[CELL] spufs: use find_first_bit() instead of sched_find_first_bit()
[deliverable/linux.git] / arch / powerpc / platforms / cell / spufs / sched.c
1 /* sched.c - SPU scheduler.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
6 * 2006-03-31 NUMA domains added.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/stddef.h>
34 #include <linux/unistd.h>
35 #include <linux/numa.h>
36 #include <linux/mutex.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42
43 #include <asm/io.h>
44 #include <asm/mmu_context.h>
45 #include <asm/spu.h>
46 #include <asm/spu_csa.h>
47 #include <asm/spu_priv1.h>
48 #include "spufs.h"
49
50 struct spu_prio_array {
51 DECLARE_BITMAP(bitmap, MAX_PRIO);
52 struct list_head runq[MAX_PRIO];
53 spinlock_t runq_lock;
54 struct list_head active_list[MAX_NUMNODES];
55 struct mutex active_mutex[MAX_NUMNODES];
56 int nr_active[MAX_NUMNODES];
57 int nr_waiting;
58 };
59
60 static unsigned long spu_avenrun[3];
61 static struct spu_prio_array *spu_prio;
62 static struct task_struct *spusched_task;
63 static struct timer_list spusched_timer;
64
65 /*
66 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
67 */
68 #define NORMAL_PRIO 120
69
70 /*
71 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
72 * tick for every 10 CPU scheduler ticks.
73 */
74 #define SPUSCHED_TICK (10)
75
76 /*
77 * These are the 'tuning knobs' of the scheduler:
78 *
79 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
80 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
81 */
82 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
83 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
84
85 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
86 #define SCALE_PRIO(x, prio) \
87 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
88
89 /*
90 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
91 * [800ms ... 100ms ... 5ms]
92 *
93 * The higher a thread's priority, the bigger timeslices
94 * it gets during one round of execution. But even the lowest
95 * priority thread gets MIN_TIMESLICE worth of execution time.
96 */
97 void spu_set_timeslice(struct spu_context *ctx)
98 {
99 if (ctx->prio < NORMAL_PRIO)
100 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
101 else
102 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
103 }
104
105 /*
106 * Update scheduling information from the owning thread.
107 */
108 void __spu_update_sched_info(struct spu_context *ctx)
109 {
110 /*
111 * 32-Bit assignment are atomic on powerpc, and we don't care about
112 * memory ordering here because retriving the controlling thread is
113 * per defintion racy.
114 */
115 ctx->tid = current->pid;
116
117 /*
118 * We do our own priority calculations, so we normally want
119 * ->static_prio to start with. Unfortunately thies field
120 * contains junk for threads with a realtime scheduling
121 * policy so we have to look at ->prio in this case.
122 */
123 if (rt_prio(current->prio))
124 ctx->prio = current->prio;
125 else
126 ctx->prio = current->static_prio;
127 ctx->policy = current->policy;
128
129 /*
130 * A lot of places that don't hold active_mutex poke into
131 * cpus_allowed, including grab_runnable_context which
132 * already holds the runq_lock. So abuse runq_lock
133 * to protect this field aswell.
