[POWERPC] spusched: Print out scheduling tunables with DEBUG
[deliverable/linux.git] / arch / powerpc / platforms / cell / spufs / sched.c
1 /* sched.c - SPU scheduler.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
6 * 2006-03-31 NUMA domains added.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/stddef.h>
34 #include <linux/unistd.h>
35 #include <linux/numa.h>
36 #include <linux/mutex.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39
40 #include <asm/io.h>
41 #include <asm/mmu_context.h>
42 #include <asm/spu.h>
43 #include <asm/spu_csa.h>
44 #include <asm/spu_priv1.h>
45 #include "spufs.h"
46
47 struct spu_prio_array {
48 DECLARE_BITMAP(bitmap, MAX_PRIO);
49 struct list_head runq[MAX_PRIO];
50 spinlock_t runq_lock;
51 struct list_head active_list[MAX_NUMNODES];
52 struct mutex active_mutex[MAX_NUMNODES];
53 };
54
55 static struct spu_prio_array *spu_prio;
56 static struct task_struct *spusched_task;
57 static struct timer_list spusched_timer;
58
59 /*
60 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
61 */
62 #define NORMAL_PRIO 120
63
64 /*
65 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
66 * tick for every 10 CPU scheduler ticks.
67 */
68 #define SPUSCHED_TICK (10)
69
70 /*
71 * These are the 'tuning knobs' of the scheduler:
72 *
73 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
74 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
75 */
76 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
77 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
78
79 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
80 #define SCALE_PRIO(x, prio) \
81 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
82
83 /*
84 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
85 * [800ms ... 100ms ... 5ms]
86 *
87 * The higher a thread's priority, the bigger timeslices
88 * it gets during one round of execution. But even the lowest
89 * priority thread gets MIN_TIMESLICE worth of execution time.
90 */
91 void spu_set_timeslice(struct spu_context *ctx)
92 {
93 if (ctx->prio < NORMAL_PRIO)
94 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
95 else
96 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
97 }
98
99 static inline int node_allowed(int node)
100 {
101 cpumask_t mask;
102
103 if (!nr_cpus_node(node))
104 return 0;
105 mask = node_to_cpumask(node);
106 if (!cpus_intersects(mask, current->cpus_allowed))
107 return 0;
108 return 1;
109 }
110
111 /**
112 * spu_add_to_active_list - add spu to active list
113 * @spu: spu to add to the active list
114 */
115 static void spu_add_to_active_list(struct spu *spu)
116 {
117 mutex_lock(&spu_prio->active_mutex[spu->node]);
118 list_add_tail(&spu->list, &spu_prio->active_list[spu->node]);
119 mutex_unlock(&spu_prio->active_mutex[spu->node]);
120 }
121
122 static void __spu_remove_from_active_list(struct spu *spu)
123 {
124 list_del_init(&spu->list);
125 }
126
127 /**
128 * spu_remove_from_active_list - remove spu from active list
129 * @spu: spu to remove from the active list
130 */
131 static void spu_remove_from_active_list(struct spu *spu)
132 {
133 int node = spu->node;
134
135 mutex_lock(&spu_prio->active_mutex[node]);
136 __spu_remove_from_active_list(spu);
137 mutex_unlock(&spu_prio->active_mutex[node]);
138 }
139
140 static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
141
142 static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
143 {
144 blocking_notifier_call_chain(&spu_switch_notifier,
145 ctx ? ctx->object_id : 0, spu);
146 }
147
148 int spu_switch_event_register(struct notifier_block * n)
149 {
150 return blocking_notifier_chain_register(&spu_switch_notifier, n);
151 }
152
153 int spu_switch_event_unregister(struct notifier_block * n)
154 {
155 return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
156 }
157
158 /**
