Merge branch 'for-3.7' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / arch / powerpc / perf / core-book3s.c
1 /*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 struct cpu_hw_events {
23 int n_events;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_event *event[MAX_HWEVENTS];
30 u64 events[MAX_HWEVENTS];
31 unsigned int flags[MAX_HWEVENTS];
32 unsigned long mmcr[3];
33 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38
39 unsigned int group_flag;
40 int n_txn_start;
41 };
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
43
44 struct power_pmu *ppmu;
45
46 /*
47 * Normally, to ignore kernel events we set the FCS (freeze counters
48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49 * hypervisor bit set in the MSR, or if we are running on a processor
50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51 * then we need to use the FCHV bit to ignore kernel events.
52 */
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
54
55 /*
56 * 32-bit doesn't have MMCRA but does have an MMCR2,
57 * and a few other names are different.
58 */
59 #ifdef CONFIG_PPC32
60
61 #define MMCR0_FCHV 0
62 #define MMCR0_PMCjCE MMCR0_PMCnCE
63
64 #define SPRN_MMCRA SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE 0
66
67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
68 {
69 return 0;
70 }
71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
73 {
74 return 0;
75 }
76 static inline void perf_read_regs(struct pt_regs *regs)
77 {
78 regs->result = 0;
79 }
80 static inline int perf_intr_is_nmi(struct pt_regs *regs)
81 {
82 return 0;
83 }
84
85 static inline int siar_valid(struct pt_regs *regs)
86 {
87 return 1;
88 }
89
90 #endif /* CONFIG_PPC32 */
91
92 /*
93 * Things that are specific to 64-bit implementations.
94 */
95 #ifdef CONFIG_PPC64
96
97 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
98 {
99 unsigned long mmcra = regs->dsisr;
100
101 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
102 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
103 if (slot > 1)
104 return 4 * (slot - 1);
105 }
106 return 0;
107 }
108
109 /*
110 * The user wants a data address recorded.
111 * If we're not doing instruction sampling, give them the SDAR
112 * (sampled data address). If we are doing instruction sampling, then
113 * only give them the SDAR if it corresponds to the instruction
114 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC or
115 * the [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA.
116 */
117 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
118 {
119 unsigned long mmcra = regs->dsisr;
120 unsigned long sdsync;
121
122 if (ppmu->flags & PPMU_SIAR_VALID)
123 sdsync = POWER7P_MMCRA_SDAR_VALID;
124 else if (ppmu->flags & PPMU_ALT_SIPR)
125 sdsync = POWER6_MMCRA_SDSYNC;
126 else
127 sdsync = MMCRA_SDSYNC;
128
129 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
130 *addrp = mfspr(SPRN_SDAR);
131 }
132
133 static bool mmcra_sihv(unsigned long mmcra)
134 {
135 unsigned long sihv = MMCRA_SIHV;
136
137 if (ppmu->flags & PPMU_ALT_SIPR)
138 sihv = POWER6_MMCRA_SIHV;
139
140 return !!(mmcra & sihv);
141 }
142
143 static bool mmcra_sipr(unsigned long mmcra)
144 {
145 unsigned long sipr = MMCRA_SIPR;
146
147 if (ppmu->flags & PPMU_ALT_SIPR)
148 sipr = POWER6_MMCRA_SIPR;
149
150 return !!(mmcra & sipr);
151 }
152
153 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
154 {
155 if (regs->msr & MSR_PR)
156 return PERF_RECORD_MISC_USER;
157 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
158 return PERF_RECORD_MISC_HYPERVISOR;
159 return PERF_RECORD_MISC_KERNEL;
160 }
161
162 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
163 {
164 unsigned long mmcra = regs->dsisr;
165 unsigned long use_siar = regs->result;
166
167 if (!use_siar)
168 return perf_flags_from_msr(regs);
169
170 /*
171 * If we don't have flags in MMCRA, rather than using
172 * the MSR, we intuit the flags from the address in
173 * SIAR which should give slightly more reliable
174 * results
175 */
176 if (ppmu->flags & PPMU_NO_SIPR) {
177 unsigned long siar = mfspr(SPRN_SIAR);
178 if (siar >= PAGE_OFFSET)
179 return PERF_RECORD_MISC_KERNEL;
180 return PERF_RECORD_MISC_USER;
181 }
182
183 /* PR has priority over HV, so order below is important */
184 if (mmcra_sipr(mmcra))
185 return PERF_RECORD_MISC_USER;
186 if (mmcra_sihv(mmcra) && (freeze_events_kernel != MMCR0_FCHV))
187 return PERF_RECORD_MISC_HYPERVISOR;
188 return PERF_RECORD_MISC_KERNEL;
189 }
190
191 /*
192 * Overload regs->dsisr to store MMCRA so we only need to read it once
193 * on each interrupt.
194 * Overload regs->result to specify whether we should use the MSR (result
195 * is zero) or the SIAR (result is non zero).
196 */
197 static inline void perf_read_regs(struct pt_regs *regs)
198 {
199 unsigned long mmcra = mfspr(SPRN_MMCRA);
200 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
201 int use_siar;
202
203 /*
204 * If this isn't a PMU exception (eg a software event) the SIAR is
205 * not valid. Use pt_regs.
206 *
207 * If it is a marked event use the SIAR.
208 *
209 * If the PMU doesn't update the SIAR for non marked events use
210 * pt_regs.
211 *
212 * If the PMU has HV/PR flags then check to see if they
213 * place the exception in userspace. If so, use pt_regs. In
214 * continuous sampling mode the SIAR and the PMU exception are
215 * not synchronised, so they may be many instructions apart.
216 * This can result in confusing backtraces. We still want
217 * hypervisor samples as well as samples in the kernel with
218 * interrupts off hence the userspace check.
