[PATCH] spufs: implement mfc access for PPE-side DMA
[deliverable/linux.git] / arch / powerpc / platforms / cell / spufs / switch.c
1 /*
2 * spu_switch.c
3 *
4 * (C) Copyright IBM Corp. 2005
5 *
6 * Author: Mark Nutter <mnutter@us.ibm.com>
7 *
8 * Host-side part of SPU context switch sequence outlined in
9 * Synergistic Processor Element, Book IV.
10 *
11 * A fully premptive switch of an SPE is very expensive in terms
12 * of time and system resources. SPE Book IV indicates that SPE
13 * allocation should follow a "serially reusable device" model,
14 * in which the SPE is assigned a task until it completes. When
15 * this is not possible, this sequence may be used to premptively
16 * save, and then later (optionally) restore the context of a
17 * program executing on an SPE.
18 *
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2, or (at your option)
23 * any later version.
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/config.h>
36 #include <linux/module.h>
37 #include <linux/errno.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/smp_lock.h>
44 #include <linux/stddef.h>
45 #include <linux/unistd.h>
46
47 #include <asm/io.h>
48 #include <asm/spu.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51
52 #include "spu_save_dump.h"
53 #include "spu_restore_dump.h"
54
55 #if 0
56 #define POLL_WHILE_TRUE(_c) { \
57 do { \
58 } while (_c); \
59 }
60 #else
61 #define RELAX_SPIN_COUNT 1000
62 #define POLL_WHILE_TRUE(_c) { \
63 do { \
64 int _i; \
65 for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
66 cpu_relax(); \
67 } \
68 if (unlikely(_c)) yield(); \
69 else break; \
70 } while (_c); \
71 }
72 #endif /* debug */
73
74 #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
75
76 static inline void acquire_spu_lock(struct spu *spu)
77 {
78 /* Save, Step 1:
79 * Restore, Step 1:
80 * Acquire SPU-specific mutual exclusion lock.
81 * TBD.
82 */
83 }
84
85 static inline void release_spu_lock(struct spu *spu)
86 {
87 /* Restore, Step 76:
88 * Release SPU-specific mutual exclusion lock.
89 * TBD.
90 */
91 }
92
93 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
94 {
95 struct spu_problem __iomem *prob = spu->problem;
96 u32 isolate_state;
97
98 /* Save, Step 2:
99 * Save, Step 6:
100 * If SPU_Status[E,L,IS] any field is '1', this
101 * SPU is in isolate state and cannot be context
102 * saved at this time.
103 */
104 isolate_state = SPU_STATUS_ISOLATED_STATE |
105 SPU_STATUS_ISOLATED_LOAD_STAUTUS | SPU_STATUS_ISOLATED_EXIT_STAUTUS;
106 return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
107 }
108
109 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
110 {
111 /* Save, Step 3:
112 * Restore, Step 2:
113 * Save INT_Mask_class0 in CSA.
114 * Write INT_MASK_class0 with value of 0.
115 * Save INT_Mask_class1 in CSA.
116 * Write INT_MASK_class1 with value of 0.
117 * Save INT_Mask_class2 in CSA.
118 * Write INT_MASK_class2 with value of 0.
119 */
120 spin_lock_irq(&spu->register_lock);
121 if (csa) {
122 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
123 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
124 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
125 }
126 spu_int_mask_set(spu, 0, 0ul);
127 spu_int_mask_set(spu, 1, 0ul);
128 spu_int_mask_set(spu, 2, 0ul);
129 eieio();
130 spin_unlock_irq(&spu->register_lock);
131 }
132
133 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
134 {
135 /* Save, Step 4:
136 * Restore, Step 25.
137 * Set a software watchdog timer, which specifies the
138 * maximum allowable time for a context save sequence.
139 *
140 * For present, this implementation will not set a global
141 * watchdog timer, as virtualization & variable system load
142 * may cause unpredictable execution times.
143 */
144 }
145
146 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
147 {
148 /* Save, Step 5:
149 * Restore, Step 3:
150 * Inhibit user-space access (if provided) to this
151 * SPU by unmapping the virtual pages assigned to
152 * the SPU memory-mapped I/O (MMIO) for problem
153 * state. TBD.
154 */
155 }
156
157 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
158 {
159 /* Save, Step 7:
160 * Restore, Step 5:
161 * Set a software context switch pending flag.
162 */
163 set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
164 mb();
165 }
166
167 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
168 {
169 struct spu_priv2 __iomem *priv2 = spu->priv2;
170
171 /* Save, Step 8:
172 * Suspend DMA and save MFC_CNTL.
