powerpc/perf: Add regs_no_sipr()
[deliverable/linux.git] / arch / powerpc / perf / core-book3s.c
1 /*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 struct cpu_hw_events {
23 int n_events;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_event *event[MAX_HWEVENTS];
30 u64 events[MAX_HWEVENTS];
31 unsigned int flags[MAX_HWEVENTS];
32 unsigned long mmcr[3];
33 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38
39 unsigned int group_flag;
40 int n_txn_start;
41 };
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
43
44 struct power_pmu *ppmu;
45
46 /*
47 * Normally, to ignore kernel events we set the FCS (freeze counters
48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49 * hypervisor bit set in the MSR, or if we are running on a processor
50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51 * then we need to use the FCHV bit to ignore kernel events.
52 */
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
54
55 /*
56 * 32-bit doesn't have MMCRA but does have an MMCR2,
57 * and a few other names are different.
58 */
59 #ifdef CONFIG_PPC32
60
61 #define MMCR0_FCHV 0
62 #define MMCR0_PMCjCE MMCR0_PMCnCE
63
64 #define SPRN_MMCRA SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE 0
66
67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
68 {
69 return 0;
70 }
71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
73 {
74 return 0;
75 }
76 static inline void perf_read_regs(struct pt_regs *regs)
77 {
78 regs->result = 0;
79 }
80 static inline int perf_intr_is_nmi(struct pt_regs *regs)
81 {
82 return 0;
83 }
84
85 static inline int siar_valid(struct pt_regs *regs)
86 {
87 return 1;
88 }
89
90 #endif /* CONFIG_PPC32 */
91
92 static bool regs_use_siar(struct pt_regs *regs)
93 {
94 return !!(regs->result & 1);
95 }
96
97 /*
98 * Things that are specific to 64-bit implementations.
99 */
100 #ifdef CONFIG_PPC64
101
102 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
103 {
104 unsigned long mmcra = regs->dsisr;
105
106 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
107 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
108 if (slot > 1)
109 return 4 * (slot - 1);
110 }
111
112 return 0;
113 }
114
115 /*
116 * The user wants a data address recorded.
117 * If we're not doing instruction sampling, give them the SDAR
118 * (sampled data address). If we are doing instruction sampling, then
119 * only give them the SDAR if it corresponds to the instruction
120 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC or
121 * the [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA.
122 */
123 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
124 {
125 unsigned long mmcra = regs->dsisr;
126 unsigned long sdsync;
127
128 if (ppmu->flags & PPMU_SIAR_VALID)
129 sdsync = POWER7P_MMCRA_SDAR_VALID;
130 else if (ppmu->flags & PPMU_ALT_SIPR)
131 sdsync = POWER6_MMCRA_SDSYNC;
132 else
133 sdsync = MMCRA_SDSYNC;
134
135 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
136 *addrp = mfspr(SPRN_SDAR);
137 }
138
139 static bool regs_sihv(struct pt_regs *regs)
140 {
141 unsigned long sihv = MMCRA_SIHV;
142
143 if (ppmu->flags & PPMU_ALT_SIPR)
144 sihv = POWER6_MMCRA_SIHV;
145
146 return !!(regs->dsisr & sihv);
147 }
148
149 static bool regs_sipr(struct pt_regs *regs)
150 {
151 unsigned long sipr = MMCRA_SIPR;
152
153 if (ppmu->flags & PPMU_ALT_SIPR)
154 sipr = POWER6_MMCRA_SIPR;
155
156 return !!(regs->dsisr & sipr);
157 }
158
159 static bool regs_no_sipr(struct pt_regs *regs)
160 {
161 return !!(regs->result & 2);
162 }
163
164 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
165 {
166 if (regs->msr & MSR_PR)
167 return PERF_RECORD_MISC_USER;
168 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
169 return PERF_RECORD_MISC_HYPERVISOR;
170 return PERF_RECORD_MISC_KERNEL;
171 }
172
173 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
174 {
175 bool use_siar = regs_use_siar(regs);
176
177 if (!use_siar)
178 return perf_flags_from_msr(regs);
179
180 /*
181 * If we don't have flags in MMCRA, rather than using
182 * the MSR, we intuit the flags from the address in
183 * SIAR which should give slightly more reliable
184 * results
185 */
186 if (regs_no_sipr(regs)) {
187 unsigned long siar = mfspr(SPRN_SIAR);
188 if (siar >= PAGE_OFFSET)
189 return PERF_RECORD_MISC_KERNEL;
190 return PERF_RECORD_MISC_USER;
191 }
192
193 /* PR has priority over HV, so order below is important */
194 if (regs_sipr(regs))
195 return PERF_RECORD_MISC_USER;
196
197 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
198 return PERF_RECORD_MISC_HYPERVISOR;
199
200 return PERF_RECORD_MISC_KERNEL;
201 }
202
203 /*
204 * Overload regs->dsisr to store MMCRA so we only need to read it once
205 * on each interrupt.
206 * Overload regs->result to specify whether we should use the MSR (result
207 * is zero) or the SIAR (result is non zero).
208 */
209 static inline void perf_read_regs(struct pt_regs *regs)
210 {
211 unsigned long mmcra = mfspr(SPRN_MMCRA);
212 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
213 int use_siar;
214
215 regs->dsisr = mmcra;
216 regs->result = 0;
217
218 if (ppmu->flags & PPMU_NO_SIPR)
219 regs->result |= 2;
220
221 /*
222 * If this isn't a PMU exception (eg a software event) the SIAR is
223 * not valid. Use pt_regs.
224 *
225 * If it is a marked event use the SIAR.
226 *
227 * If the PMU doesn't update the SIAR for non marked events use
228 * pt_regs.
229 *
230 * If the PMU has HV/PR flags then check to see if they
231 * place the exception in userspace. If so, use pt_regs. In
232 * continuous sampling mode the SIAR and the PMU exception are
233 * not synchronised, so they may be many instructions apart.