219 */
220 if (TRAP(regs) != 0xf00)
221 use_siar = 0;
222 else if (marked)
223 use_siar = 1;
224 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
225 use_siar = 0;
226 else if (!(ppmu->flags & PPMU_NO_SIPR) && mmcra_sipr(mmcra))
227 use_siar = 0;
228 else
229 use_siar = 1;
230
231 regs->dsisr = mmcra;
232 regs->result = use_siar;
233 }
234
235 /*
236 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
237 * it as an NMI.
238 */
239 static inline int perf_intr_is_nmi(struct pt_regs *regs)
240 {
241 return !regs->softe;
242 }
243
244 /*
245 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
246 * must be sampled only if the SIAR-valid bit is set.
247 *
248 * For unmarked instructions and for processors that don't have the SIAR-Valid
249 * bit, assume that SIAR is valid.
250 */
251 static inline int siar_valid(struct pt_regs *regs)
252 {
253 unsigned long mmcra = regs->dsisr;
254 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
255
256 if ((ppmu->flags & PPMU_SIAR_VALID) && marked)
257 return mmcra & POWER7P_MMCRA_SIAR_VALID;
258
259 return 1;
260 }
261
262 #endif /* CONFIG_PPC64 */
263
264 static void perf_event_interrupt(struct pt_regs *regs);
265
266 void perf_event_print_debug(void)
267 {
268 }
269
270 /*
271 * Read one performance monitor counter (PMC).
272 */
273 static unsigned long read_pmc(int idx)
274 {
275 unsigned long val;
276
277 switch (idx) {
278 case 1:
279 val = mfspr(SPRN_PMC1);
280 break;
281 case 2:
282 val = mfspr(SPRN_PMC2);
283 break;
284 case 3:
285 val = mfspr(SPRN_PMC3);
286 break;
287 case 4:
288 val = mfspr(SPRN_PMC4);
289 break;
290 case 5:
291 val = mfspr(SPRN_PMC5);
292 break;
293 case 6:
294 val = mfspr(SPRN_PMC6);
295 break;
296 #ifdef CONFIG_PPC64
297 case 7:
298 val = mfspr(SPRN_PMC7);
299 break;
300 case 8:
301 val = mfspr(SPRN_PMC8);
302 break;
303 #endif /* CONFIG_PPC64 */
304 default:
305 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
306 val = 0;
307 }
308 return val;
309 }
310
311 /*
312 * Write one PMC.
313 */
314 static void write_pmc(int idx, unsigned long val)
315 {
316 switch (idx) {
317 case 1:
318 mtspr(SPRN_PMC1, val);
319 break;
320 case 2:
321 mtspr(SPRN_PMC2, val);
322 break;
323 case 3:
324 mtspr(SPRN_PMC3, val);
325 break;
326 case 4:
327 mtspr(SPRN_PMC4, val);
328 break;
329 case 5:
330 mtspr(SPRN_PMC5, val);
331 break;
332 case 6:
333 mtspr(SPRN_PMC6, val);
334 break;
335 #ifdef CONFIG_PPC64
336 case 7:
337 mtspr(SPRN_PMC7, val);
338 break;
339 case 8:
340 mtspr(SPRN_PMC8, val);
341 break;
342 #endif /* CONFIG_PPC64 */
343 default:
344 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
345 }
346 }
347
348 /*
349 * Check if a set of events can all go on the PMU at once.
350 * If they can't, this will look at alternative codes for the events
351 * and see if any combination of alternative codes is feasible.
352 * The feasible set is returned in event_id[].
353 */
354 static int power_check_constraints(struct cpu_hw_events *cpuhw,
355 u64 event_id[], unsigned int cflags[],
356 int n_ev)
357 {
358 unsigned long mask, value, nv;
359 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
360 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
361 int i, j;
362 unsigned long addf = ppmu->add_fields;
363 unsigned long tadd = ppmu->test_adder;
364
365 if (n_ev > ppmu->n_counter)
366 return -1;
367
368 /* First see if the events will go on as-is */
369 for (i = 0; i < n_ev; ++i) {
370 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
371 && !ppmu->limited_pmc_event(event_id[i])) {
372 ppmu->get_alternatives(event_id[i], cflags[i],
373 cpuhw->alternatives[i]);
374 event_id[i] = cpuhw->alternatives[i][0];
375 }
376 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
377 &cpuhw->avalues[i][0]))
378 return -1;
379 }
380 value = mask = 0;
381 for (i = 0; i < n_ev; ++i) {
382 nv = (value | cpuhw->avalues[i][0]) +
383 (value & cpuhw->avalues[i][0] & addf);
384 if ((((nv + tadd) ^ value) & mask) != 0 ||
385 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
386 cpuhw->amasks[i][0]) != 0)
387 break;
388 value = nv;
389 mask |= cpuhw->amasks[i][0];
390 }
391 if (i == n_ev)
392 return 0; /* all OK */
393
394 /* doesn't work, gather alternatives... */
395 if (!ppmu->get_alternatives)
396 return -1;
397 for (i = 0; i < n_ev; ++i) {
398 choice[i] = 0;
399 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
400 cpuhw->alternatives[i]);
401 for (j = 1; j < n_alt[i]; ++j)
402 ppmu->get_constraint(cpuhw->alternatives[i][j],
403 &cpuhw->amasks[i][j],
404 &cpuhw->avalues[i][j]);
405 }
406
407 /* enumerate all possibilities and see if any will work */
408 i = 0;
409 j = -1;
410 value = mask = nv = 0;
411 while (i < n_ev) {
412 if (j >= 0) {
413 /* we're backtracking, restore context */
414 value = svalues[i];
415 mask = smasks[i];
416 j = choice[i];
417 }
418 /*
419 * See if any alternative k for event_id i,
420 * where k > j, will satisfy the constraints.