159 * spu_bind_context - bind spu context to physical spu
160 * @spu: physical spu to bind to
161 * @ctx: context to bind
162 */
163 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
164 {
165 pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
166 spu->number, spu->node);
167 spu->ctx = ctx;
168 spu->flags = 0;
169 ctx->spu = spu;
170 ctx->ops = &spu_hw_ops;
171 spu->pid = current->pid;
172 spu_associate_mm(spu, ctx->owner);
173 spu->ibox_callback = spufs_ibox_callback;
174 spu->wbox_callback = spufs_wbox_callback;
175 spu->stop_callback = spufs_stop_callback;
176 spu->mfc_callback = spufs_mfc_callback;
177 spu->dma_callback = spufs_dma_callback;
178 mb();
179 spu_unmap_mappings(ctx);
180 spu_restore(&ctx->csa, spu);
181 spu->timestamp = jiffies;
182 spu_cpu_affinity_set(spu, raw_smp_processor_id());
183 spu_switch_notify(spu, ctx);
184 ctx->state = SPU_STATE_RUNNABLE;
185 }
186
187 /**
188 * spu_unbind_context - unbind spu context from physical spu
189 * @spu: physical spu to unbind from
190 * @ctx: context to unbind
191 */
192 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
193 {
194 pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
195 spu->pid, spu->number, spu->node);
196
197 spu_switch_notify(spu, NULL);
198 spu_unmap_mappings(ctx);
199 spu_save(&ctx->csa, spu);
200 spu->timestamp = jiffies;
201 ctx->state = SPU_STATE_SAVED;
202 spu->ibox_callback = NULL;
203 spu->wbox_callback = NULL;
204 spu->stop_callback = NULL;
205 spu->mfc_callback = NULL;
206 spu->dma_callback = NULL;
207 spu_associate_mm(spu, NULL);
208 spu->pid = 0;
209 ctx->ops = &spu_backing_ops;
210 ctx->spu = NULL;
211 spu->flags = 0;
212 spu->ctx = NULL;
213 }
214
215 /**
216 * spu_add_to_rq - add a context to the runqueue
217 * @ctx: context to add
218 */
219 static void __spu_add_to_rq(struct spu_context *ctx)
220 {
221 int prio = ctx->prio;
222
223 list_add_tail(&ctx->rq, &spu_prio->runq[prio]);
224 set_bit(prio, spu_prio->bitmap);
225 }
226
227 static void __spu_del_from_rq(struct spu_context *ctx)
228 {
229 int prio = ctx->prio;
230
231 if (!list_empty(&ctx->rq))
232 list_del_init(&ctx->rq);
233 if (list_empty(&spu_prio->runq[prio]))
234 clear_bit(prio, spu_prio->bitmap);
235 }
236
237 static void spu_prio_wait(struct spu_context *ctx)
238 {
239 DEFINE_WAIT(wait);
240
241 spin_lock(&spu_prio->runq_lock);
242 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
243 if (!signal_pending(current)) {
244 __spu_add_to_rq(ctx);
245 spin_unlock(&spu_prio->runq_lock);
246 mutex_unlock(&ctx->state_mutex);
247 schedule();
248 mutex_lock(&ctx->state_mutex);
249 spin_lock(&spu_prio->runq_lock);
250 __spu_del_from_rq(ctx);
251 }
252 spin_unlock(&spu_prio->runq_lock);
253 __set_current_state(TASK_RUNNING);
254 remove_wait_queue(&ctx->stop_wq, &wait);
255 }
256
257 static struct spu *spu_get_idle(struct spu_context *ctx)
258 {
259 struct spu *spu = NULL;
260 int node = cpu_to_node(raw_smp_processor_id());
261 int n;
262
263 for (n = 0; n < MAX_NUMNODES; n++, node++) {
264 node = (node < MAX_NUMNODES) ? node : 0;
265 if (!node_allowed(node))
266 continue;
267 spu = spu_alloc_node(node);
268 if (spu)
269 break;
270 }
271 return spu;
272 }
273
274 /**
275 * find_victim - find a lower priority context to preempt
276 * @ctx: canidate context for running
277 *
278 * Returns the freed physical spu to run the new context on.
279 */
280 static struct spu *find_victim(struct spu_context *ctx)
281 {
282 struct spu_context *victim = NULL;
283 struct spu *spu;
284 int node, n;
285
286 /*
287 * Look for a possible preemption candidate on the local node first.
288 * If there is no candidate look at the other nodes. This isn't
289 * exactly fair, but so far the whole spu schedule tries to keep
290 * a strong node affinity. We might want to fine-tune this in
291 * the future.