234 * This can result in confusing backtraces. We still want
235 * hypervisor samples as well as samples in the kernel with
236 * interrupts off hence the userspace check.
237 */
238 if (TRAP(regs) != 0xf00)
239 use_siar = 0;
240 else if (marked)
241 use_siar = 1;
242 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
243 use_siar = 0;
244 else if (!regs_no_sipr(regs) && regs_sipr(regs))
245 use_siar = 0;
246 else
247 use_siar = 1;
248
249 regs->result |= use_siar;
250 }
251
252 /*
253 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
254 * it as an NMI.
255 */
256 static inline int perf_intr_is_nmi(struct pt_regs *regs)
257 {
258 return !regs->softe;
259 }
260
261 /*
262 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
263 * must be sampled only if the SIAR-valid bit is set.
264 *
265 * For unmarked instructions and for processors that don't have the SIAR-Valid
266 * bit, assume that SIAR is valid.
267 */
268 static inline int siar_valid(struct pt_regs *regs)
269 {
270 unsigned long mmcra = regs->dsisr;
271 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
272
273 if ((ppmu->flags & PPMU_SIAR_VALID) && marked)
274 return mmcra & POWER7P_MMCRA_SIAR_VALID;
275
276 return 1;
277 }
278
279 #endif /* CONFIG_PPC64 */
280
281 static void perf_event_interrupt(struct pt_regs *regs);
282
283 void perf_event_print_debug(void)
284 {
285 }
286
287 /*
288 * Read one performance monitor counter (PMC).
289 */
290 static unsigned long read_pmc(int idx)
291 {
292 unsigned long val;
293
294 switch (idx) {
295 case 1:
296 val = mfspr(SPRN_PMC1);
297 break;
298 case 2:
299 val = mfspr(SPRN_PMC2);
300 break;
301 case 3:
302 val = mfspr(SPRN_PMC3);
303 break;
304 case 4:
305 val = mfspr(SPRN_PMC4);
306 break;
307 case 5:
308 val = mfspr(SPRN_PMC5);
309 break;
310 case 6:
311 val = mfspr(SPRN_PMC6);
312 break;
313 #ifdef CONFIG_PPC64
314 case 7:
315 val = mfspr(SPRN_PMC7);
316 break;
317 case 8:
318 val = mfspr(SPRN_PMC8);
319 break;
320 #endif /* CONFIG_PPC64 */
321 default:
322 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
323 val = 0;
324 }
325 return val;
326 }
327
328 /*
329 * Write one PMC.
330 */
331 static void write_pmc(int idx, unsigned long val)
332 {
333 switch (idx) {
334 case 1:
335 mtspr(SPRN_PMC1, val);
336 break;
337 case 2:
338 mtspr(SPRN_PMC2, val);
339 break;
340 case 3:
341 mtspr(SPRN_PMC3, val);
342 break;
343 case 4:
344 mtspr(SPRN_PMC4, val);
345 break;
346 case 5:
347 mtspr(SPRN_PMC5, val);
348 break;
349 case 6:
350 mtspr(SPRN_PMC6, val);
351 break;
352 #ifdef CONFIG_PPC64
353 case 7:
354 mtspr(SPRN_PMC7, val);
355 break;
356 case 8:
357 mtspr(SPRN_PMC8, val);
358 break;
359 #endif /* CONFIG_PPC64 */
360 default:
361 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
362 }
363 }
364
365 /*
366 * Check if a set of events can all go on the PMU at once.
367 * If they can't, this will look at alternative codes for the events
368 * and see if any combination of alternative codes is feasible.
369 * The feasible set is returned in event_id[].
370 */
371 static int power_check_constraints(struct cpu_hw_events *cpuhw,
372 u64 event_id[], unsigned int cflags[],
373 int n_ev)
374 {
375 unsigned long mask, value, nv;
376 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
377 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
378 int i, j;
379 unsigned long addf = ppmu->add_fields;
380 unsigned long tadd = ppmu->test_adder;
381
382 if (n_ev > ppmu->n_counter)
383 return -1;
384
385 /* First see if the events will go on as-is */
386 for (i = 0; i < n_ev; ++i) {
387 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
388 && !ppmu->limited_pmc_event(event_id[i])) {
389 ppmu->get_alternatives(event_id[i], cflags[i],
390 cpuhw->alternatives[i]);
391 event_id[i] = cpuhw->alternatives[i][0];
392 }
393 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
394 &cpuhw->avalues[i][0]))
395 return -1;
396 }
397 value = mask = 0;
398 for (i = 0; i < n_ev; ++i) {
399 nv = (value | cpuhw->avalues[i][0]) +
400 (value & cpuhw->avalues[i][0] & addf);
401 if ((((nv + tadd) ^ value) & mask) != 0 ||
402 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
403 cpuhw->amasks[i][0]) != 0)
404 break;
405 value = nv;
406 mask |= cpuhw->amasks[i][0];
407 }
408 if (i == n_ev)
409 return 0; /* all OK */
410
411 /* doesn't work, gather alternatives... */
412 if (!ppmu->get_alternatives)
413 return -1;
414 for (i = 0; i < n_ev; ++i) {
415 choice[i] = 0;
416 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
417 cpuhw->alternatives[i]);
418 for (j = 1; j < n_alt[i]; ++j)
419 ppmu->get_constraint(cpuhw->alternatives[i][j],
420 &cpuhw->amasks[i][j],
421 &cpuhw->avalues[i][j]);
422 }
423
424 /* enumerate all possibilities and see if any will work */
425 i = 0;
426 j = -1;
427 value = mask = nv = 0;
428 while (i < n_ev) {
429 if (j >= 0) {
430 /* we're backtracking, restore context */
431 value = svalues[i];
432 mask = smasks[i];
433 j = choice[i];
434 }
435 /*
436 * See if any alternative k for event_id i,
437 * where k > j, will satisfy the constraints.