134 */
135 spin_lock(&spu_prio->runq_lock);
136 ctx->cpus_allowed = current->cpus_allowed;
137 spin_unlock(&spu_prio->runq_lock);
138 }
139
140 void spu_update_sched_info(struct spu_context *ctx)
141 {
142 int node = ctx->spu->node;
143
144 mutex_lock(&spu_prio->active_mutex[node]);
145 __spu_update_sched_info(ctx);
146 mutex_unlock(&spu_prio->active_mutex[node]);
147 }
148
149 static int __node_allowed(struct spu_context *ctx, int node)
150 {
151 if (nr_cpus_node(node)) {
152 cpumask_t mask = node_to_cpumask(node);
153
154 if (cpus_intersects(mask, ctx->cpus_allowed))
155 return 1;
156 }
157
158 return 0;
159 }
160
161 static int node_allowed(struct spu_context *ctx, int node)
162 {
163 int rval;
164
165 spin_lock(&spu_prio->runq_lock);
166 rval = __node_allowed(ctx, node);
167 spin_unlock(&spu_prio->runq_lock);
168
169 return rval;
170 }
171
172 /**
173 * spu_add_to_active_list - add spu to active list
174 * @spu: spu to add to the active list
175 */
176 static void spu_add_to_active_list(struct spu *spu)
177 {
178 int node = spu->node;
179
180 mutex_lock(&spu_prio->active_mutex[node]);
181 spu_prio->nr_active[node]++;
182 list_add_tail(&spu->list, &spu_prio->active_list[node]);
183 mutex_unlock(&spu_prio->active_mutex[node]);
184 }
185
186 static void __spu_remove_from_active_list(struct spu *spu)
187 {
188 list_del_init(&spu->list);
189 spu_prio->nr_active[spu->node]--;
190 }
191
192 /**
193 * spu_remove_from_active_list - remove spu from active list
194 * @spu: spu to remove from the active list
195 */
196 static void spu_remove_from_active_list(struct spu *spu)
197 {
198 int node = spu->node;
199
200 mutex_lock(&spu_prio->active_mutex[node]);
201 __spu_remove_from_active_list(spu);
202 mutex_unlock(&spu_prio->active_mutex[node]);
203 }
204
205 static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
206
207 static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
208 {
209 blocking_notifier_call_chain(&spu_switch_notifier,
210 ctx ? ctx->object_id : 0, spu);
211 }
212
213 int spu_switch_event_register(struct notifier_block * n)
214 {
215 return blocking_notifier_chain_register(&spu_switch_notifier, n);
216 }
217
218 int spu_switch_event_unregister(struct notifier_block * n)
219 {
220 return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
221 }
222
223 /**
224 * spu_bind_context - bind spu context to physical spu
225 * @spu: physical spu to bind to
226 * @ctx: context to bind
227 */
228 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
229 {
230 pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
231 spu->number, spu->node);
232 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
233
234 ctx->stats.slb_flt_base = spu->stats.slb_flt;
235 ctx->stats.class2_intr_base = spu->stats.class2_intr;
236
237 spu->ctx = ctx;
238 spu->flags = 0;
239 ctx->spu = spu;
240 ctx->ops = &spu_hw_ops;
241 spu->pid = current->pid;
242 spu_associate_mm(spu, ctx->owner);
243 spu->ibox_callback = spufs_ibox_callback;
244 spu->wbox_callback = spufs_wbox_callback;
245 spu->stop_callback = spufs_stop_callback;
246 spu->mfc_callback = spufs_mfc_callback;
247 spu->dma_callback = spufs_dma_callback;
248 mb();
249 spu_unmap_mappings(ctx);
250 spu_restore(&ctx->csa, spu);
251 spu->timestamp = jiffies;
252 spu_cpu_affinity_set(spu, raw_smp_processor_id());
253 spu_switch_notify(spu, ctx);
254 ctx->state = SPU_STATE_RUNNABLE;
255
256 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
257 }
258
259 /**
260 * spu_unbind_context - unbind spu context from physical spu
261 * @spu: physical spu to unbind from
262 * @ctx: context to unbind
263 */
264 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
265 {
266 pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
267 spu->pid, spu->number, spu->node);
268 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
269
270 spu_switch_notify(spu, NULL);
271 spu_unmap_mappings(ctx);
272 spu_save(&ctx->csa, spu);
273 spu->timestamp = jiffies;
274 ctx->state = SPU_STATE_SAVED;
275 spu->ibox_callback = NULL;
276 spu->wbox_callback = NULL;
277 spu->stop_callback = NULL;
278 spu->mfc_callback = NULL;
279 spu->dma_callback = NULL;
280 spu_associate_mm(spu, NULL);
281 spu->pid = 0;
282 ctx->ops = &spu_backing_ops;
283 spu->flags = 0;
284 spu->ctx = NULL;
285
286 ctx->stats.slb_flt +=
287 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
288 ctx->stats.class2_intr +=
289 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
290
291 /* This maps the underlying spu state to idle */
292 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
293 ctx->spu = NULL;
294 }
295
296 /**
297 * spu_add_to_rq - add a context to the runqueue
298 * @ctx: context to add
299 */
300 static void __spu_add_to_rq(struct spu_context *ctx)
301 {
302 /*
303 * Unfortunately this code path can be called from multiple threads
304 * on behalf of a single context due to the way the problem state
305 * mmap support works.
