 20,
105 .enc = BOOK3E_PAGESZ_1M,
106 },
107 [MMU_PAGE_16M] = {
108 .shift = 24,
109 .ind = 36,
110 .enc = BOOK3E_PAGESZ_16M,
111 },
112 [MMU_PAGE_256M] = {
113 .shift = 28,
114 .enc = BOOK3E_PAGESZ_256M,
115 },
116 [MMU_PAGE_1G] = {
117 .shift = 30,
118 .enc = BOOK3E_PAGESZ_1GB,
119 },
120 };
121 #endif /* CONFIG_FSL_BOOKE */
122
123 static inline int mmu_get_tsize(int psize)
124 {
125 return mmu_psize_defs[psize].enc;
126 }
127 #else
128 static inline int mmu_get_tsize(int psize)
129 {
130 /* This isn't used on !Book3E for now */
131 return 0;
132 }
133 #endif /* CONFIG_PPC_BOOK3E_MMU */
134
135 /* The variables below are currently only used on 64-bit Book3E
136 * though this will probably be made common with other nohash
137 * implementations at some point
138 */
139 #ifdef CONFIG_PPC64
140
141 int mmu_linear_psize; /* Page size used for the linear mapping */
142 int mmu_pte_psize; /* Page size used for PTE pages */
143 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
144 int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */
145 unsigned long linear_map_top; /* Top of linear mapping */
146
147 #endif /* CONFIG_PPC64 */
148
149 #ifdef CONFIG_PPC_FSL_BOOK3E
150 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
151 DEFINE_PER_CPU(int, next_tlbcam_idx);
152 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
153 #endif
154
155 /*
156 * Base TLB flushing operations:
157 *
158 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
159 * - flush_tlb_page(vma, vmaddr) flushes one page
160 * - flush_tlb_range(vma, start, end) flushes a range of pages
161 * - flush_tlb_kernel_range(start, end) flushes kernel pages
162 *
163 * - local_* variants of page and mm only apply to the current
164 * processor
165 */
166
167 /*
168 * These are the base non-SMP variants of page and mm flushing
169 */
170 void local_flush_tlb_mm(struct mm_struct *mm)
171 {
172 unsigned int pid;
173
174 preempt_disable();
175 pid = mm->context.id;
176 if (pid != MMU_NO_CONTEXT)
177 _tlbil_pid(pid);
178 preempt_enable();
179 }
180 EXPORT_SYMBOL(local_flush_tlb_mm);
181
182 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
183 int tsize, int ind)
184 {
185 unsigned int pid;
186
187 preempt_disable();
188 pid = mm ? mm->context.id : 0;
189 if (pid != MMU_NO_CONTEXT)
190 _tlbil_va(vmaddr, pid, tsize, ind);
191 preempt_enable();
192 }
193
194 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
195 {
196 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
197 mmu_get_tsize(mmu_virtual_psize), 0);
198 }
199 EXPORT_SYMBOL(local_flush_tlb_page);
200
201 /*
202 * And here are the SMP non-local implementations
203 */
204 #ifdef CONFIG_SMP
205
206 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
207
208 static int mm_is_core_local(struct mm_struct *mm)
209 {
210 return cpumask_subset(mm_cpumask(mm),
211 topology_thread_cpumask(smp_processor_id()));
212 }
213
214 struct tlb_flush_param {
215 unsigned long addr;
216 unsigned int pid;
217 unsigned int tsize;
218 unsigned int ind;
219 };
220
221 static void do_flush_tlb_mm_ipi(void *param)
222 {
223 struct tlb_flush_param *p = param;
224
225 _tlbil_pid(p ? p->pid : 0);
226 }
227
228 static void do_flush_tlb_page_ipi(void *param)
229 {
230 struct tlb_flush_param *p = param;
231
232 _tlbil_va(p->addr, p->pid, p->tsize, p->ind);
233 }
234
235
236 /* Note on invalidations and PID:
237 *
238 * We snapshot the PID with preempt disabled. At this point, it can still
239 * change either because:
240 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
241 * - we are invaliating some target that isn't currently running here
242 * and is concurrently acquiring a new PID on another CPU
243 * - some other CPU is re-acquiring a lost PID for this mm
244 * etc...
245 *
246 * However, this shouldn't be a problem as we only guarantee
247 * invalidation of TLB entries present prior to this call, so we
248 * don't care about the PID changing, and invalidating a stale PID
249 * is generally harmless.
