Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / powerpc / perf / callchain.c
1 /*
2 * Performance counter callchain support - powerpc architecture code
3 *
4 * Copyright © 2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/mm.h>
17 #include <asm/ptrace.h>
18 #include <asm/pgtable.h>
19 #include <asm/sigcontext.h>
20 #include <asm/ucontext.h>
21 #include <asm/vdso.h>
22 #ifdef CONFIG_PPC64
23 #include "../kernel/ppc32.h"
24 #endif
25
26
27 /*
28 * Is sp valid as the address of the next kernel stack frame after prev_sp?
29 * The next frame may be in a different stack area but should not go
30 * back down in the same stack area.
31 */
32 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
33 {
34 if (sp & 0xf)
35 return 0; /* must be 16-byte aligned */
36 if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
37 return 0;
38 if (sp >= prev_sp + STACK_FRAME_MIN_SIZE)
39 return 1;
40 /*
41 * sp could decrease when we jump off an interrupt stack
42 * back to the regular process stack.
43 */
44 if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
45 return 1;
46 return 0;
47 }
48
49 void
50 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
51 {
52 unsigned long sp, next_sp;
53 unsigned long next_ip;
54 unsigned long lr;
55 long level = 0;
56 unsigned long *fp;
57
58 lr = regs->link;
59 sp = regs->gpr[1];
60 perf_callchain_store(entry, perf_instruction_pointer(regs));
61
62 if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
63 return;
64
65 for (;;) {
66 fp = (unsigned long *) sp;
67 next_sp = fp[0];
68
69 if (next_sp == sp + STACK_INT_FRAME_SIZE &&
70 fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
71 /*
72 * This looks like an interrupt frame for an
73 * interrupt that occurred in the kernel
74 */
75 regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
76 next_ip = regs->nip;
77 lr = regs->link;
78 level = 0;
79 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
80
81 } else {
82 if (level == 0)
83 next_ip = lr;
84 else
85 next_ip = fp[STACK_FRAME_LR_SAVE];
86
87 /*
88 * We can't tell which of the first two addresses
89 * we get are valid, but we can filter out the
90 * obviously bogus ones here. We replace them
91 * with 0 rather than removing them entirely so
92 * that userspace can tell which is which.
93 */
94 if ((level == 1 && next_ip == lr) ||
95 (level <= 1 && !kernel_text_address(next_ip)))
96 next_ip = 0;
97
98 ++level;
99 }
100
101 perf_callchain_store(entry, next_ip);
102 if (!valid_next_sp(next_sp, sp))
103 return;
104 sp = next_sp;
105 }
106 }
107
108 #ifdef CONFIG_PPC64
109 /*
110 * On 64-bit we don't want to invoke hash_page on user addresses from
111 * interrupt context, so if the access faults, we read the page tables
112 * to find which page (if any) is mapped and access it directly.
113 */
114 static int read_user_stack_slow(void __user *ptr, void *buf, int nb)
115 {
116 int ret = -EFAULT;
117 pgd_t *pgdir;
118 pte_t *ptep, pte;
119 unsigned shift;
120 unsigned long addr = (unsigned long) ptr;
121 unsigned long offset;
122 unsigned long pfn, flags;
123 void *kaddr;
124
125 pgdir = current->mm->pgd;
126 if (!pgdir)
127 return -EFAULT;
128
129 local_irq_save(flags);
130 ptep = find_linux_pte_or_hugepte(pgdir, addr, NULL, &shift);
131 if (!ptep)
132 goto err_out;
133 if (!shift)
134 shift = PAGE_SHIFT;
135
136 /* align address to page boundary */
137 offset = addr & ((1UL << shift) - 1);
138
139 pte = READ_ONCE(*ptep);
140 if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
141 goto err_out;
142 pfn = pte_pfn(pte);
143 if (!page_is_ram(pfn))
144 goto err_out;
145
146 /* no highmem to worry about here */
147 kaddr = pfn_to_kaddr(pfn);
148 memcpy(buf, kaddr + offset, nb);
149 ret = 0;
150 err_out:
151 local_irq_restore(flags);
152 return ret;
153 }
154
155 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
156 {
157 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
158 ((unsigned long)ptr & 7))
159 return -EFAULT;
160
161 pagefault_disable();
162 if (!__get_user_inatomic(*ret, ptr)) {
163 pagefault_enable();
164 return 0;
165 }
166 pagefault_enable();
167
168 return read_user_stack_slow(ptr, ret, 8);
169 }
170
171 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
172 {
173 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
174 ((unsigned long)ptr & 3))
175 return -EFAULT;
176
177 pagefault_disable();
178 if (!__get_user_inatomic(*ret, ptr)) {
179 pagefault_enable();
180 return 0;
181 }
182 pagefault_enable();
183
184 return read_user_stack_slow(ptr, ret, 4);
185 }
186
187 static inline int valid_user_sp(unsigned long sp, int is_64)
188 {
189 if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
190 return 0;
191 return 1;
192 }
193
194 /*
195 * 64-bit user processes use the same stack frame for RT and non-RT signals.