306 *
307 * Fortunately we need to wake up all these threads at the same time
308 * and can simply skip the runqueue addition for every but the first
309 * thread getting into this codepath.
310 *
311 * It's still quite hacky, and long-term we should proxy all other
312 * threads through the owner thread so that spu_run is in control
313 * of all the scheduling activity for a given context.
314 */
315 if (list_empty(&ctx->rq)) {
316 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
317 set_bit(ctx->prio, spu_prio->bitmap);
318 if (!spu_prio->nr_waiting++)
319 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
320 }
321 }
322
323 static void __spu_del_from_rq(struct spu_context *ctx)
324 {
325 int prio = ctx->prio;
326
327 if (!list_empty(&ctx->rq)) {
328 if (!--spu_prio->nr_waiting)
329 del_timer(&spusched_timer);
330 list_del_init(&ctx->rq);
331
332 if (list_empty(&spu_prio->runq[prio]))
333 clear_bit(prio, spu_prio->bitmap);
334 }
335 }
336
337 static void spu_prio_wait(struct spu_context *ctx)
338 {
339 DEFINE_WAIT(wait);
340
341 spin_lock(&spu_prio->runq_lock);
342 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
343 if (!signal_pending(current)) {
344 __spu_add_to_rq(ctx);
345 spin_unlock(&spu_prio->runq_lock);
346 mutex_unlock(&ctx->state_mutex);
347 schedule();
348 mutex_lock(&ctx->state_mutex);
349 spin_lock(&spu_prio->runq_lock);
350 __spu_del_from_rq(ctx);
351 }
352 spin_unlock(&spu_prio->runq_lock);
353 __set_current_state(TASK_RUNNING);
354 remove_wait_queue(&ctx->stop_wq, &wait);
355 }
356
357 static struct spu *spu_get_idle(struct spu_context *ctx)
358 {
359 struct spu *spu = NULL;
360 int node = cpu_to_node(raw_smp_processor_id());
361 int n;
362
363 for (n = 0; n < MAX_NUMNODES; n++, node++) {
364 node = (node < MAX_NUMNODES) ? node : 0;
365 if (!node_allowed(ctx, node))
366 continue;
367 spu = spu_alloc_node(node);
368 if (spu)
369 break;
370 }
371 return spu;
372 }
373
374 /**
375 * find_victim - find a lower priority context to preempt
376 * @ctx: canidate context for running
377 *
378 * Returns the freed physical spu to run the new context on.
379 */
380 static struct spu *find_victim(struct spu_context *ctx)
381 {
382 struct spu_context *victim = NULL;
383 struct spu *spu;
384 int node, n;
385
386 /*
387 * Look for a possible preemption candidate on the local node first.
388 * If there is no candidate look at the other nodes. This isn't
389 * exactly fair, but so far the whole spu schedule tries to keep
390 * a strong node affinity. We might want to fine-tune this in
391 * the future.
392 */
393 restart:
394 node = cpu_to_node(raw_smp_processor_id());
395 for (n = 0; n < MAX_NUMNODES; n++, node++) {
396 node = (node < MAX_NUMNODES) ? node : 0;
397 if (!node_allowed(ctx, node))
398 continue;
399
400 mutex_lock(&spu_prio->active_mutex[node]);
401 list_for_each_entry(spu, &spu_prio->active_list[node], list) {
402 struct spu_context *tmp = spu->ctx;
403
404 if (tmp->prio > ctx->prio &&
405 (!victim || tmp->prio > victim->prio))
406 victim = spu->ctx;
407 }
408 mutex_unlock(&spu_prio->active_mutex[node]);
409
410 if (victim) {
411 /*
412 * This nests ctx->state_mutex, but we always lock
413 * higher priority contexts before lower priority
414 * ones, so this is safe until we introduce
415 * priority inheritance schemes.