421 */
422 while (++j < n_alt[i]) {
423 nv = (value | cpuhw->avalues[i][j]) +
424 (value & cpuhw->avalues[i][j] & addf);
425 if ((((nv + tadd) ^ value) & mask) == 0 &&
426 (((nv + tadd) ^ cpuhw->avalues[i][j])
427 & cpuhw->amasks[i][j]) == 0)
428 break;
429 }
430 if (j >= n_alt[i]) {
431 /*
432 * No feasible alternative, backtrack
433 * to event_id i-1 and continue enumerating its
434 * alternatives from where we got up to.
435 */
436 if (--i < 0)
437 return -1;
438 } else {
439 /*
440 * Found a feasible alternative for event_id i,
441 * remember where we got up to with this event_id,
442 * go on to the next event_id, and start with
443 * the first alternative for it.
444 */
445 choice[i] = j;
446 svalues[i] = value;
447 smasks[i] = mask;
448 value = nv;
449 mask |= cpuhw->amasks[i][j];
450 ++i;
451 j = -1;
452 }
453 }
454
455 /* OK, we have a feasible combination, tell the caller the solution */
456 for (i = 0; i < n_ev; ++i)
457 event_id[i] = cpuhw->alternatives[i][choice[i]];
458 return 0;
459 }
460
461 /*
462 * Check if newly-added events have consistent settings for
463 * exclude_{user,kernel,hv} with each other and any previously
464 * added events.
465 */
466 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
467 int n_prev, int n_new)
468 {
469 int eu = 0, ek = 0, eh = 0;
470 int i, n, first;
471 struct perf_event *event;
472
473 n = n_prev + n_new;
474 if (n <= 1)
475 return 0;
476
477 first = 1;
478 for (i = 0; i < n; ++i) {
479 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
480 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
481 continue;
482 }
483 event = ctrs[i];
484 if (first) {
485 eu = event->attr.exclude_user;
486 ek = event->attr.exclude_kernel;
487 eh = event->attr.exclude_hv;
488 first = 0;
489 } else if (event->attr.exclude_user != eu ||
490 event->attr.exclude_kernel != ek ||
491 event->attr.exclude_hv != eh) {
492 return -EAGAIN;
493 }
494 }
495
496 if (eu || ek || eh)
497 for (i = 0; i < n; ++i)
498 if (cflags[i] & PPMU_LIMITED_PMC_OK)
499 cflags[i] |= PPMU_LIMITED_PMC_REQD;
500
501 return 0;
502 }
503
504 static u64 check_and_compute_delta(u64 prev, u64 val)
505 {
506 u64 delta = (val - prev) & 0xfffffffful;
507
508 /*
509 * POWER7 can roll back counter values, if the new value is smaller
510 * than the previous value it will cause the delta and the counter to
511 * have bogus values unless we rolled a counter over. If a coutner is
512 * rolled back, it will be smaller, but within 256, which is the maximum
513 * number of events to rollback at once. If we dectect a rollback
514 * return 0. This can lead to a small lack of precision in the
515 * counters.
516 */
517 if (prev > val && (prev - val) < 256)
518 delta = 0;
519
520 return delta;
521 }
522
523 static void power_pmu_read(struct perf_event *event)
524 {
525 s64 val, delta, prev;
526
527 if (event->hw.state & PERF_HES_STOPPED)
528 return;
529
530 if (!event->hw.idx)
531 return;
532 /*
533 * Performance monitor interrupts come even when interrupts
534 * are soft-disabled, as long as interrupts are hard-enabled.
535 * Therefore we treat them like NMIs.
536 */
537 do {
538 prev = local64_read(&event->hw.prev_count);
539 barrier();
540 val = read_pmc(event->hw.idx);
541 delta = check_and_compute_delta(prev, val);
542 if (!delta)
543 return;
544 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
545
546 local64_add(delta, &event->count);
547 local64_sub(delta, &event->hw.period_left);
548 }
549
550 /*
551 * On some machines, PMC5 and PMC6 can't be written, don't respect
552 * the freeze conditions, and don't generate interrupts. This tells
553 * us if `event' is using such a PMC.
554 */
555 static int is_limited_pmc(int pmcnum)
556 {
557 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
558 && (pmcnum == 5 || pmcnum == 6);
559 }
560
561 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
562 unsigned long pmc5, unsigned long pmc6)
563 {
564 struct perf_event *event;
565 u64 val, prev, delta;
566 int i;
567
568 for (i = 0; i < cpuhw->n_limited; ++i) {
569 event = cpuhw->limited_counter[i];
570 if (!event->hw.idx)
571 continue;
572 val = (event->hw.idx == 5) ? pmc5 : pmc6;
573 prev = local64_read(&event->hw.prev_count);
574 event->hw.idx = 0;
575 delta = check_and_compute_delta(prev, val);
576 if (delta)
577 local64_add(delta, &event->count);
578 }
579 }
580
581 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
582 unsigned long pmc5, unsigned long pmc6)
583 {
584 struct perf_event *event;
585 u64 val, prev;
586 int i;
587
588 for (i = 0; i < cpuhw->n_limited; ++i) {
589 event = cpuhw->limited_counter[i];
590 event->hw.idx = cpuhw->limited_hwidx[i];
591 val = (event->hw.idx == 5) ? pmc5 : pmc6;
592 prev = local64_read(&event->hw.prev_count);
593 if (check_and_compute_delta(prev, val))
594 local64_set(&event->hw.prev_count, val);
595 perf_event_update_userpage(event);
596 }
597 }
598
599 /*
600 * Since limited events don't respect the freeze conditions, we
601 * have to read them immediately after freezing or unfreezing the
602 * other events. We try to keep the values from the limited
603 * events as consistent as possible by keeping the delay (in
604 * cycles and instructions) between freezing/unfreezing and reading
605 * the limited events as small and consistent as possible.