250 */
251
252 void flush_tlb_mm(struct mm_struct *mm)
253 {
254 unsigned int pid;
255
256 preempt_disable();
257 pid = mm->context.id;
258 if (unlikely(pid == MMU_NO_CONTEXT))
259 goto no_context;
260 if (!mm_is_core_local(mm)) {
261 struct tlb_flush_param p = { .pid = pid };
262 /* Ignores smp_processor_id() even if set. */
263 smp_call_function_many(mm_cpumask(mm),
264 do_flush_tlb_mm_ipi, &p, 1);
265 }
266 _tlbil_pid(pid);
267 no_context:
268 preempt_enable();
269 }
270 EXPORT_SYMBOL(flush_tlb_mm);
271
272 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
273 int tsize, int ind)
274 {
275 struct cpumask *cpu_mask;
276 unsigned int pid;
277
278 preempt_disable();
279 pid = mm ? mm->context.id : 0;
280 if (unlikely(pid == MMU_NO_CONTEXT))
281 goto bail;
282 cpu_mask = mm_cpumask(mm);
283 if (!mm_is_core_local(mm)) {
284 /* If broadcast tlbivax is supported, use it */
285 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
286 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
287 if (lock)
288 raw_spin_lock(&tlbivax_lock);
289 _tlbivax_bcast(vmaddr, pid, tsize, ind);
290 if (lock)
291 raw_spin_unlock(&tlbivax_lock);
292 goto bail;
293 } else {
294 struct tlb_flush_param p = {
295 .pid = pid,
296 .addr = vmaddr,
297 .tsize = tsize,
298 .ind = ind,
299 };
300 /* Ignores smp_processor_id() even if set in cpu_mask */
301 smp_call_function_many(cpu_mask,
302 do_flush_tlb_page_ipi, &p, 1);
303 }
304 }
305 _tlbil_va(vmaddr, pid, tsize, ind);
306 bail:
307 preempt_enable();
308 }
309
310 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
311 {
312 #ifdef CONFIG_HUGETLB_PAGE
313 if (vma && is_vm_hugetlb_page(vma))
314 flush_hugetlb_page(vma, vmaddr);
315 #endif
316
317 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
318 mmu_get_tsize(mmu_virtual_psize), 0);
319 }
320 EXPORT_SYMBOL(flush_tlb_page);
321
322 #endif /* CONFIG_SMP */
323
324 #ifdef CONFIG_PPC_47x
325 void __init early_init_mmu_47x(void)
326 {
327 #ifdef CONFIG_SMP
328 unsigned long root = of_get_flat_dt_root();
329 if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
330 mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
331 #endif /* CONFIG_SMP */
332 }
333 #endif /* CONFIG_PPC_47x */
334
335 /*
336 * Flush kernel TLB entries in the given range
337 */
338 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
339 {
340 #ifdef CONFIG_SMP
341 preempt_disable();
342 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
343 _tlbil_pid(0);
344 preempt_enable();
345 #else
346 _tlbil_pid(0);
347 #endif
348 }
349 EXPORT_SYMBOL(flush_tlb_kernel_range);
350
351 /*
352 * Currently, for range flushing, we just do a full mm flush. This should
353 * be optimized based on a threshold on the size of the range, since
354 * some implementation can stack multiple tlbivax before a tlbsync but
355 * for now, we keep it that way
356 */
357 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
358 unsigned long end)
359
360 {
361 flush_tlb_mm(vma->vm_mm);
362 }
363 EXPORT_SYMBOL(flush_tlb_range);
364
365 void tlb_flush(struct mmu_gather *tlb)
366 {
367 flush_tlb_mm(tlb->mm);
368 }
369
370 /*
371 * Below are functions specific to the 64-bit variant of Book3E though that
372 * may change in the future
373 */
374
375 #ifdef CONFIG_PPC64
376
377 /*
378 * Handling of virtual linear page tables or indirect TLB entries
379 * flushing when PTE pages are freed
380 */
381 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
382 {
383 int tsize = mmu_psize_defs[mmu_pte_psize].enc;
384
385 if (book3e_htw_mode != PPC_HTW_NONE) {
386 unsigned long start = address & PMD_MASK;
387 unsigned long end = address + PMD_SIZE;
388 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
389
390 /* This isn't the most optimal, ideally we would factor out the
391 * while preempt & CPU mask mucking around, or even the IPI but
392 * it will do for now
393 */
394 while (start < end) {
395 __flush_tlb_page(tlb->mm, start, tsize, 1);
396 start += size;
397 }
398 } else {
399 unsigned long rmask = 0xf000000000000000ul;
400 unsigned long rid = (address & rmask) | 0x1000000000000000ul;
401 unsigned long vpte = address & ~rmask;
402
403 #ifdef CONFIG_PPC_64K_PAGES
404 vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
405 #else
406 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
407 #endif
408 vpte |= rid;
409 __flush_tlb_page(tlb->mm, vpte, tsize, 0);
410 }
411 }
412
413 static void setup_page_sizes(void)
414 {
415 unsigned int tlb0cfg;
416 unsigned int tlb0ps;
417 unsigned int eptcfg;
418 int i, psize;
419
420 #ifdef CONFIG_PPC_FSL_BOOK3E
421 unsigned int mmucfg = mfspr(SPRN_MMUCFG);
422 int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E);
423
424 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) {
425 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
426 unsigned int min_pg, max_pg;
427
428 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
429 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
430
431 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
432 struct mmu_psize_def *def;
433 unsigned int shift;
434
435 def = &mmu_psize_defs[psize];
436 shift = def->shift;
437
438 if (shift == 0 || shift & 1)
439 continue;
440
441 /* adjust to be in terms of 4^shift Kb */
442 shift = (shift - 10) >> 1;
443
444 if ((shift >= min_pg) && (shift <= max_pg))
445 def->flags |= MMU_PAGE_SIZE_DIRECT;
446 }
447
448 goto out;
449 }
450
451 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) {
452 u32 tlb1cfg, tlb1ps;
453
454 tlb0cfg = mfspr(SPRN_TLB0CFG);
455 tlb1cfg = mfspr(SPRN_TLB1CFG);
456 tlb1ps = mfspr(SPRN_TLB1PS);
457 eptcfg = mfspr(SPRN_EPTCFG);
458
459 if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT))
460 book3e_htw_mode = PPC_HTW_E6500;
461
462 /*
463 * We expect 4K subpage size and unrestricted indirect size.