416 */
417 if (!mutex_trylock(&victim->state_mutex)) {
418 victim = NULL;
419 goto restart;
420 }
421
422 spu = victim->spu;
423 if (!spu) {
424 /*
425 * This race can happen because we've dropped
426 * the active list mutex. No a problem, just
427 * restart the search.
428 */
429 mutex_unlock(&victim->state_mutex);
430 victim = NULL;
431 goto restart;
432 }
433 spu_remove_from_active_list(spu);
434 spu_unbind_context(spu, victim);
435 victim->stats.invol_ctx_switch++;
436 spu->stats.invol_ctx_switch++;
437 mutex_unlock(&victim->state_mutex);
438 /*
439 * We need to break out of the wait loop in spu_run
440 * manually to ensure this context gets put on the
441 * runqueue again ASAP.
442 */
443 wake_up(&victim->stop_wq);
444 return spu;
445 }
446 }
447
448 return NULL;
449 }
450
451 /**
452 * spu_activate - find a free spu for a context and execute it
453 * @ctx: spu context to schedule
454 * @flags: flags (currently ignored)
455 *
456 * Tries to find a free spu to run @ctx. If no free spu is available
457 * add the context to the runqueue so it gets woken up once an spu
458 * is available.
459 */
460 int spu_activate(struct spu_context *ctx, unsigned long flags)
461 {
462 do {
463 struct spu *spu;
464
465 /*
466 * If there are multiple threads waiting for a single context
467 * only one actually binds the context while the others will
468 * only be able to acquire the state_mutex once the context
469 * already is in runnable state.
470 */
471 if (ctx->spu)
472 return 0;
473
474 spu = spu_get_idle(ctx);
475 /*
476 * If this is a realtime thread we try to get it running by
477 * preempting a lower priority thread.
478 */
479 if (!spu && rt_prio(ctx->prio))
480 spu = find_victim(ctx);
481 if (spu) {
482 spu_bind_context(spu, ctx);
483 spu_add_to_active_list(spu);
484 return 0;
485 }
486
487 spu_prio_wait(ctx);
488 } while (!signal_pending(current));
489
490 return -ERESTARTSYS;
491 }
492
493 /**
494 * grab_runnable_context - try to find a runnable context
495 *
496 * Remove the highest priority context on the runqueue and return it
497 * to the caller. Returns %NULL if no runnable context was found.
498 */
499 static struct spu_context *grab_runnable_context(int prio, int node)
500 {
501 struct spu_context *ctx;
502 int best;
503
504 spin_lock(&spu_prio->runq_lock);
505 best = find_first_bit(spu_prio->bitmap, prio);
506 while (best < prio) {
507 struct list_head *rq = &spu_prio->runq[best];
508
509 list_for_each_entry(ctx, rq, rq) {
510 /* XXX(hch): check for affinity here aswell */
511 if (__node_allowed(ctx, node)) {
512 __spu_del_from_rq(ctx);
513 goto found;
514 }
515 }
516 best++;
517 }
518 ctx = NULL;
519 found:
520 spin_unlock(&spu_prio->runq_lock);
521 return ctx;
522 }
523
524 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
525 {
526 struct spu *spu = ctx->spu;
527 struct spu_context *new = NULL;
528
529 if (spu) {
530 new = grab_runnable_context(max_prio, spu->node);
531 if (new || force) {
532 spu_remove_from_active_list(spu);
533 spu_unbind_context(spu, ctx);
534 ctx->stats.vol_ctx_switch++;
535 spu->stats.vol_ctx_switch++;
536 spu_free(spu);
537 if (new)
538 wake_up(&new->stop_wq);
539 }
540
541 }
542
543 return new != NULL;
544 }
545
546 /**
547 * spu_deactivate - unbind a context from it's physical spu
548 * @ctx: spu context to unbind
549 *
550 * Unbind @ctx from the physical spu it is running on and schedule
551 * the highest priority context to run on the freed physical spu.