173 */
174 switch (in_be64(&priv2->mfc_control_RW) &
175 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
176 case MFC_CNTL_SUSPEND_IN_PROGRESS:
177 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
178 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
179 MFC_CNTL_SUSPEND_COMPLETE);
180 /* fall through */
181 case MFC_CNTL_SUSPEND_COMPLETE:
182 if (csa) {
183 csa->priv2.mfc_control_RW =
184 in_be64(&priv2->mfc_control_RW) |
185 MFC_CNTL_SUSPEND_DMA_QUEUE;
186 }
187 break;
188 case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
189 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
190 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
191 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
192 MFC_CNTL_SUSPEND_COMPLETE);
193 if (csa) {
194 csa->priv2.mfc_control_RW =
195 in_be64(&priv2->mfc_control_RW) &
196 ~MFC_CNTL_SUSPEND_DMA_QUEUE;
197 }
198 break;
199 }
200 }
201
202 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
203 {
204 struct spu_problem __iomem *prob = spu->problem;
205
206 /* Save, Step 9:
207 * Save SPU_Runcntl in the CSA. This value contains
208 * the "Application Desired State".
209 */
210 csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
211 }
212
213 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
214 {
215 /* Save, Step 10:
216 * Save MFC_SR1 in the CSA.
217 */
218 csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
219 }
220
221 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
222 {
223 struct spu_problem __iomem *prob = spu->problem;
224
225 /* Save, Step 11:
226 * Read SPU_Status[R], and save to CSA.
227 */
228 if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
229 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
230 } else {
231 u32 stopped;
232
233 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
234 eieio();
235 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
236 SPU_STATUS_RUNNING);
237 stopped =
238 SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
239 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
240 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
241 csa->prob.spu_status_R = SPU_STATUS_RUNNING;
242 else
243 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
244 }
245 }
246
247 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
248 {
249 struct spu_priv2 __iomem *priv2 = spu->priv2;
250
251 /* Save, Step 12:
252 * Read MFC_CNTL[Ds]. Update saved copy of
253 * CSA.MFC_CNTL[Ds].
254 */
255 if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
256 csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
257 csa->suspend_time = get_cycles();
258 out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
259 eieio();
260 csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
261 eieio();
262 } else {
263 csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
264 }
265 }
266
267 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
268 {
269 struct spu_priv2 __iomem *priv2 = spu->priv2;
270
271 /* Save, Step 13:
272 * Write MFC_CNTL[Dh] set to a '1' to halt
273 * the decrementer.
274 */
275 out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
276 eieio();
277 }
278
279 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
280 {
281 /* Save, Step 14:
282 * Read PPE Timebase High and Timebase low registers
283 * and save in CSA. TBD.
284 */
285 csa->suspend_time = get_cycles();
286 }
287
288 static inline void remove_other_spu_access(struct spu_state *csa,
289 struct spu *spu)
290 {
291 /* Save, Step 15:
292 * Remove other SPU access to this SPU by unmapping
293 * this SPU's pages from their address space. TBD.
294 */
295 }
296
297 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
298 {
299 struct spu_problem __iomem *prob = spu->problem;
300
301 /* Save, Step 16:
302 * Restore, Step 11.
303 * Write SPU_MSSync register. Poll SPU_MSSync[P]
304 * for a value of 0.
305 */
306 out_be64(&prob->spc_mssync_RW, 1UL);
307 POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
308 }
309
310 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
311 {
312 /* Save, Step 17:
313 * Restore, Step 12.
314 * Restore, Step 48.
315 * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
316 * Then issue a PPE sync instruction.
317 */
318 spu_tlb_invalidate(spu);
319 mb();
320 }
321
322 static inline void handle_pending_interrupts(struct spu_state *csa,
323 struct spu *spu)
324 {
325 /* Save, Step 18:
326 * Handle any pending interrupts from this SPU
327 * here. This is OS or hypervisor specific. One
328 * option is to re-enable interrupts to handle any
329 * pending interrupts, with the interrupt handlers
330 * recognizing the software Context Switch Pending
331 * flag, to ensure the SPU execution or MFC command
332 * queue is not restarted. TBD.
333 */
334 }
335
336 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
337 {
338 struct spu_priv2 __iomem *priv2 = spu->priv2;
339 int i;
340
341 /* Save, Step 19:
342 * If MFC_Cntl[Se]=0 then save
343 * MFC command queues.