196 */
197 struct signal_frame_64 {
198 char dummy[__SIGNAL_FRAMESIZE];
199 struct ucontext uc;
200 unsigned long unused[2];
201 unsigned int tramp[6];
202 struct siginfo *pinfo;
203 void *puc;
204 struct siginfo info;
205 char abigap[288];
206 };
207
208 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
209 {
210 if (nip == fp + offsetof(struct signal_frame_64, tramp))
211 return 1;
212 if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
213 nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
214 return 1;
215 return 0;
216 }
217
218 /*
219 * Do some sanity checking on the signal frame pointed to by sp.
220 * We check the pinfo and puc pointers in the frame.
221 */
222 static int sane_signal_64_frame(unsigned long sp)
223 {
224 struct signal_frame_64 __user *sf;
225 unsigned long pinfo, puc;
226
227 sf = (struct signal_frame_64 __user *) sp;
228 if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
229 read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
230 return 0;
231 return pinfo == (unsigned long) &sf->info &&
232 puc == (unsigned long) &sf->uc;
233 }
234
235 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
236 struct pt_regs *regs)
237 {
238 unsigned long sp, next_sp;
239 unsigned long next_ip;
240 unsigned long lr;
241 long level = 0;
242 struct signal_frame_64 __user *sigframe;
243 unsigned long __user *fp, *uregs;
244
245 next_ip = perf_instruction_pointer(regs);
246 lr = regs->link;
247 sp = regs->gpr[1];
248 perf_callchain_store(entry, next_ip);
249
250 while (entry->nr < PERF_MAX_STACK_DEPTH) {
251 fp = (unsigned long __user *) sp;
252 if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
253 return;
254 if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
255 return;
256
257 /*
258 * Note: the next_sp - sp >= signal frame size check
259 * is true when next_sp < sp, which can happen when
260 * transitioning from an alternate signal stack to the
261 * normal stack.
262 */
263 if (next_sp - sp >= sizeof(struct signal_frame_64) &&
264 (is_sigreturn_64_address(next_ip, sp) ||
265 (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
266 sane_signal_64_frame(sp)) {
267 /*
268 * This looks like an signal frame
269 */
270 sigframe = (struct signal_frame_64 __user *) sp;
271 uregs = sigframe->uc.uc_mcontext.gp_regs;
272 if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
273 read_user_stack_64(&uregs[PT_LNK], &lr) ||
274 read_user_stack_64(&uregs[PT_R1], &sp))
275 return;
276 level = 0;
277 perf_callchain_store(entry, PERF_CONTEXT_USER);
278 perf_callchain_store(entry, next_ip);
279 continue;
280 }
281
282 if (level == 0)
283 next_ip = lr;
284 perf_callchain_store(entry, next_ip);
285 ++level;
286 sp = next_sp;
287 }
288 }
289
290 static inline int current_is_64bit(void)
291 {
292 /*
293 * We can't use test_thread_flag() here because we may be on an
294 * interrupt stack, and the thread flags don't get copied over
295 * from the thread_info on the main stack to the interrupt stack.
296 */
297 return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
298 }
299
300 #else /* CONFIG_PPC64 */
301 /*
302 * On 32-bit we just access the address and let hash_page create a
303 * HPTE if necessary, so there is no need to fall back to reading
304 * the page tables. Since this is called at interrupt level,
305 * do_page_fault() won't treat a DSI as a page fault.