438 */
439 while (++j < n_alt[i]) {
440 nv = (value | cpuhw->avalues[i][j]) +
441 (value & cpuhw->avalues[i][j] & addf);
442 if ((((nv + tadd) ^ value) & mask) == 0 &&
443 (((nv + tadd) ^ cpuhw->avalues[i][j])
444 & cpuhw->amasks[i][j]) == 0)
445 break;
446 }
447 if (j >= n_alt[i]) {
448 /*
449 * No feasible alternative, backtrack
450 * to event_id i-1 and continue enumerating its
451 * alternatives from where we got up to.
452 */
453 if (--i < 0)
454 return -1;
455 } else {
456 /*
457 * Found a feasible alternative for event_id i,
458 * remember where we got up to with this event_id,
459 * go on to the next event_id, and start with
460 * the first alternative for it.
461 */
462 choice[i] = j;
463 svalues[i] = value;
464 smasks[i] = mask;
465 value = nv;
466 mask |= cpuhw->amasks[i][j];
467 ++i;
468 j = -1;
469 }
470 }
471
472 /* OK, we have a feasible combination, tell the caller the solution */
473 for (i = 0; i < n_ev; ++i)
474 event_id[i] = cpuhw->alternatives[i][choice[i]];
475 return 0;
476 }
477
478 /*
479 * Check if newly-added events have consistent settings for
480 * exclude_{user,kernel,hv} with each other and any previously
481 * added events.
482 */
483 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
484 int n_prev, int n_new)
485 {
486 int eu = 0, ek = 0, eh = 0;
487 int i, n, first;
488 struct perf_event *event;
489
490 n = n_prev + n_new;
491 if (n <= 1)
492 return 0;
493
494 first = 1;
495 for (i = 0; i < n; ++i) {
496 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
497 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
498 continue;
499 }
500 event = ctrs[i];
501 if (first) {
502 eu = event->attr.exclude_user;
503 ek = event->attr.exclude_kernel;
504 eh = event->attr.exclude_hv;
505 first = 0;
506 } else if (event->attr.exclude_user != eu ||
507 event->attr.exclude_kernel != ek ||
508 event->attr.exclude_hv != eh) {
509 return -EAGAIN;
510 }
511 }
512
513 if (eu || ek || eh)
514 for (i = 0; i < n; ++i)
515 if (cflags[i] & PPMU_LIMITED_PMC_OK)
516 cflags[i] |= PPMU_LIMITED_PMC_REQD;
517
518 return 0;
519 }
520
521 static u64 check_and_compute_delta(u64 prev, u64 val)
522 {
523 u64 delta = (val - prev) & 0xfffffffful;
524
525 /*
526 * POWER7 can roll back counter values, if the new value is smaller
527 * than the previous value it will cause the delta and the counter to
528 * have bogus values unless we rolled a counter over. If a coutner is
529 * rolled back, it will be smaller, but within 256, which is the maximum
530 * number of events to rollback at once. If we dectect a rollback
531 * return 0. This can lead to a small lack of precision in the
532 * counters.
533 */
534 if (prev > val && (prev - val) < 256)
535 delta = 0;
536
537 return delta;
538 }
539
540 static void power_pmu_read(struct perf_event *event)
541 {
542 s64 val, delta, prev;
543
544 if (event->hw.state & PERF_HES_STOPPED)
545 return;
546
547 if (!event->hw.idx)
548 return;
549 /*
550 * Performance monitor interrupts come even when interrupts
551 * are soft-disabled, as long as interrupts are hard-enabled.
552 * Therefore we treat them like NMIs.
553 */
554 do {
555 prev = local64_read(&event->hw.prev_count);
556 barrier();
557 val = read_pmc(event->hw.idx);
558 delta = check_and_compute_delta(prev, val);
559 if (!delta)
560 return;
561 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
562
563 local64_add(delta, &event->count);
564 local64_sub(delta, &event->hw.period_left);
565 }
566
567 /*
568 * On some machines, PMC5 and PMC6 can't be written, don't respect
569 * the freeze conditions, and don't generate interrupts. This tells
570 * us if `event' is using such a PMC.
571 */
572 static int is_limited_pmc(int pmcnum)
573 {
574 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
575 && (pmcnum == 5 || pmcnum == 6);
576 }
577
578 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
579 unsigned long pmc5, unsigned long pmc6)
580 {
581 struct perf_event *event;
582 u64 val, prev, delta;
583 int i;
584
585 for (i = 0; i < cpuhw->n_limited; ++i) {
586 event = cpuhw->limited_counter[i];
587 if (!event->hw.idx)
588 continue;
589 val = (event->hw.idx == 5) ? pmc5 : pmc6;
590 prev = local64_read(&event->hw.prev_count);
591 event->hw.idx = 0;
592 delta = check_and_compute_delta(prev, val);
593 if (delta)
594 local64_add(delta, &event->count);
595 }
596 }
597
598 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
599 unsigned long pmc5, unsigned long pmc6)
600 {
601 struct perf_event *event;
602 u64 val, prev;
603 int i;
604
605 for (i = 0; i < cpuhw->n_limited; ++i) {
606 event = cpuhw->limited_counter[i];
607 event->hw.idx = cpuhw->limited_hwidx[i];
608 val = (event->hw.idx == 5) ? pmc5 : pmc6;
609 prev = local64_read(&event->hw.prev_count);
610 if (check_and_compute_delta(prev, val))
611 local64_set(&event->hw.prev_count, val);
612 perf_event_update_userpage(event);
613 }
614 }
615
616 /*
617 * Since limited events don't respect the freeze conditions, we
618 * have to read them immediately after freezing or unfreezing the
619 * other events. We try to keep the values from the limited
620 * events as consistent as possible by keeping the delay (in
621 * cycles and instructions) between freezing/unfreezing and reading
622 * the limited events as small and consistent as possible.
623 * Therefore, if any limited events are in use, we read them
624 * both, and always in the same order, to minimize variability,
625 * and do it inside the same asm that writes MMCR0.