464 * The lack of a restriction on indirect size is a Freescale
465 * extension, indicated by PSn = 0 but SPSn != 0.
466 */
467 if (eptcfg != 2)
468 book3e_htw_mode = PPC_HTW_NONE;
469
470 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
471 struct mmu_psize_def *def = &mmu_psize_defs[psize];
472
473 if (tlb1ps & (1U << (def->shift - 10))) {
474 def->flags |= MMU_PAGE_SIZE_DIRECT;
475
476 if (book3e_htw_mode && psize == MMU_PAGE_2M)
477 def->flags |= MMU_PAGE_SIZE_INDIRECT;
478 }
479 }
480
481 goto out;
482 }
483 #endif
484
485 tlb0cfg = mfspr(SPRN_TLB0CFG);
486 tlb0ps = mfspr(SPRN_TLB0PS);
487 eptcfg = mfspr(SPRN_EPTCFG);
488
489 /* Look for supported direct sizes */
490 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
491 struct mmu_psize_def *def = &mmu_psize_defs[psize];
492
493 if (tlb0ps & (1U << (def->shift - 10)))
494 def->flags |= MMU_PAGE_SIZE_DIRECT;
495 }
496
497 /* Indirect page sizes supported ? */
498 if ((tlb0cfg & TLBnCFG_IND) == 0 ||
499 (tlb0cfg & TLBnCFG_PT) == 0)
500 goto out;
501
502 book3e_htw_mode = PPC_HTW_IBM;
503
504 /* Now, we only deal with one IND page size for each
505 * direct size. Hopefully all implementations today are
506 * unambiguous, but we might want to be careful in the
507 * future.
508 */
509 for (i = 0; i < 3; i++) {
510 unsigned int ps, sps;
511
512 sps = eptcfg & 0x1f;
513 eptcfg >>= 5;
514 ps = eptcfg & 0x1f;
515 eptcfg >>= 5;
516 if (!ps || !sps)
517 continue;
518 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
519 struct mmu_psize_def *def = &mmu_psize_defs[psize];
520
521 if (ps == (def->shift - 10))
522 def->flags |= MMU_PAGE_SIZE_INDIRECT;
523 if (sps == (def->shift - 10))
524 def->ind = ps + 10;
525 }
526 }
527
528 out:
529 /* Cleanup array and print summary */
530 pr_info("MMU: Supported page sizes\n");
531 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
532 struct mmu_psize_def *def = &mmu_psize_defs[psize];
533 const char *__page_type_names[] = {
534 "unsupported",
535 "direct",
536 "indirect",
537 "direct & indirect"
538 };
539 if (def->flags == 0) {
540 def->shift = 0;
541 continue;
542 }
543 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
544 __page_type_names[def->flags & 0x3]);
545 }
546 }
547
548 static void setup_mmu_htw(void)
549 {
550 /*
551 * If we want to use HW tablewalk, enable it by patching the TLB miss
552 * handlers to branch to the one dedicated to it.