606 * Therefore, if any limited events are in use, we read them
607 * both, and always in the same order, to minimize variability,
608 * and do it inside the same asm that writes MMCR0.
609 */
610 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
611 {
612 unsigned long pmc5, pmc6;
613
614 if (!cpuhw->n_limited) {
615 mtspr(SPRN_MMCR0, mmcr0);
616 return;
617 }
618
619 /*
620 * Write MMCR0, then read PMC5 and PMC6 immediately.
621 * To ensure we don't get a performance monitor interrupt
622 * between writing MMCR0 and freezing/thawing the limited
623 * events, we first write MMCR0 with the event overflow
624 * interrupt enable bits turned off.
625 */
626 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
627 : "=&r" (pmc5), "=&r" (pmc6)
628 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
629 "i" (SPRN_MMCR0),
630 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
631
632 if (mmcr0 & MMCR0_FC)
633 freeze_limited_counters(cpuhw, pmc5, pmc6);
634 else
635 thaw_limited_counters(cpuhw, pmc5, pmc6);
636
637 /*
638 * Write the full MMCR0 including the event overflow interrupt
639 * enable bits, if necessary.
640 */
641 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
642 mtspr(SPRN_MMCR0, mmcr0);
643 }
644
645 /*
646 * Disable all events to prevent PMU interrupts and to allow
647 * events to be added or removed.
648 */
649 static void power_pmu_disable(struct pmu *pmu)
650 {
651 struct cpu_hw_events *cpuhw;
652 unsigned long flags;
653
654 if (!ppmu)
655 return;
656 local_irq_save(flags);
657 cpuhw = &__get_cpu_var(cpu_hw_events);
658
659 if (!cpuhw->disabled) {
660 cpuhw->disabled = 1;
661 cpuhw->n_added = 0;
662
663 /*
664 * Check if we ever enabled the PMU on this cpu.
665 */
666 if (!cpuhw->pmcs_enabled) {
667 ppc_enable_pmcs();
668 cpuhw->pmcs_enabled = 1;
669 }
670
671 /*
672 * Disable instruction sampling if it was enabled
673 */
674 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
675 mtspr(SPRN_MMCRA,
676 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
677 mb();
678 }
679
680 /*
681 * Set the 'freeze counters' bit.
682 * The barrier is to make sure the mtspr has been
683 * executed and the PMU has frozen the events
684 * before we return.
685 */
686 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
687 mb();
688 }
689 local_irq_restore(flags);
690 }
691
692 /*
693 * Re-enable all events if disable == 0.
694 * If we were previously disabled and events were added, then
695 * put the new config on the PMU.
696 */
697 static void power_pmu_enable(struct pmu *pmu)
698 {
699 struct perf_event *event;
700 struct cpu_hw_events *cpuhw;
701 unsigned long flags;
702 long i;
703 unsigned long val;
704 s64 left;
705 unsigned int hwc_index[MAX_HWEVENTS];
706 int n_lim;
707 int idx;
708
709 if (!ppmu)
710 return;
711 local_irq_save(flags);
712 cpuhw = &__get_cpu_var(cpu_hw_events);
713 if (!cpuhw->disabled) {
714 local_irq_restore(flags);
715 return;
716 }
717 cpuhw->disabled = 0;
718
719 /*
720 * If we didn't change anything, or only removed events,
721 * no need to recalculate MMCR* settings and reset the PMCs.
722 * Just reenable the PMU with the current MMCR* settings
723 * (possibly updated for removal of events).
724 */
725 if (!cpuhw->n_added) {
726 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
727 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
728 if (cpuhw->n_events == 0)
729 ppc_set_pmu_inuse(0);
730 goto out_enable;
731 }
732
733 /*
734 * Compute MMCR* values for the new set of events
735 */
736 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
737 cpuhw->mmcr)) {
738 /* shouldn't ever get here */
739 printk(KERN_ERR "oops compute_mmcr failed\n");
740 goto out;
741 }
742
743 /*
744 * Add in MMCR0 freeze bits corresponding to the
745 * attr.exclude_* bits for the first event.
746 * We have already checked that all events have the
747 * same values for these bits as the first event.
748 */
749 event = cpuhw->event[0];
750 if (event->attr.exclude_user)
751 cpuhw->mmcr[0] |= MMCR0_FCP;
752 if (event->attr.exclude_kernel)
753 cpuhw->mmcr[0] |= freeze_events_kernel;
754 if (event->attr.exclude_hv)
755 cpuhw->mmcr[0] |= MMCR0_FCHV;
756
757 /*
758 * Write the new configuration to MMCR* with the freeze
759 * bit set and set the hardware events to their initial values.
760 * Then unfreeze the events.
761 */
762 ppc_set_pmu_inuse(1);
763 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
764 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
765 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
766 | MMCR0_FC);
767
768 /*
769 * Read off any pre-existing events that need to move
770 * to another PMC.
771 */
772 for (i = 0; i < cpuhw->n_events; ++i) {
773 event = cpuhw->event[i];
774 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
775 power_pmu_read(event);
776 write_pmc(event->hw.idx, 0);
777 event->hw.idx = 0;
778 }
779 }
780
781 /*
782 * Initialize the PMCs for all the new and moved events.