626 */
627 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
628 {
629 unsigned long pmc5, pmc6;
630
631 if (!cpuhw->n_limited) {
632 mtspr(SPRN_MMCR0, mmcr0);
633 return;
634 }
635
636 /*
637 * Write MMCR0, then read PMC5 and PMC6 immediately.
638 * To ensure we don't get a performance monitor interrupt
639 * between writing MMCR0 and freezing/thawing the limited
640 * events, we first write MMCR0 with the event overflow
641 * interrupt enable bits turned off.
642 */
643 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
644 : "=&r" (pmc5), "=&r" (pmc6)
645 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
646 "i" (SPRN_MMCR0),
647 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
648
649 if (mmcr0 & MMCR0_FC)
650 freeze_limited_counters(cpuhw, pmc5, pmc6);
651 else
652 thaw_limited_counters(cpuhw, pmc5, pmc6);
653
654 /*
655 * Write the full MMCR0 including the event overflow interrupt
656 * enable bits, if necessary.
657 */
658 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
659 mtspr(SPRN_MMCR0, mmcr0);
660 }
661
662 /*
663 * Disable all events to prevent PMU interrupts and to allow
664 * events to be added or removed.
665 */
666 static void power_pmu_disable(struct pmu *pmu)
667 {
668 struct cpu_hw_events *cpuhw;
669 unsigned long flags;
670
671 if (!ppmu)
672 return;
673 local_irq_save(flags);
674 cpuhw = &__get_cpu_var(cpu_hw_events);
675
676 if (!cpuhw->disabled) {
677 cpuhw->disabled = 1;
678 cpuhw->n_added = 0;
679
680 /*
681 * Check if we ever enabled the PMU on this cpu.
682 */
683 if (!cpuhw->pmcs_enabled) {
684 ppc_enable_pmcs();
685 cpuhw->pmcs_enabled = 1;
686 }
687
688 /*
689 * Disable instruction sampling if it was enabled
690 */
691 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
692 mtspr(SPRN_MMCRA,
693 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
694 mb();
695 }
696
697 /*
698 * Set the 'freeze counters' bit.
699 * The barrier is to make sure the mtspr has been
700 * executed and the PMU has frozen the events
701 * before we return.
702 */
703 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
704 mb();
705 }
706 local_irq_restore(flags);
707 }
708
709 /*
710 * Re-enable all events if disable == 0.
711 * If we were previously disabled and events were added, then
712 * put the new config on the PMU.
713 */
714 static void power_pmu_enable(struct pmu *pmu)
715 {
716 struct perf_event *event;
717 struct cpu_hw_events *cpuhw;
718 unsigned long flags;
719 long i;
720 unsigned long val;
721 s64 left;
722 unsigned int hwc_index[MAX_HWEVENTS];
723 int n_lim;
724 int idx;
725
726 if (!ppmu)
727 return;
728 local_irq_save(flags);
729 cpuhw = &__get_cpu_var(cpu_hw_events);
730 if (!cpuhw->disabled) {
731 local_irq_restore(flags);
732 return;
733 }
734 cpuhw->disabled = 0;
735
736 /*
737 * If we didn't change anything, or only removed events,
738 * no need to recalculate MMCR* settings and reset the PMCs.
739 * Just reenable the PMU with the current MMCR* settings
740 * (possibly updated for removal of events).
741 */
742 if (!cpuhw->n_added) {
743 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
744 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
745 if (cpuhw->n_events == 0)
746 ppc_set_pmu_inuse(0);
747 goto out_enable;
748 }
749
750 /*
751 * Compute MMCR* values for the new set of events
752 */
753 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
754 cpuhw->mmcr)) {
755 /* shouldn't ever get here */
756 printk(KERN_ERR "oops compute_mmcr failed\n");
757 goto out;
758 }
759
760 /*
761 * Add in MMCR0 freeze bits corresponding to the
762 * attr.exclude_* bits for the first event.
763 * We have already checked that all events have the
764 * same values for these bits as the first event.
765 */
766 event = cpuhw->event[0];
767 if (event->attr.exclude_user)
768 cpuhw->mmcr[0] |= MMCR0_FCP;
769 if (event->attr.exclude_kernel)
770 cpuhw->mmcr[0] |= freeze_events_kernel;
771 if (event->attr.exclude_hv)
772 cpuhw->mmcr[0] |= MMCR0_FCHV;
773
774 /*
775 * Write the new configuration to MMCR* with the freeze
776 * bit set and set the hardware events to their initial values.
777 * Then unfreeze the events.
778 */
779 ppc_set_pmu_inuse(1);
780 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
781 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
782 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
783 | MMCR0_FC);
784
785 /*
786 * Read off any pre-existing events that need to move
787 * to another PMC.
788 */
789 for (i = 0; i < cpuhw->n_events; ++i) {
790 event = cpuhw->event[i];
791 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
792 power_pmu_read(event);
793 write_pmc(event->hw.idx, 0);
794 event->hw.idx = 0;
795 }
796 }
797
798 /*
799 * Initialize the PMCs for all the new and moved events.