306 */
307 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
308 {
309 int rc;
310
311 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
312 ((unsigned long)ptr & 3))
313 return -EFAULT;
314
315 pagefault_disable();
316 rc = __get_user_inatomic(*ret, ptr);
317 pagefault_enable();
318
319 return rc;
320 }
321
322 static inline void perf_callchain_user_64(struct perf_callchain_entry *entry,
323 struct pt_regs *regs)
324 {
325 }
326
327 static inline int current_is_64bit(void)
328 {
329 return 0;
330 }
331
332 static inline int valid_user_sp(unsigned long sp, int is_64)
333 {
334 if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
335 return 0;
336 return 1;
337 }
338
339 #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
340 #define sigcontext32 sigcontext
341 #define mcontext32 mcontext
342 #define ucontext32 ucontext
343 #define compat_siginfo_t struct siginfo
344
345 #endif /* CONFIG_PPC64 */
346
347 /*
348 * Layout for non-RT signal frames
349 */
350 struct signal_frame_32 {
351 char dummy[__SIGNAL_FRAMESIZE32];
352 struct sigcontext32 sctx;
353 struct mcontext32 mctx;
354 int abigap[56];
355 };
356
357 /*
358 * Layout for RT signal frames
359 */
360 struct rt_signal_frame_32 {
361 char dummy[__SIGNAL_FRAMESIZE32 + 16];
362 compat_siginfo_t info;
363 struct ucontext32 uc;
364 int abigap[56];
365 };
366
367 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
368 {
369 if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
370 return 1;
371 if (vdso32_sigtramp && current->mm->context.vdso_base &&
372 nip == current->mm->context.vdso_base + vdso32_sigtramp)
373 return 1;
374 return 0;
375 }
376
377 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
378 {
379 if (nip == fp + offsetof(struct rt_signal_frame_32,
380 uc.uc_mcontext.mc_pad))
381 return 1;
382 if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
383 nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
384 return 1;
385 return 0;
386 }
387
388 static int sane_signal_32_frame(unsigned int sp)
389 {
390 struct signal_frame_32 __user *sf;
391 unsigned int regs;
392
393 sf = (struct signal_frame_32 __user *) (unsigned long) sp;
394 if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
395 return 0;
396 return regs == (unsigned long) &sf->mctx;
397 }
398
399 static int sane_rt_signal_32_frame(unsigned int sp)
400 {
401 struct rt_signal_frame_32 __user *sf;
402 unsigned int regs;
403
404 sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
405 if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
406 return 0;
407 return regs == (unsigned long) &sf->uc.uc_mcontext;
408 }
409
410 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
411 unsigned int next_sp, unsigned int next_ip)
412 {
413 struct mcontext32 __user *mctx = NULL;
414 struct signal_frame_32 __user *sf;
415 struct rt_signal_frame_32 __user *rt_sf;
416
417 /*
418 * Note: the next_sp - sp >= signal frame size check
419 * is true when next_sp < sp, for example, when
420 * transitioning from an alternate signal stack to the
421 * normal stack.
422 */
423 if (next_sp - sp >= sizeof(struct signal_frame_32) &&
424 is_sigreturn_32_address(next_ip, sp) &&
425 sane_signal_32_frame(sp)) {
426 sf = (struct signal_frame_32 __user *) (unsigned long) sp;
427 mctx = &sf->mctx;
428 }
429
430 if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
431 is_rt_sigreturn_32_address(next_ip, sp) &&
432 sane_rt_signal_32_frame(sp)) {
433 rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
434 mctx = &rt_sf->uc.uc_mcontext;
435 }
436
437 if (!mctx)
438 return NULL;
439 return mctx->mc_gregs;
440 }
441
442 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
443 struct pt_regs *regs)
444 {
445 unsigned int sp, next_sp;
446 unsigned int next_ip;
447 unsigned int lr;
448 long level = 0;
449 unsigned int __user *fp, *uregs;
450
451 next_ip = perf_instruction_pointer(regs);
452 lr = regs->link;
453 sp = regs->gpr[1];
454 perf_callchain_store(entry, next_ip);
455
456 while (entry->nr < PERF_MAX_STACK_DEPTH) {
457 fp = (unsigned int __user *) (unsigned long) sp;
458 if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
459 return;
460 if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
461 return;
462
463 uregs = signal_frame_32_regs(sp, next_sp, next_ip);
464 if (!uregs && level <= 1)
465 uregs = signal_frame_32_regs(sp, next_sp, lr);
466 if (uregs) {
467 /*
468 * This looks like an signal frame, so restart
469 * the stack trace with the values in it.
470 */
471 if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
472 read_user_stack_32(&uregs[PT_LNK], &lr) ||
473 read_user_stack_32(&uregs[PT_R1], &sp))
474 return;
475 level = 0;
476 perf_callchain_store(entry, PERF_CONTEXT_USER);
477 perf_callchain_store(entry, next_ip);
478 continue;
479 }
480
481 if (level == 0)
482 next_ip = lr;
483 perf_callchain_store(entry, next_ip);
484 ++level;
485 sp = next_sp;
486 }
487 }
488
489 void
490 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
491 {
492 if (current_is_64bit())
493 perf_callchain_user_64(entry, regs);
494 else
495 perf_callchain_user_32(entry, regs);
496 }
This page took 0.06788 seconds and 5 git commands to generate.