783 */
784 cpuhw->n_limited = n_lim = 0;
785 for (i = 0; i < cpuhw->n_events; ++i) {
786 event = cpuhw->event[i];
787 if (event->hw.idx)
788 continue;
789 idx = hwc_index[i] + 1;
790 if (is_limited_pmc(idx)) {
791 cpuhw->limited_counter[n_lim] = event;
792 cpuhw->limited_hwidx[n_lim] = idx;
793 ++n_lim;
794 continue;
795 }
796 val = 0;
797 if (event->hw.sample_period) {
798 left = local64_read(&event->hw.period_left);
799 if (left < 0x80000000L)
800 val = 0x80000000L - left;
801 }
802 local64_set(&event->hw.prev_count, val);
803 event->hw.idx = idx;
804 if (event->hw.state & PERF_HES_STOPPED)
805 val = 0;
806 write_pmc(idx, val);
807 perf_event_update_userpage(event);
808 }
809 cpuhw->n_limited = n_lim;
810 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
811
812 out_enable:
813 mb();
814 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
815
816 /*
817 * Enable instruction sampling if necessary
818 */
819 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
820 mb();
821 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
822 }
823
824 out:
825 local_irq_restore(flags);
826 }
827
828 static int collect_events(struct perf_event *group, int max_count,
829 struct perf_event *ctrs[], u64 *events,
830 unsigned int *flags)
831 {
832 int n = 0;
833 struct perf_event *event;
834
835 if (!is_software_event(group)) {
836 if (n >= max_count)
837 return -1;
838 ctrs[n] = group;
839 flags[n] = group->hw.event_base;
840 events[n++] = group->hw.config;
841 }
842 list_for_each_entry(event, &group->sibling_list, group_entry) {
843 if (!is_software_event(event) &&
844 event->state != PERF_EVENT_STATE_OFF) {
845 if (n >= max_count)
846 return -1;
847 ctrs[n] = event;
848 flags[n] = event->hw.event_base;
849 events[n++] = event->hw.config;
850 }
851 }
852 return n;
853 }
854
855 /*
856 * Add a event to the PMU.
857 * If all events are not already frozen, then we disable and
858 * re-enable the PMU in order to get hw_perf_enable to do the
859 * actual work of reconfiguring the PMU.
860 */
861 static int power_pmu_add(struct perf_event *event, int ef_flags)
862 {
863 struct cpu_hw_events *cpuhw;
864 unsigned long flags;
865 int n0;
866 int ret = -EAGAIN;
867
868 local_irq_save(flags);
869 perf_pmu_disable(event->pmu);
870
871 /*
872 * Add the event to the list (if there is room)
873 * and check whether the total set is still feasible.
874 */
875 cpuhw = &__get_cpu_var(cpu_hw_events);
876 n0 = cpuhw->n_events;
877 if (n0 >= ppmu->n_counter)
878 goto out;
879 cpuhw->event[n0] = event;
880 cpuhw->events[n0] = event->hw.config;
881 cpuhw->flags[n0] = event->hw.event_base;
882
883 if (!(ef_flags & PERF_EF_START))
884 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
885
886 /*
887 * If group events scheduling transaction was started,
888 * skip the schedulability test here, it will be performed
889 * at commit time(->commit_txn) as a whole
890 */
891 if (cpuhw->group_flag & PERF_EVENT_TXN)
892 goto nocheck;
893
894 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
895 goto out;
896 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
897 goto out;
898 event->hw.config = cpuhw->events[n0];
899
900 nocheck:
901 ++cpuhw->n_events;
902 ++cpuhw->n_added;
903
904 ret = 0;
905 out:
906 perf_pmu_enable(event->pmu);
907 local_irq_restore(flags);
908 return ret;
909 }
910
911 /*
912 * Remove a event from the PMU.
913 */
914 static void power_pmu_del(struct perf_event *event, int ef_flags)
915 {
916 struct cpu_hw_events *cpuhw;
917 long i;
918 unsigned long flags;
919
920 local_irq_save(flags);
921 perf_pmu_disable(event->pmu);
922
923 power_pmu_read(event);
924
925 cpuhw = &__get_cpu_var(cpu_hw_events);
926 for (i = 0; i < cpuhw->n_events; ++i) {
927 if (event == cpuhw->event[i]) {
928 while (++i < cpuhw->n_events) {
929 cpuhw->event[i-1] = cpuhw->event[i];
930 cpuhw->events[i-1] = cpuhw->events[i];
931 cpuhw->flags[i-1] = cpuhw->flags[i];
932 }
933 --cpuhw->n_events;
934 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
935 if (event->hw.idx) {
936 write_pmc(event->hw.idx, 0);
937 event->hw.idx = 0;
938 }
939 perf_event_update_userpage(event);
940 break;
941 }
942 }
943 for (i = 0; i < cpuhw->n_limited; ++i)
944 if (event == cpuhw->limited_counter[i])
945 break;
946 if (i < cpuhw->n_limited) {
947 while (++i < cpuhw->n_limited) {
948 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
949 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
950 }
951 --cpuhw->n_limited;
952 }
953 if (cpuhw->n_events == 0) {
954 /* disable exceptions if no events are running */
955 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
956 }
957
958 perf_pmu_enable(event->pmu);
959 local_irq_restore(flags);
960 }
961
962 /*
963 * POWER-PMU does not support disabling individual counters, hence
964 * program their cycle counter to their max value and ignore the interrupts.