800 */
801 cpuhw->n_limited = n_lim = 0;
802 for (i = 0; i < cpuhw->n_events; ++i) {
803 event = cpuhw->event[i];
804 if (event->hw.idx)
805 continue;
806 idx = hwc_index[i] + 1;
807 if (is_limited_pmc(idx)) {
808 cpuhw->limited_counter[n_lim] = event;
809 cpuhw->limited_hwidx[n_lim] = idx;
810 ++n_lim;
811 continue;
812 }
813 val = 0;
814 if (event->hw.sample_period) {
815 left = local64_read(&event->hw.period_left);
816 if (left < 0x80000000L)
817 val = 0x80000000L - left;
818 }
819 local64_set(&event->hw.prev_count, val);
820 event->hw.idx = idx;
821 if (event->hw.state & PERF_HES_STOPPED)
822 val = 0;
823 write_pmc(idx, val);
824 perf_event_update_userpage(event);
825 }
826 cpuhw->n_limited = n_lim;
827 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
828
829 out_enable:
830 mb();
831 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
832
833 /*
834 * Enable instruction sampling if necessary
835 */
836 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
837 mb();
838 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
839 }
840
841 out:
842 local_irq_restore(flags);
843 }
844
845 static int collect_events(struct perf_event *group, int max_count,
846 struct perf_event *ctrs[], u64 *events,
847 unsigned int *flags)
848 {
849 int n = 0;
850 struct perf_event *event;
851
852 if (!is_software_event(group)) {
853 if (n >= max_count)
854 return -1;
855 ctrs[n] = group;
856 flags[n] = group->hw.event_base;
857 events[n++] = group->hw.config;
858 }
859 list_for_each_entry(event, &group->sibling_list, group_entry) {
860 if (!is_software_event(event) &&
861 event->state != PERF_EVENT_STATE_OFF) {
862 if (n >= max_count)
863 return -1;
864 ctrs[n] = event;
865 flags[n] = event->hw.event_base;
866 events[n++] = event->hw.config;
867 }
868 }
869 return n;
870 }
871
872 /*
873 * Add a event to the PMU.
874 * If all events are not already frozen, then we disable and
875 * re-enable the PMU in order to get hw_perf_enable to do the
876 * actual work of reconfiguring the PMU.
877 */
878 static int power_pmu_add(struct perf_event *event, int ef_flags)
879 {
880 struct cpu_hw_events *cpuhw;
881 unsigned long flags;
882 int n0;
883 int ret = -EAGAIN;
884
885 local_irq_save(flags);
886 perf_pmu_disable(event->pmu);
887
888 /*
889 * Add the event to the list (if there is room)
890 * and check whether the total set is still feasible.
891 */
892 cpuhw = &__get_cpu_var(cpu_hw_events);
893 n0 = cpuhw->n_events;
894 if (n0 >= ppmu->n_counter)
895 goto out;
896 cpuhw->event[n0] = event;
897 cpuhw->events[n0] = event->hw.config;
898 cpuhw->flags[n0] = event->hw.event_base;
899
900 /*
901 * This event may have been disabled/stopped in record_and_restart()
902 * because we exceeded the ->event_limit. If re-starting the event,
903 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
904 * notification is re-enabled.
905 */
906 if (!(ef_flags & PERF_EF_START))
907 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
908 else
909 event->hw.state = 0;
910
911 /*
912 * If group events scheduling transaction was started,
913 * skip the schedulability test here, it will be performed
914 * at commit time(->commit_txn) as a whole
915 */
916 if (cpuhw->group_flag & PERF_EVENT_TXN)
917 goto nocheck;
918
919 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
920 goto out;
921 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
922 goto out;
923 event->hw.config = cpuhw->events[n0];
924
925 nocheck:
926 ++cpuhw->n_events;
927 ++cpuhw->n_added;
928
929 ret = 0;
930 out:
931 perf_pmu_enable(event->pmu);
932 local_irq_restore(flags);
933 return ret;
934 }
935
936 /*
937 * Remove a event from the PMU.
938 */
939 static void power_pmu_del(struct perf_event *event, int ef_flags)
940 {
941 struct cpu_hw_events *cpuhw;
942 long i;
943 unsigned long flags;
944
945 local_irq_save(flags);
946 perf_pmu_disable(event->pmu);
947
948 power_pmu_read(event);
949
950 cpuhw = &__get_cpu_var(cpu_hw_events);
951 for (i = 0; i < cpuhw->n_events; ++i) {
952 if (event == cpuhw->event[i]) {
953 while (++i < cpuhw->n_events) {
954 cpuhw->event[i-1] = cpuhw->event[i];
955 cpuhw->events[i-1] = cpuhw->events[i];
956 cpuhw->flags[i-1] = cpuhw->flags[i];
957 }
958 --cpuhw->n_events;
959 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
960 if (event->hw.idx) {
961 write_pmc(event->hw.idx, 0);
962 event->hw.idx = 0;
963 }
964 perf_event_update_userpage(event);
965 break;
966 }
967 }
968 for (i = 0; i < cpuhw->n_limited; ++i)
969 if (event == cpuhw->limited_counter[i])
970 break;
971 if (i < cpuhw->n_limited) {
972 while (++i < cpuhw->n_limited) {
973 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
974 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
975 }
976 --cpuhw->n_limited;
977 }
978 if (cpuhw->n_events == 0) {
979 /* disable exceptions if no events are running */
980 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
981 }
982
983 perf_pmu_enable(event->pmu);
984 local_irq_restore(flags);
985 }
986
987 /*
988 * POWER-PMU does not support disabling individual counters, hence
989 * program their cycle counter to their max value and ignore the interrupts.
990 */
991
992 static void power_pmu_start(struct perf_event *event, int ef_flags)
993 {
994 unsigned long flags;
995 s64 left;
996 unsigned long val;
997
998 if (!event->hw.idx || !event->hw.sample_period)
999 return;
1000
1001 if (!(event->hw.state & PERF_HES_STOPPED))
1002 return;
1003
1004 if (ef_flags & PERF_EF_RELOAD)
1005 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1006
1007 local_irq_save(flags);
1008 perf_pmu_disable(event->pmu);
1009
1010 event->hw.state = 0;
1011 left = local64_read(&event->hw.period_left);
1012
1013 val = 0;
1014 if (left < 0x80000000L)
1015 val = 0x80000000L - left;
1016
1017 write_pmc(event->hw.idx, val);
1018
1019 perf_event_update_userpage(event);
1020 perf_pmu_enable(event->pmu);
1021 local_irq_restore(flags);
1022 }
1023
1024 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1025 {
1026 unsigned long flags;
1027
1028 if (!event->hw.idx || !event->hw.sample_period)
1029 return;
1030
1031 if (event->hw.state & PERF_HES_STOPPED)
1032 return;
1033
1034 local_irq_save(flags);
1035 perf_pmu_disable(event->pmu);
1036
1037 power_pmu_read(event);
1038 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1039 write_pmc(event->hw.idx, 0);
1040
1041 perf_event_update_userpage(event);
1042 perf_pmu_enable(event->pmu);
1043 local_irq_restore(flags);
1044 }
1045
1046 /*
1047 * Start group events scheduling transaction
1048 * Set the flag to make pmu::enable() not perform the
1049 * schedulability test, it will be performed at commit time
1050 */
1051 void power_pmu_start_txn(struct pmu *pmu)
1052 {
1053 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1054
1055 perf_pmu_disable(pmu);
1056 cpuhw->group_flag |= PERF_EVENT_TXN;
1057 cpuhw->n_txn_start = cpuhw->n_events;
1058 }
1059
1060 /*
1061 * Stop group events scheduling transaction
1062 * Clear the flag and pmu::enable() will perform the
1063 * schedulability test.