553 */
554
555 switch (book3e_htw_mode) {
556 case PPC_HTW_IBM:
557 patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
558 patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
559 break;
560 #ifdef CONFIG_PPC_FSL_BOOK3E
561 case PPC_HTW_E6500:
562 patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e);
563 patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e);
564 break;
565 #endif
566 }
567 pr_info("MMU: Book3E HW tablewalk %s\n",
568 book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported");
569 }
570
571 /*
572 * Early initialization of the MMU TLB code
573 */
574 static void __early_init_mmu(int boot_cpu)
575 {
576 unsigned int mas4;
577
578 /* XXX This will have to be decided at runtime, but right
579 * now our boot and TLB miss code hard wires it. Ideally
580 * we should find out a suitable page size and patch the
581 * TLB miss code (either that or use the PACA to store
582 * the value we want)
583 */
584 mmu_linear_psize = MMU_PAGE_1G;
585
586 /* XXX This should be decided at runtime based on supported
587 * page sizes in the TLB, but for now let's assume 16M is
588 * always there and a good fit (which it probably is)
589 */
590 mmu_vmemmap_psize = MMU_PAGE_16M;
591
592 /* XXX This code only checks for TLB 0 capabilities and doesn't
593 * check what page size combos are supported by the HW. It
594 * also doesn't handle the case where a separate array holds
595 * the IND entries from the array loaded by the PT.
596 */
597 if (boot_cpu) {
598 /* Look for supported page sizes */
599 setup_page_sizes();
600
601 /* Look for HW tablewalk support */
602 setup_mmu_htw();
603 }
604
605 /* Set MAS4 based on page table setting */
606
607 mas4 = 0x4 << MAS4_WIMGED_SHIFT;
608 switch (book3e_htw_mode) {
609 case PPC_HTW_E6500:
610 mas4 |= MAS4_INDD;
611 mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT;
612 mas4 |= MAS4_TLBSELD(1);
613 mmu_pte_psize = MMU_PAGE_2M;
614 break;
615
616 case PPC_HTW_IBM:
617 mas4 |= MAS4_INDD;
618 #ifdef CONFIG_PPC_64K_PAGES
619 mas4 |= BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
620 mmu_pte_psize = MMU_PAGE_256M;
621 #else
622 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
623 mmu_pte_psize = MMU_PAGE_1M;
624 #endif
625 break;
626
627 case PPC_HTW_NONE:
628 #ifdef CONFIG_PPC_64K_PAGES
629 mas4 |= BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
630 #else
631 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
632 #endif
633 mmu_pte_psize = mmu_virtual_psize;
634 break;
635 }
636 mtspr(SPRN_MAS4, mas4);
637
638 /* Set the global containing the top of the linear mapping
639 * for use by the TLB miss code
640 */
641 linear_map_top = memblock_end_of_DRAM();
642
643 #ifdef CONFIG_PPC_FSL_BOOK3E
644 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
645 unsigned int num_cams;
646
647 /* use a quarter of the TLBCAM for bolted linear map */
648 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
649 linear_map_top = map_mem_in_cams(linear_map_top, num_cams);
650
651 /* limit memory so we dont have linear faults */
652 memblock_enforce_memory_limit(linear_map_top);
653
654 if (book3e_htw_mode == PPC_HTW_NONE) {
655 patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
656 patch_exception(0x1e0,
657 exc_instruction_tlb_miss_bolted_book3e);
658 }
659 }
660 #endif
661
662 /* A sync won't hurt us after mucking around with
663 * the MMU configuration
664 */
665 mb();
666
667 memblock_set_current_limit(linear_map_top);
668 }
669
670 void __init early_init_mmu(void)
671 {
672 __early_init_mmu(1);
673 }
674
675 void early_init_mmu_secondary(void)
676 {
677 __early_init_mmu(0);
678 }
679
680 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
681 phys_addr_t first_memblock_size)
682 {
683 /* On non-FSL Embedded 64-bit, we adjust the RMA size to match
684 * the bolted TLB entry. We know for now that only 1G
685 * entries are supported though that may eventually
686 * change.
687 *
688 * on FSL Embedded 64-bit, we adjust the RMA size to match the
689 * first bolted TLB entry size. We still limit max to 1G even if
690 * the TLB could cover more. This is due to what the early init
691 * code is setup to do.
692 *
693 * We crop it to the size of the first MEMBLOCK to
694 * avoid going over total available memory just in case...
695 */
696 #ifdef CONFIG_PPC_FSL_BOOK3E
697 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
698 unsigned long linear_sz;
699 linear_sz = calc_cam_sz(first_memblock_size, PAGE_OFFSET,
700 first_memblock_base);
701 ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
702 } else
703 #endif
704 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
705
706 /* Finally limit subsequent allocations */
707 memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
708 }
709 #else /* ! CONFIG_PPC64 */
710 void __init early_init_mmu(void)
711 {
712 #ifdef CONFIG_PPC_47x
713 early_init_mmu_47x();
714 #endif
715 }
716 #endif /* CONFIG_PPC64 */
This page took 0.050669 seconds and 5 git commands to generate.