552 */
553 void spu_deactivate(struct spu_context *ctx)
554 {
555 __spu_deactivate(ctx, 1, MAX_PRIO);
556 }
557
558 /**
559 * spu_yield - yield a physical spu if others are waiting
560 * @ctx: spu context to yield
561 *
562 * Check if there is a higher priority context waiting and if yes
563 * unbind @ctx from the physical spu and schedule the highest
564 * priority context to run on the freed physical spu instead.
565 */
566 void spu_yield(struct spu_context *ctx)
567 {
568 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
569 mutex_lock(&ctx->state_mutex);
570 __spu_deactivate(ctx, 0, MAX_PRIO);
571 mutex_unlock(&ctx->state_mutex);
572 }
573 }
574
575 static void spusched_tick(struct spu_context *ctx)
576 {
577 if (ctx->flags & SPU_CREATE_NOSCHED)
578 return;
579 if (ctx->policy == SCHED_FIFO)
580 return;
581
582 if (--ctx->time_slice)
583 return;
584
585 /*
586 * Unfortunately active_mutex ranks outside of state_mutex, so
587 * we have to trylock here. If we fail give the context another
588 * tick and try again.
589 */
590 if (mutex_trylock(&ctx->state_mutex)) {
591 struct spu *spu = ctx->spu;
592 struct spu_context *new;
593
594 new = grab_runnable_context(ctx->prio + 1, spu->node);
595 if (new) {
596
597 __spu_remove_from_active_list(spu);
598 spu_unbind_context(spu, ctx);
599 ctx->stats.invol_ctx_switch++;
600 spu->stats.invol_ctx_switch++;
601 spu_free(spu);
602 wake_up(&new->stop_wq);
603 /*
604 * We need to break out of the wait loop in
605 * spu_run manually to ensure this context
606 * gets put on the runqueue again ASAP.
607 */
608 wake_up(&ctx->stop_wq);
609 }
610 spu_set_timeslice(ctx);
611 mutex_unlock(&ctx->state_mutex);
612 } else {
613 ctx->time_slice++;
614 }
615 }
616
617 /**
618 * count_active_contexts - count nr of active tasks
619 *
620 * Return the number of tasks currently running or waiting to run.
621 *
622 * Note that we don't take runq_lock / active_mutex here. Reading
623 * a single 32bit value is atomic on powerpc, and we don't care
624 * about memory ordering issues here.
625 */
626 static unsigned long count_active_contexts(void)
627 {
628 int nr_active = 0, node;
629
630 for (node = 0; node < MAX_NUMNODES; node++)
631 nr_active += spu_prio->nr_active[node];
632 nr_active += spu_prio->nr_waiting;
633
634 return nr_active;
635 }
636
637 /**
638 * spu_calc_load - given tick count, update the avenrun load estimates.
639 * @tick: tick count
640 *
641 * No locking against reading these values from userspace, as for
642 * the CPU loadavg code.