1064 */
1065 void power_pmu_cancel_txn(struct pmu *pmu)
1066 {
1067 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1068
1069 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1070 perf_pmu_enable(pmu);
1071 }
1072
1073 /*
1074 * Commit group events scheduling transaction
1075 * Perform the group schedulability test as a whole
1076 * Return 0 if success
1077 */
1078 int power_pmu_commit_txn(struct pmu *pmu)
1079 {
1080 struct cpu_hw_events *cpuhw;
1081 long i, n;
1082
1083 if (!ppmu)
1084 return -EAGAIN;
1085 cpuhw = &__get_cpu_var(cpu_hw_events);
1086 n = cpuhw->n_events;
1087 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1088 return -EAGAIN;
1089 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1090 if (i < 0)
1091 return -EAGAIN;
1092
1093 for (i = cpuhw->n_txn_start; i < n; ++i)
1094 cpuhw->event[i]->hw.config = cpuhw->events[i];
1095
1096 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1097 perf_pmu_enable(pmu);
1098 return 0;
1099 }
1100
1101 /*
1102 * Return 1 if we might be able to put event on a limited PMC,
1103 * or 0 if not.
1104 * A event can only go on a limited PMC if it counts something
1105 * that a limited PMC can count, doesn't require interrupts, and
1106 * doesn't exclude any processor mode.
1107 */
1108 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1109 unsigned int flags)
1110 {
1111 int n;
1112 u64 alt[MAX_EVENT_ALTERNATIVES];
1113
1114 if (event->attr.exclude_user
1115 || event->attr.exclude_kernel
1116 || event->attr.exclude_hv
1117 || event->attr.sample_period)
1118 return 0;
1119
1120 if (ppmu->limited_pmc_event(ev))
1121 return 1;
1122
1123 /*
1124 * The requested event_id isn't on a limited PMC already;
1125 * see if any alternative code goes on a limited PMC.
1126 */
1127 if (!ppmu->get_alternatives)
1128 return 0;
1129
1130 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1131 n = ppmu->get_alternatives(ev, flags, alt);
1132
1133 return n > 0;
1134 }
1135
1136 /*
1137 * Find an alternative event_id that goes on a normal PMC, if possible,
1138 * and return the event_id code, or 0 if there is no such alternative.
1139 * (Note: event_id code 0 is "don't count" on all machines.)
1140 */
1141 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1142 {
1143 u64 alt[MAX_EVENT_ALTERNATIVES];
1144 int n;
1145
1146 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1147 n = ppmu->get_alternatives(ev, flags, alt);
1148 if (!n)
1149 return 0;
1150 return alt[0];
1151 }
1152
1153 /* Number of perf_events counting hardware events */
1154 static atomic_t num_events;
1155 /* Used to avoid races in calling reserve/release_pmc_hardware */
1156 static DEFINE_MUTEX(pmc_reserve_mutex);
1157
1158 /*
1159 * Release the PMU if this is the last perf_event.
1160 */
1161 static void hw_perf_event_destroy(struct perf_event *event)
1162 {
1163 if (!atomic_add_unless(&num_events, -1, 1)) {
1164 mutex_lock(&pmc_reserve_mutex);
1165 if (atomic_dec_return(&num_events) == 0)
1166 release_pmc_hardware();
1167 mutex_unlock(&pmc_reserve_mutex);
1168 }
1169 }
1170
1171 /*
1172 * Translate a generic cache event_id config to a raw event_id code.
1173 */
1174 static int hw_perf_cache_event(u64 config, u64 *eventp)
1175 {
1176 unsigned long type, op, result;
1177 int ev;
1178
1179 if (!ppmu->cache_events)
1180 return -EINVAL;
1181
1182 /* unpack config */
1183 type = config & 0xff;
1184 op = (config >> 8) & 0xff;
1185 result = (config >> 16) & 0xff;
1186
1187 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1188 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1189 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1190 return -EINVAL;
1191
1192 ev = (*ppmu->cache_events)[type][op][result];
1193 if (ev == 0)
1194 return -EOPNOTSUPP;
1195 if (ev == -1)
1196 return -EINVAL;
1197 *eventp = ev;
1198 return 0;
1199 }
1200
1201 static int power_pmu_event_init(struct perf_event *event)
1202 {
1203 u64 ev;
1204 unsigned long flags;
1205 struct perf_event *ctrs[MAX_HWEVENTS];
1206 u64 events[MAX_HWEVENTS];
1207 unsigned int cflags[MAX_HWEVENTS];
1208 int n;
1209 int err;
1210 struct cpu_hw_events *cpuhw;
1211
1212 if (!ppmu)
1213 return -ENOENT;
1214
1215 /* does not support taken branch sampling */
1216 if (has_branch_stack(event))
1217 return -EOPNOTSUPP;
1218
1219 switch (event->attr.type) {
1220 case PERF_TYPE_HARDWARE:
1221 ev = event->attr.config;
1222 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1223 return -EOPNOTSUPP;
1224 ev = ppmu->generic_events[ev];
1225 break;
1226 case PERF_TYPE_HW_CACHE:
1227 err = hw_perf_cache_event(event->attr.config, &ev);
1228 if (err)
1229 return err;
1230 break;
1231 case PERF_TYPE_RAW:
1232 ev = event->attr.config;
1233 break;
1234 default:
1235 return -ENOENT;
1236 }
1237
1238 event->hw.config_base = ev;
1239 event->hw.idx = 0;
1240
1241 /*
1242 * If we are not running on a hypervisor, force the
1243 * exclude_hv bit to 0 so that we don't care what
1244 * the user set it to.