292 */
293 restart:
294 node = cpu_to_node(raw_smp_processor_id());
295 for (n = 0; n < MAX_NUMNODES; n++, node++) {
296 node = (node < MAX_NUMNODES) ? node : 0;
297 if (!node_allowed(node))
298 continue;
299
300 mutex_lock(&spu_prio->active_mutex[node]);
301 list_for_each_entry(spu, &spu_prio->active_list[node], list) {
302 struct spu_context *tmp = spu->ctx;
303
304 if (tmp->prio > ctx->prio &&
305 (!victim || tmp->prio > victim->prio))
306 victim = spu->ctx;
307 }
308 mutex_unlock(&spu_prio->active_mutex[node]);
309
310 if (victim) {
311 /*
312 * This nests ctx->state_mutex, but we always lock
313 * higher priority contexts before lower priority
314 * ones, so this is safe until we introduce
315 * priority inheritance schemes.
316 */
317 if (!mutex_trylock(&victim->state_mutex)) {
318 victim = NULL;
319 goto restart;
320 }
321
322 spu = victim->spu;
323 if (!spu) {
324 /*
325 * This race can happen because we've dropped
326 * the active list mutex. No a problem, just
327 * restart the search.
328 */
329 mutex_unlock(&victim->state_mutex);
330 victim = NULL;
331 goto restart;
332 }
333 spu_remove_from_active_list(spu);
334 spu_unbind_context(spu, victim);
335 mutex_unlock(&victim->state_mutex);
336 /*
337 * We need to break out of the wait loop in spu_run
338 * manually to ensure this context gets put on the
339 * runqueue again ASAP.
340 */
341 wake_up(&victim->stop_wq);
342 return spu;
343 }
344 }
345
346 return NULL;
347 }
348
349 /**
350 * spu_activate - find a free spu for a context and execute it
351 * @ctx: spu context to schedule
352 * @flags: flags (currently ignored)
353 *
354 * Tries to find a free spu to run @ctx. If no free spu is available
355 * add the context to the runqueue so it gets woken up once an spu
356 * is available.
357 */
358 int spu_activate(struct spu_context *ctx, unsigned long flags)
359 {
360
361 if (ctx->spu)
362 return 0;
363
364 do {
365 struct spu *spu;
366
367 spu = spu_get_idle(ctx);
368 /*
369 * If this is a realtime thread we try to get it running by
370 * preempting a lower priority thread.
371 */
372 if (!spu && rt_prio(ctx->prio))
373 spu = find_victim(ctx);
374 if (spu) {
375 spu_bind_context(spu, ctx);
376 spu_add_to_active_list(spu);
377 return 0;
378 }
379
380 spu_prio_wait(ctx);
381 } while (!signal_pending(current));
382
383 return -ERESTARTSYS;
384 }
385
386 /**
387 * grab_runnable_context - try to find a runnable context
388 *
389 * Remove the highest priority context on the runqueue and return it
390 * to the caller. Returns %NULL if no runnable context was found.
391 */
392 static struct spu_context *grab_runnable_context(int prio)
393 {
394 struct spu_context *ctx = NULL;
395 int best;
396
397 spin_lock(&spu_prio->runq_lock);
398 best = sched_find_first_bit(spu_prio->bitmap);
399 if (best < prio) {
400 struct list_head *rq = &spu_prio->runq[best];
401
402 BUG_ON(list_empty(rq));
403
404 ctx = list_entry(rq->next, struct spu_context, rq);
405 __spu_del_from_rq(ctx);
406 }
407 spin_unlock(&spu_prio->runq_lock);
408
409 return ctx;
410 }
411
412 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
413 {
414 struct spu *spu = ctx->spu;
415 struct spu_context *new = NULL;
416
417 if (spu) {
418 new = grab_runnable_context(max_prio);
419 if (new || force) {
420 spu_remove_from_active_list(spu);
421 spu_unbind_context(spu, ctx);
422 spu_free(spu);
423 if (new)
424 wake_up(&new->stop_wq);
425 }
426
427 }
428
429 return new != NULL;
430 }
431
432 /**
433 * spu_deactivate - unbind a context from it's physical spu
434 * @ctx: spu context to unbind
435 *
436 * Unbind @ctx from the physical spu it is running on and schedule
437 * the highest priority context to run on the freed physical spu.