643 */
644 static void spu_calc_load(unsigned long ticks)
645 {
646 unsigned long active_tasks; /* fixed-point */
647 static int count = LOAD_FREQ;
648
649 count -= ticks;
650
651 if (unlikely(count < 0)) {
652 active_tasks = count_active_contexts() * FIXED_1;
653 do {
654 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
655 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
656 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
657 count += LOAD_FREQ;
658 } while (count < 0);
659 }
660 }
661
662 static void spusched_wake(unsigned long data)
663 {
664 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
665 wake_up_process(spusched_task);
666 spu_calc_load(SPUSCHED_TICK);
667 }
668
669 static int spusched_thread(void *unused)
670 {
671 struct spu *spu, *next;
672 int node;
673
674 while (!kthread_should_stop()) {
675 set_current_state(TASK_INTERRUPTIBLE);
676 schedule();
677 for (node = 0; node < MAX_NUMNODES; node++) {
678 mutex_lock(&spu_prio->active_mutex[node]);
679 list_for_each_entry_safe(spu, next,
680 &spu_prio->active_list[node],
681 list)
682 spusched_tick(spu->ctx);
683 mutex_unlock(&spu_prio->active_mutex[node]);
684 }
685 }
686
687 return 0;
688 }
689
690 #define LOAD_INT(x) ((x) >> FSHIFT)
691 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
692
693 static int show_spu_loadavg(struct seq_file *s, void *private)
694 {
695 int a, b, c;
696
697 a = spu_avenrun[0] + (FIXED_1/200);
698 b = spu_avenrun[1] + (FIXED_1/200);
699 c = spu_avenrun[2] + (FIXED_1/200);
700
701 /*
702 * Note that last_pid doesn't really make much sense for the
703 * SPU loadavg (it even seems very odd on the CPU side..),
704 * but we include it here to have a 100% compatible interface.
705 */
706 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
707 LOAD_INT(a), LOAD_FRAC(a),
708 LOAD_INT(b), LOAD_FRAC(b),
709 LOAD_INT(c), LOAD_FRAC(c),
710 count_active_contexts(),
711 atomic_read(&nr_spu_contexts),
712 current->nsproxy->pid_ns->last_pid);
713 return 0;
714 }
715
716 static int spu_loadavg_open(struct inode *inode, struct file *file)
717 {
718 return single_open(file, show_spu_loadavg, NULL);
719 }
720
721 static const struct file_operations spu_loadavg_fops = {
722 .open = spu_loadavg_open,
723 .read = seq_read,
724 .llseek = seq_lseek,
725 .release = single_release,
726 };
727
728 int __init spu_sched_init(void)
729 {
730 struct proc_dir_entry *entry;
731 int err = -ENOMEM, i;
732
733 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
734 if (!spu_prio)
735 goto out;
736
737 for (i = 0; i < MAX_PRIO; i++) {
738 INIT_LIST_HEAD(&spu_prio->runq[i]);
739 __clear_bit(i, spu_prio->bitmap);
740 }
741 for (i = 0; i < MAX_NUMNODES; i++) {
742 mutex_init(&spu_prio->active_mutex[i]);
743 INIT_LIST_HEAD(&spu_prio->active_list[i]);
744 }
745 spin_lock_init(&spu_prio->runq_lock);
746
747 setup_timer(&spusched_timer, spusched_wake, 0);
748
749 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
750 if (IS_ERR(spusched_task)) {
751 err = PTR_ERR(spusched_task);
752 goto out_free_spu_prio;
753 }
754
755 entry = create_proc_entry("spu_loadavg", 0, NULL);
756 if (!entry)
757 goto out_stop_kthread;
758 entry->proc_fops = &spu_loadavg_fops;
759
760 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
761 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
762 return 0;
763
764 out_stop_kthread:
765 kthread_stop(spusched_task);
766 out_free_spu_prio:
767 kfree(spu_prio);
768 out:
769 return err;
770 }
771
772 void spu_sched_exit(void)
773 {
774 struct spu *spu, *tmp;
775 int node;
776
777 remove_proc_entry("spu_loadavg", NULL);
778
779 del_timer_sync(&spusched_timer);
780 kthread_stop(spusched_task);
781
782 for (node = 0; node < MAX_NUMNODES; node++) {
783 mutex_lock(&spu_prio->active_mutex[node]);
784 list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
785 list) {
786 list_del_init(&spu->list);
787 spu_free(spu);
788 }
789 mutex_unlock(&spu_prio->active_mutex[node]);
790 }
791 kfree(spu_prio);
792 }
This page took 0.045898 seconds and 6 git commands to generate.