965 */
966
967 static void power_pmu_start(struct perf_event *event, int ef_flags)
968 {
969 unsigned long flags;
970 s64 left;
971 unsigned long val;
972
973 if (!event->hw.idx || !event->hw.sample_period)
974 return;
975
976 if (!(event->hw.state & PERF_HES_STOPPED))
977 return;
978
979 if (ef_flags & PERF_EF_RELOAD)
980 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
981
982 local_irq_save(flags);
983 perf_pmu_disable(event->pmu);
984
985 event->hw.state = 0;
986 left = local64_read(&event->hw.period_left);
987
988 val = 0;
989 if (left < 0x80000000L)
990 val = 0x80000000L - left;
991
992 write_pmc(event->hw.idx, val);
993
994 perf_event_update_userpage(event);
995 perf_pmu_enable(event->pmu);
996 local_irq_restore(flags);
997 }
998
999 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1000 {
1001 unsigned long flags;
1002
1003 if (!event->hw.idx || !event->hw.sample_period)
1004 return;
1005
1006 if (event->hw.state & PERF_HES_STOPPED)
1007 return;
1008
1009 local_irq_save(flags);
1010 perf_pmu_disable(event->pmu);
1011
1012 power_pmu_read(event);
1013 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1014 write_pmc(event->hw.idx, 0);
1015
1016 perf_event_update_userpage(event);
1017 perf_pmu_enable(event->pmu);
1018 local_irq_restore(flags);
1019 }
1020
1021 /*
1022 * Start group events scheduling transaction
1023 * Set the flag to make pmu::enable() not perform the
1024 * schedulability test, it will be performed at commit time
1025 */
1026 void power_pmu_start_txn(struct pmu *pmu)
1027 {
1028 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1029
1030 perf_pmu_disable(pmu);
1031 cpuhw->group_flag |= PERF_EVENT_TXN;
1032 cpuhw->n_txn_start = cpuhw->n_events;
1033 }
1034
1035 /*
1036 * Stop group events scheduling transaction
1037 * Clear the flag and pmu::enable() will perform the
1038 * schedulability test.
1039 */
1040 void power_pmu_cancel_txn(struct pmu *pmu)
1041 {
1042 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1043
1044 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1045 perf_pmu_enable(pmu);
1046 }
1047
1048 /*
1049 * Commit group events scheduling transaction
1050 * Perform the group schedulability test as a whole
1051 * Return 0 if success
1052 */
1053 int power_pmu_commit_txn(struct pmu *pmu)
1054 {
1055 struct cpu_hw_events *cpuhw;
1056 long i, n;
1057
1058 if (!ppmu)
1059 return -EAGAIN;
1060 cpuhw = &__get_cpu_var(cpu_hw_events);
1061 n = cpuhw->n_events;
1062 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1063 return -EAGAIN;
1064 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1065 if (i < 0)
1066 return -EAGAIN;
1067
1068 for (i = cpuhw->n_txn_start; i < n; ++i)
1069 cpuhw->event[i]->hw.config = cpuhw->events[i];
1070
1071 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1072 perf_pmu_enable(pmu);
1073 return 0;
1074 }
1075
1076 /*
1077 * Return 1 if we might be able to put event on a limited PMC,
1078 * or 0 if not.
1079 * A event can only go on a limited PMC if it counts something
1080 * that a limited PMC can count, doesn't require interrupts, and
1081 * doesn't exclude any processor mode.
1082 */
1083 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1084 unsigned int flags)
1085 {
1086 int n;
1087 u64 alt[MAX_EVENT_ALTERNATIVES];
1088
1089 if (event->attr.exclude_user
1090 || event->attr.exclude_kernel
1091 || event->attr.exclude_hv
1092 || event->attr.sample_period)
1093 return 0;
1094
1095 if (ppmu->limited_pmc_event(ev))
1096 return 1;
1097
1098 /*
1099 * The requested event_id isn't on a limited PMC already;
1100 * see if any alternative code goes on a limited PMC.
1101 */
1102 if (!ppmu->get_alternatives)
1103 return 0;
1104
1105 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1106 n = ppmu->get_alternatives(ev, flags, alt);
1107
1108 return n > 0;
1109 }
1110
1111 /*
1112 * Find an alternative event_id that goes on a normal PMC, if possible,
1113 * and return the event_id code, or 0 if there is no such alternative.
1114 * (Note: event_id code 0 is "don't count" on all machines.)
1115 */
1116 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1117 {
1118 u64 alt[MAX_EVENT_ALTERNATIVES];
1119 int n;
1120
1121 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1122 n = ppmu->get_alternatives(ev, flags, alt);
1123 if (!n)
1124 return 0;
1125 return alt[0];
1126 }
1127
1128 /* Number of perf_events counting hardware events */
1129 static atomic_t num_events;
1130 /* Used to avoid races in calling reserve/release_pmc_hardware */
1131 static DEFINE_MUTEX(pmc_reserve_mutex);
1132
1133 /*
1134 * Release the PMU if this is the last perf_event.
1135 */
1136 static void hw_perf_event_destroy(struct perf_event *event)
1137 {
1138 if (!atomic_add_unless(&num_events, -1, 1)) {
1139 mutex_lock(&pmc_reserve_mutex);
1140 if (atomic_dec_return(&num_events) == 0)
1141 release_pmc_hardware();
1142 mutex_unlock(&pmc_reserve_mutex);
1143 }
1144 }
1145
1146 /*
1147 * Translate a generic cache event_id config to a raw event_id code.