1245 */
1246 if (!firmware_has_feature(FW_FEATURE_LPAR))
1247 event->attr.exclude_hv = 0;
1248
1249 /*
1250 * If this is a per-task event, then we can use
1251 * PM_RUN_* events interchangeably with their non RUN_*
1252 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1253 * XXX we should check if the task is an idle task.
1254 */
1255 flags = 0;
1256 if (event->attach_state & PERF_ATTACH_TASK)
1257 flags |= PPMU_ONLY_COUNT_RUN;
1258
1259 /*
1260 * If this machine has limited events, check whether this
1261 * event_id could go on a limited event.
1262 */
1263 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1264 if (can_go_on_limited_pmc(event, ev, flags)) {
1265 flags |= PPMU_LIMITED_PMC_OK;
1266 } else if (ppmu->limited_pmc_event(ev)) {
1267 /*
1268 * The requested event_id is on a limited PMC,
1269 * but we can't use a limited PMC; see if any
1270 * alternative goes on a normal PMC.
1271 */
1272 ev = normal_pmc_alternative(ev, flags);
1273 if (!ev)
1274 return -EINVAL;
1275 }
1276 }
1277
1278 /*
1279 * If this is in a group, check if it can go on with all the
1280 * other hardware events in the group. We assume the event
1281 * hasn't been linked into its leader's sibling list at this point.
1282 */
1283 n = 0;
1284 if (event->group_leader != event) {
1285 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1286 ctrs, events, cflags);
1287 if (n < 0)
1288 return -EINVAL;
1289 }
1290 events[n] = ev;
1291 ctrs[n] = event;
1292 cflags[n] = flags;
1293 if (check_excludes(ctrs, cflags, n, 1))
1294 return -EINVAL;
1295
1296 cpuhw = &get_cpu_var(cpu_hw_events);
1297 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1298 put_cpu_var(cpu_hw_events);
1299 if (err)
1300 return -EINVAL;
1301
1302 event->hw.config = events[n];
1303 event->hw.event_base = cflags[n];
1304 event->hw.last_period = event->hw.sample_period;
1305 local64_set(&event->hw.period_left, event->hw.last_period);
1306
1307 /*
1308 * See if we need to reserve the PMU.
1309 * If no events are currently in use, then we have to take a
1310 * mutex to ensure that we don't race with another task doing
1311 * reserve_pmc_hardware or release_pmc_hardware.
1312 */
1313 err = 0;
1314 if (!atomic_inc_not_zero(&num_events)) {
1315 mutex_lock(&pmc_reserve_mutex);
1316 if (atomic_read(&num_events) == 0 &&
1317 reserve_pmc_hardware(perf_event_interrupt))
1318 err = -EBUSY;
1319 else
1320 atomic_inc(&num_events);
1321 mutex_unlock(&pmc_reserve_mutex);
1322 }
1323 event->destroy = hw_perf_event_destroy;
1324
1325 return err;
1326 }
1327
1328 static int power_pmu_event_idx(struct perf_event *event)
1329 {
1330 return event->hw.idx;
1331 }
1332
1333 ssize_t power_events_sysfs_show(struct device *dev,
1334 struct device_attribute *attr, char *page)
1335 {
1336 struct perf_pmu_events_attr *pmu_attr;
1337
1338 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1339
1340 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1341 }
1342
1343 struct pmu power_pmu = {
1344 .pmu_enable = power_pmu_enable,
1345 .pmu_disable = power_pmu_disable,
1346 .event_init = power_pmu_event_init,
1347 .add = power_pmu_add,
1348 .del = power_pmu_del,
1349 .start = power_pmu_start,
1350 .stop = power_pmu_stop,
1351 .read = power_pmu_read,
1352 .start_txn = power_pmu_start_txn,
1353 .cancel_txn = power_pmu_cancel_txn,
1354 .commit_txn = power_pmu_commit_txn,
1355 .event_idx = power_pmu_event_idx,
1356 };
1357
1358
1359 /*
1360 * A counter has overflowed; update its count and record
1361 * things if requested. Note that interrupts are hard-disabled
1362 * here so there is no possibility of being interrupted.
1363 */
1364 static void record_and_restart(struct perf_event *event, unsigned long val,
1365 struct pt_regs *regs)
1366 {
1367 u64 period = event->hw.sample_period;
1368 s64 prev, delta, left;
1369 int record = 0;
1370
1371 if (event->hw.state & PERF_HES_STOPPED) {
1372 write_pmc(event->hw.idx, 0);
1373 return;
1374 }
1375
1376 /* we don't have to worry about interrupts here */
1377 prev = local64_read(&event->hw.prev_count);
1378 delta = check_and_compute_delta(prev, val);
1379 local64_add(delta, &event->count);
1380
1381 /*
1382 * See if the total period for this event has expired,
1383 * and update for the next period.
1384 */
1385 val = 0;
1386 left = local64_read(&event->hw.period_left) - delta;
1387 if (delta == 0)
1388 left++;
1389 if (period) {
1390 if (left <= 0) {
1391 left += period;
1392 if (left <= 0)
1393 left = period;
1394 record = siar_valid(regs);
1395 event->hw.last_period = event->hw.sample_period;
1396 }
1397 if (left < 0x80000000LL)
1398 val = 0x80000000LL - left;
1399 }
1400
1401 write_pmc(event->hw.idx, val);
1402 local64_set(&event->hw.prev_count, val);
1403 local64_set(&event->hw.period_left, left);
1404 perf_event_update_userpage(event);
1405
1406 /*
1407 * Finally record data if requested.