438 */
439 void spu_deactivate(struct spu_context *ctx)
440 {
441 __spu_deactivate(ctx, 1, MAX_PRIO);
442 }
443
444 /**
445 * spu_yield - yield a physical spu if others are waiting
446 * @ctx: spu context to yield
447 *
448 * Check if there is a higher priority context waiting and if yes
449 * unbind @ctx from the physical spu and schedule the highest
450 * priority context to run on the freed physical spu instead.
451 */
452 void spu_yield(struct spu_context *ctx)
453 {
454 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
455 mutex_lock(&ctx->state_mutex);
456 __spu_deactivate(ctx, 0, MAX_PRIO);
457 mutex_unlock(&ctx->state_mutex);
458 }
459 }
460
461 static void spusched_tick(struct spu_context *ctx)
462 {
463 if (ctx->policy == SCHED_FIFO || --ctx->time_slice)
464 return;
465
466 /*
467 * Unfortunately active_mutex ranks outside of state_mutex, so
468 * we have to trylock here. If we fail give the context another
469 * tick and try again.
470 */
471 if (mutex_trylock(&ctx->state_mutex)) {
472 struct spu_context *new = grab_runnable_context(ctx->prio + 1);
473 if (new) {
474 struct spu *spu = ctx->spu;
475
476 __spu_remove_from_active_list(spu);
477 spu_unbind_context(spu, ctx);
478 spu_free(spu);
479 wake_up(&new->stop_wq);
480 /*
481 * We need to break out of the wait loop in
482 * spu_run manually to ensure this context
483 * gets put on the runqueue again ASAP.
484 */
485 wake_up(&ctx->stop_wq);
486 }
487 spu_set_timeslice(ctx);
488 mutex_unlock(&ctx->state_mutex);
489 } else {
490 ctx->time_slice++;
491 }
492 }
493
494 static void spusched_wake(unsigned long data)
495 {
496 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
497 wake_up_process(spusched_task);
498 }
499
500 static int spusched_thread(void *unused)
501 {
502 struct spu *spu, *next;
503 int node;
504
505 setup_timer(&spusched_timer, spusched_wake, 0);
506 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
507
508 while (!kthread_should_stop()) {
509 set_current_state(TASK_INTERRUPTIBLE);
510 schedule();
511 for (node = 0; node < MAX_NUMNODES; node++) {
512 mutex_lock(&spu_prio->active_mutex[node]);
513 list_for_each_entry_safe(spu, next,
514 &spu_prio->active_list[node],
515 list)
516 spusched_tick(spu->ctx);
517 mutex_unlock(&spu_prio->active_mutex[node]);
518 }
519 }
520
521 del_timer_sync(&spusched_timer);
522 return 0;
523 }
524
525 int __init spu_sched_init(void)
526 {
527 int i;
528
529 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
530 if (!spu_prio)
531 return -ENOMEM;
532
533 for (i = 0; i < MAX_PRIO; i++) {
534 INIT_LIST_HEAD(&spu_prio->runq[i]);
535 __clear_bit(i, spu_prio->bitmap);
536 }
537 __set_bit(MAX_PRIO, spu_prio->bitmap);
538 for (i = 0; i < MAX_NUMNODES; i++) {
539 mutex_init(&spu_prio->active_mutex[i]);
540 INIT_LIST_HEAD(&spu_prio->active_list[i]);
541 }
542 spin_lock_init(&spu_prio->runq_lock);
543
544 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
545 if (IS_ERR(spusched_task)) {
546 kfree(spu_prio);
547 return PTR_ERR(spusched_task);
548 }
549
550 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
551 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
552 return 0;
553
554 }
555
556 void __exit spu_sched_exit(void)
557 {
558 struct spu *spu, *tmp;
559 int node;
560
561 kthread_stop(spusched_task);
562
563 for (node = 0; node < MAX_NUMNODES; node++) {
564 mutex_lock(&spu_prio->active_mutex[node]);
565 list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
566 list) {
567 list_del_init(&spu->list);
568 spu_free(spu);
569 }
570 mutex_unlock(&spu_prio->active_mutex[node]);
571 }
572 kfree(spu_prio);
573 }
This page took 0.063531 seconds and 6 git commands to generate.