1148 */
1149 static int hw_perf_cache_event(u64 config, u64 *eventp)
1150 {
1151 unsigned long type, op, result;
1152 int ev;
1153
1154 if (!ppmu->cache_events)
1155 return -EINVAL;
1156
1157 /* unpack config */
1158 type = config & 0xff;
1159 op = (config >> 8) & 0xff;
1160 result = (config >> 16) & 0xff;
1161
1162 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1163 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1164 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1165 return -EINVAL;
1166
1167 ev = (*ppmu->cache_events)[type][op][result];
1168 if (ev == 0)
1169 return -EOPNOTSUPP;
1170 if (ev == -1)
1171 return -EINVAL;
1172 *eventp = ev;
1173 return 0;
1174 }
1175
1176 static int power_pmu_event_init(struct perf_event *event)
1177 {
1178 u64 ev;
1179 unsigned long flags;
1180 struct perf_event *ctrs[MAX_HWEVENTS];
1181 u64 events[MAX_HWEVENTS];
1182 unsigned int cflags[MAX_HWEVENTS];
1183 int n;
1184 int err;
1185 struct cpu_hw_events *cpuhw;
1186
1187 if (!ppmu)
1188 return -ENOENT;
1189
1190 /* does not support taken branch sampling */
1191 if (has_branch_stack(event))
1192 return -EOPNOTSUPP;
1193
1194 switch (event->attr.type) {
1195 case PERF_TYPE_HARDWARE:
1196 ev = event->attr.config;
1197 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1198 return -EOPNOTSUPP;
1199 ev = ppmu->generic_events[ev];
1200 break;
1201 case PERF_TYPE_HW_CACHE:
1202 err = hw_perf_cache_event(event->attr.config, &ev);
1203 if (err)
1204 return err;
1205 break;
1206 case PERF_TYPE_RAW:
1207 ev = event->attr.config;
1208 break;
1209 default:
1210 return -ENOENT;
1211 }
1212
1213 event->hw.config_base = ev;
1214 event->hw.idx = 0;
1215
1216 /*
1217 * If we are not running on a hypervisor, force the
1218 * exclude_hv bit to 0 so that we don't care what
1219 * the user set it to.
1220 */
1221 if (!firmware_has_feature(FW_FEATURE_LPAR))
1222 event->attr.exclude_hv = 0;
1223
1224 /*
1225 * If this is a per-task event, then we can use
1226 * PM_RUN_* events interchangeably with their non RUN_*
1227 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1228 * XXX we should check if the task is an idle task.
1229 */
1230 flags = 0;
1231 if (event->attach_state & PERF_ATTACH_TASK)
1232 flags |= PPMU_ONLY_COUNT_RUN;
1233
1234 /*
1235 * If this machine has limited events, check whether this
1236 * event_id could go on a limited event.
1237 */
1238 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1239 if (can_go_on_limited_pmc(event, ev, flags)) {
1240 flags |= PPMU_LIMITED_PMC_OK;
1241 } else if (ppmu->limited_pmc_event(ev)) {
1242 /*
1243 * The requested event_id is on a limited PMC,
1244 * but we can't use a limited PMC; see if any
1245 * alternative goes on a normal PMC.
1246 */
1247 ev = normal_pmc_alternative(ev, flags);
1248 if (!ev)
1249 return -EINVAL;
1250 }
1251 }
1252
1253 /*
1254 * If this is in a group, check if it can go on with all the
1255 * other hardware events in the group. We assume the event
1256 * hasn't been linked into its leader's sibling list at this point.
1257 */
1258 n = 0;
1259 if (event->group_leader != event) {
1260 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1261 ctrs, events, cflags);
1262 if (n < 0)
1263 return -EINVAL;
1264 }
1265 events[n] = ev;
1266 ctrs[n] = event;
1267 cflags[n] = flags;
1268 if (check_excludes(ctrs, cflags, n, 1))
1269 return -EINVAL;
1270
1271 cpuhw = &get_cpu_var(cpu_hw_events);
1272 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1273 put_cpu_var(cpu_hw_events);
1274 if (err)
1275 return -EINVAL;
1276
1277 event->hw.config = events[n];
1278 event->hw.event_base = cflags[n];
1279 event->hw.last_period = event->hw.sample_period;
1280 local64_set(&event->hw.period_left, event->hw.last_period);
1281
1282 /*
1283 * See if we need to reserve the PMU.
1284 * If no events are currently in use, then we have to take a
1285 * mutex to ensure that we don't race with another task doing
1286 * reserve_pmc_hardware or release_pmc_hardware.
1287 */
1288 err = 0;
1289 if (!atomic_inc_not_zero(&num_events)) {
1290 mutex_lock(&pmc_reserve_mutex);
1291 if (atomic_read(&num_events) == 0 &&
1292 reserve_pmc_hardware(perf_event_interrupt))
1293 err = -EBUSY;
1294 else
1295 atomic_inc(&num_events);
1296 mutex_unlock(&pmc_reserve_mutex);
1297 }
1298 event->destroy = hw_perf_event_destroy;
1299
1300 return err;
1301 }
1302
1303 static int power_pmu_event_idx(struct perf_event *event)
1304 {
1305 return event->hw.idx;
1306 }
1307
1308 struct pmu power_pmu = {
1309 .pmu_enable = power_pmu_enable,
1310 .pmu_disable = power_pmu_disable,
1311 .event_init = power_pmu_event_init,
1312 .add = power_pmu_add,
1313 .del = power_pmu_del,
1314 .start = power_pmu_start,
1315 .stop = power_pmu_stop,
1316 .read = power_pmu_read,
1317 .start_txn = power_pmu_start_txn,
1318 .cancel_txn = power_pmu_cancel_txn,
1319 .commit_txn = power_pmu_commit_txn,
1320 .event_idx = power_pmu_event_idx,
1321 };
1322
1323
1324 /*
1325 * A counter has overflowed; update its count and record
1326 * things if requested. Note that interrupts are hard-disabled
1327 * here so there is no possibility of being interrupted.
1328 */
1329 static void record_and_restart(struct perf_event *event, unsigned long val,
1330 struct pt_regs *regs)
1331 {
1332 u64 period = event->hw.sample_period;
1333 s64 prev, delta, left;
1334 int record = 0;
1335
1336 if (event->hw.state & PERF_HES_STOPPED) {
1337 write_pmc(event->hw.idx, 0);
1338 return;
1339 }
1340
1341 /* we don't have to worry about interrupts here */
1342 prev = local64_read(&event->hw.prev_count);
1343 delta = check_and_compute_delta(prev, val);
1344 local64_add(delta, &event->count);
1345
1346 /*
1347 * See if the total period for this event has expired,
1348 * and update for the next period.