1408 */
1409 if (record) {
1410 struct perf_sample_data data;
1411
1412 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1413
1414 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1415 perf_get_data_addr(regs, &data.addr);
1416
1417 if (perf_event_overflow(event, &data, regs))
1418 power_pmu_stop(event, 0);
1419 }
1420 }
1421
1422 /*
1423 * Called from generic code to get the misc flags (i.e. processor mode)
1424 * for an event_id.
1425 */
1426 unsigned long perf_misc_flags(struct pt_regs *regs)
1427 {
1428 u32 flags = perf_get_misc_flags(regs);
1429
1430 if (flags)
1431 return flags;
1432 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1433 PERF_RECORD_MISC_KERNEL;
1434 }
1435
1436 /*
1437 * Called from generic code to get the instruction pointer
1438 * for an event_id.
1439 */
1440 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1441 {
1442 bool use_siar = regs_use_siar(regs);
1443
1444 if (use_siar && siar_valid(regs))
1445 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1446 else if (use_siar)
1447 return 0; // no valid instruction pointer
1448 else
1449 return regs->nip;
1450 }
1451
1452 static bool pmc_overflow_power7(unsigned long val)
1453 {
1454 /*
1455 * Events on POWER7 can roll back if a speculative event doesn't
1456 * eventually complete. Unfortunately in some rare cases they will
1457 * raise a performance monitor exception. We need to catch this to
1458 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1459 * cycles from overflow.
1460 *
1461 * We only do this if the first pass fails to find any overflowing
1462 * PMCs because a user might set a period of less than 256 and we
1463 * don't want to mistakenly reset them.
1464 */
1465 if ((0x80000000 - val) <= 256)
1466 return true;
1467
1468 return false;
1469 }
1470
1471 static bool pmc_overflow(unsigned long val)
1472 {
1473 if ((int)val < 0)
1474 return true;
1475
1476 return false;
1477 }
1478
1479 /*
1480 * Performance monitor interrupt stuff
1481 */
1482 static void perf_event_interrupt(struct pt_regs *regs)
1483 {
1484 int i, j;
1485 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1486 struct perf_event *event;
1487 unsigned long val[8];
1488 int found, active;
1489 int nmi;
1490
1491 if (cpuhw->n_limited)
1492 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1493 mfspr(SPRN_PMC6));
1494
1495 perf_read_regs(regs);
1496
1497 nmi = perf_intr_is_nmi(regs);
1498 if (nmi)
1499 nmi_enter();
1500 else
1501 irq_enter();
1502
1503 /* Read all the PMCs since we'll need them a bunch of times */
1504 for (i = 0; i < ppmu->n_counter; ++i)
1505 val[i] = read_pmc(i + 1);
1506
1507 /* Try to find what caused the IRQ */
1508 found = 0;
1509 for (i = 0; i < ppmu->n_counter; ++i) {
1510 if (!pmc_overflow(val[i]))
1511 continue;
1512 if (is_limited_pmc(i + 1))
1513 continue; /* these won't generate IRQs */
1514 /*
1515 * We've found one that's overflowed. For active
1516 * counters we need to log this. For inactive
1517 * counters, we need to reset it anyway
1518 */
1519 found = 1;
1520 active = 0;
1521 for (j = 0; j < cpuhw->n_events; ++j) {
1522 event = cpuhw->event[j];
1523 if (event->hw.idx == (i + 1)) {
1524 active = 1;
1525 record_and_restart(event, val[i], regs);
1526 break;
1527 }
1528 }
1529 if (!active)
1530 /* reset non active counters that have overflowed */
1531 write_pmc(i + 1, 0);
1532 }
1533 if (!found && pvr_version_is(PVR_POWER7)) {
1534 /* check active counters for special buggy p7 overflow */
1535 for (i = 0; i < cpuhw->n_events; ++i) {
1536 event = cpuhw->event[i];
1537 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1538 continue;
1539 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
1540 /* event has overflowed in a buggy way*/
1541 found = 1;
1542 record_and_restart(event,
1543 val[event->hw.idx - 1],
1544 regs);
1545 }
1546 }
1547 }
1548 if ((!found) && printk_ratelimit())
1549 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
1550
1551 /*
1552 * Reset MMCR0 to its normal value. This will set PMXE and
1553 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1554 * and thus allow interrupts to occur again.
1555 * XXX might want to use MSR.PM to keep the events frozen until
1556 * we get back out of this interrupt.
1557 */
1558 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1559
1560 if (nmi)
1561 nmi_exit();
1562 else
1563 irq_exit();
1564 }
1565
1566 static void power_pmu_setup(int cpu)
1567 {
1568 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1569
1570 if (!ppmu)
1571 return;
1572 memset(cpuhw, 0, sizeof(*cpuhw));
1573 cpuhw->mmcr[0] = MMCR0_FC;
1574 }
1575
1576 static int __cpuinit
1577 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1578 {
1579 unsigned int cpu = (long)hcpu;
1580
1581 switch (action & ~CPU_TASKS_FROZEN) {
1582 case CPU_UP_PREPARE:
1583 power_pmu_setup(cpu);
1584 break;
1585
1586 default:
1587 break;
1588 }
1589
1590 return NOTIFY_OK;
1591 }
1592
1593 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1594 {
1595 if (ppmu)
1596 return -EBUSY; /* something's already registered */
1597
1598 ppmu = pmu;
1599 pr_info("%s performance monitor hardware support registered\n",
1600 pmu->name);
1601
1602 power_pmu.attr_groups = ppmu->attr_groups;
1603
1604 #ifdef MSR_HV
1605 /*
1606 * Use FCHV to ignore kernel events if MSR.HV is set.
1607 */
1608 if (mfmsr() & MSR_HV)
1609 freeze_events_kernel = MMCR0_FCHV;
1610 #endif /* CONFIG_PPC64 */
1611
1612 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1613 perf_cpu_notifier(power_pmu_notifier);
1614
1615 return 0;
1616 }
This page took 0.063179 seconds and 5 git commands to generate.