1349 */
1350 val = 0;
1351 left = local64_read(&event->hw.period_left) - delta;
1352 if (period) {
1353 if (left <= 0) {
1354 left += period;
1355 if (left <= 0)
1356 left = period;
1357 record = siar_valid(regs);
1358 event->hw.last_period = event->hw.sample_period;
1359 }
1360 if (left < 0x80000000LL)
1361 val = 0x80000000LL - left;
1362 }
1363
1364 write_pmc(event->hw.idx, val);
1365 local64_set(&event->hw.prev_count, val);
1366 local64_set(&event->hw.period_left, left);
1367 perf_event_update_userpage(event);
1368
1369 /*
1370 * Finally record data if requested.
1371 */
1372 if (record) {
1373 struct perf_sample_data data;
1374
1375 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1376
1377 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1378 perf_get_data_addr(regs, &data.addr);
1379
1380 if (perf_event_overflow(event, &data, regs))
1381 power_pmu_stop(event, 0);
1382 }
1383 }
1384
1385 /*
1386 * Called from generic code to get the misc flags (i.e. processor mode)
1387 * for an event_id.
1388 */
1389 unsigned long perf_misc_flags(struct pt_regs *regs)
1390 {
1391 u32 flags = perf_get_misc_flags(regs);
1392
1393 if (flags)
1394 return flags;
1395 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1396 PERF_RECORD_MISC_KERNEL;
1397 }
1398
1399 /*
1400 * Called from generic code to get the instruction pointer
1401 * for an event_id.
1402 */
1403 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1404 {
1405 unsigned long use_siar = regs->result;
1406
1407 if (use_siar && siar_valid(regs))
1408 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1409 else if (use_siar)
1410 return 0; // no valid instruction pointer
1411 else
1412 return regs->nip;
1413 }
1414
1415 static bool pmc_overflow(unsigned long val)
1416 {
1417 if ((int)val < 0)
1418 return true;
1419
1420 /*
1421 * Events on POWER7 can roll back if a speculative event doesn't
1422 * eventually complete. Unfortunately in some rare cases they will
1423 * raise a performance monitor exception. We need to catch this to
1424 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1425 * cycles from overflow.
1426 *
1427 * We only do this if the first pass fails to find any overflowing
1428 * PMCs because a user might set a period of less than 256 and we
1429 * don't want to mistakenly reset them.
1430 */
1431 if (pvr_version_is(PVR_POWER7) && ((0x80000000 - val) <= 256))
1432 return true;
1433
1434 return false;
1435 }
1436
1437 /*
1438 * Performance monitor interrupt stuff
1439 */
1440 static void perf_event_interrupt(struct pt_regs *regs)
1441 {
1442 int i;
1443 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1444 struct perf_event *event;
1445 unsigned long val;
1446 int found = 0;
1447 int nmi;
1448
1449 if (cpuhw->n_limited)
1450 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1451 mfspr(SPRN_PMC6));
1452
1453 perf_read_regs(regs);
1454
1455 nmi = perf_intr_is_nmi(regs);
1456 if (nmi)
1457 nmi_enter();
1458 else
1459 irq_enter();
1460
1461 for (i = 0; i < cpuhw->n_events; ++i) {
1462 event = cpuhw->event[i];
1463 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1464 continue;
1465 val = read_pmc(event->hw.idx);
1466 if ((int)val < 0) {
1467 /* event has overflowed */
1468 found = 1;
1469 record_and_restart(event, val, regs);
1470 }
1471 }
1472
1473 /*
1474 * In case we didn't find and reset the event that caused
1475 * the interrupt, scan all events and reset any that are
1476 * negative, to avoid getting continual interrupts.
1477 * Any that we processed in the previous loop will not be negative.
1478 */
1479 if (!found) {
1480 for (i = 0; i < ppmu->n_counter; ++i) {
1481 if (is_limited_pmc(i + 1))
1482 continue;
1483 val = read_pmc(i + 1);
1484 if (pmc_overflow(val))
1485 write_pmc(i + 1, 0);
1486 }
1487 }
1488
1489 /*
1490 * Reset MMCR0 to its normal value. This will set PMXE and
1491 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1492 * and thus allow interrupts to occur again.
1493 * XXX might want to use MSR.PM to keep the events frozen until
1494 * we get back out of this interrupt.
1495 */
1496 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1497
1498 if (nmi)
1499 nmi_exit();
1500 else
1501 irq_exit();
1502 }
1503
1504 static void power_pmu_setup(int cpu)
1505 {
1506 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1507
1508 if (!ppmu)
1509 return;
1510 memset(cpuhw, 0, sizeof(*cpuhw));
1511 cpuhw->mmcr[0] = MMCR0_FC;
1512 }
1513
1514 static int __cpuinit
1515 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1516 {
1517 unsigned int cpu = (long)hcpu;
1518
1519 switch (action & ~CPU_TASKS_FROZEN) {
1520 case CPU_UP_PREPARE:
1521 power_pmu_setup(cpu);
1522 break;
1523
1524 default:
1525 break;
1526 }
1527
1528 return NOTIFY_OK;
1529 }
1530
1531 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1532 {
1533 if (ppmu)
1534 return -EBUSY; /* something's already registered */
1535
1536 ppmu = pmu;
1537 pr_info("%s performance monitor hardware support registered\n",
1538 pmu->name);
1539
1540 #ifdef MSR_HV
1541 /*
1542 * Use FCHV to ignore kernel events if MSR.HV is set.
1543 */
1544 if (mfmsr() & MSR_HV)
1545 freeze_events_kernel = MMCR0_FCHV;
1546 #endif /* CONFIG_PPC64 */
1547
1548 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1549 perf_cpu_notifier(power_pmu_notifier);
1550
1551 return 0;
1552 }
This page took 0.081972 seconds and 5 git commands to generate.