344 */
345 if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
346 for (i = 0; i < 8; i++) {
347 csa->priv2.puq[i].mfc_cq_data0_RW =
348 in_be64(&priv2->puq[i].mfc_cq_data0_RW);
349 csa->priv2.puq[i].mfc_cq_data1_RW =
350 in_be64(&priv2->puq[i].mfc_cq_data1_RW);
351 csa->priv2.puq[i].mfc_cq_data2_RW =
352 in_be64(&priv2->puq[i].mfc_cq_data2_RW);
353 csa->priv2.puq[i].mfc_cq_data3_RW =
354 in_be64(&priv2->puq[i].mfc_cq_data3_RW);
355 }
356 for (i = 0; i < 16; i++) {
357 csa->priv2.spuq[i].mfc_cq_data0_RW =
358 in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
359 csa->priv2.spuq[i].mfc_cq_data1_RW =
360 in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
361 csa->priv2.spuq[i].mfc_cq_data2_RW =
362 in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
363 csa->priv2.spuq[i].mfc_cq_data3_RW =
364 in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
365 }
366 }
367 }
368
369 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
370 {
371 struct spu_problem __iomem *prob = spu->problem;
372
373 /* Save, Step 20:
374 * Save the PPU_QueryMask register
375 * in the CSA.
376 */
377 csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
378 }
379
380 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
381 {
382 struct spu_problem __iomem *prob = spu->problem;
383
384 /* Save, Step 21:
385 * Save the PPU_QueryType register
386 * in the CSA.
387 */
388 csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
389 }
390
391 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
392 {
393 struct spu_priv2 __iomem *priv2 = spu->priv2;
394
395 /* Save, Step 22:
396 * Save the MFC_CSR_TSQ register
397 * in the LSCSA.
398 */
399 csa->priv2.spu_tag_status_query_RW =
400 in_be64(&priv2->spu_tag_status_query_RW);
401 }
402
403 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
404 {
405 struct spu_priv2 __iomem *priv2 = spu->priv2;
406
407 /* Save, Step 23:
408 * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
409 * registers in the CSA.
410 */
411 csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
412 csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
413 }
414
415 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
416 {
417 struct spu_priv2 __iomem *priv2 = spu->priv2;
418
419 /* Save, Step 24:
420 * Save the MFC_CSR_ATO register in
421 * the CSA.
422 */
423 csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
424 }
425
426 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
427 {
428 /* Save, Step 25:
429 * Save the MFC_TCLASS_ID register in
430 * the CSA.
431 */
432 csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
433 }
434
435 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
436 {
437 /* Save, Step 26:
438 * Restore, Step 23.
439 * Write the MFC_TCLASS_ID register with
440 * the value 0x10000000.
441 */
442 spu_mfc_tclass_id_set(spu, 0x10000000);
443 eieio();
444 }
445
446 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
447 {
448 struct spu_priv2 __iomem *priv2 = spu->priv2;
449
450 /* Save, Step 27:
451 * Restore, Step 14.
452 * Write MFC_CNTL[Pc]=1 (purge queue).
453 */
454 out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
455 eieio();
456 }
457
458 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
459 {
460 struct spu_priv2 __iomem *priv2 = spu->priv2;
461
462 /* Save, Step 28:
463 * Poll MFC_CNTL[Ps] until value '11' is read
464 * (purge complete).
465 */
466 POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
467 MFC_CNTL_PURGE_DMA_COMPLETE);
468 }
469
470 static inline void save_mfc_slbs(struct spu_state *csa, struct spu *spu)
471 {
472 struct spu_priv2 __iomem *priv2 = spu->priv2;
473 int i;
474
475 /* Save, Step 29:
476 * If MFC_SR1[R]='1', save SLBs in CSA.
477 */
478 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
479 csa->priv2.slb_index_W = in_be64(&priv2->slb_index_W);
480 for (i = 0; i < 8; i++) {
481 out_be64(&priv2->slb_index_W, i);
482 eieio();
483 csa->slb_esid_RW[i] = in_be64(&priv2->slb_esid_RW);
484 csa->slb_vsid_RW[i] = in_be64(&priv2->slb_vsid_RW);
485 eieio();
486 }
487 }
488 }
489
490 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
491 {
492 /* Save, Step 30:
493 * Restore, Step 18:
494 * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
495 * MFC_SR1[TL,R,Pr,T] set correctly for the
496 * OS specific environment.
497 *
498 * Implementation note: The SPU-side code
499 * for save/restore is privileged, so the
500 * MFC_SR1[Pr] bit is not set.
501 *
502 */
503 spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
504 MFC_STATE1_RELOCATE_MASK |
505 MFC_STATE1_BUS_TLBIE_MASK));
506 }
507
508 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
509 {
510 struct spu_problem __iomem *prob = spu->problem;
511
512 /* Save, Step 31:
513 * Save SPU_NPC in the CSA.
514 */
515 csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
516 }
517
518 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
519 {
520 struct spu_priv2 __iomem *priv2 = spu->priv2;
521
522 /* Save, Step 32:
523 * Save SPU_PrivCntl in the CSA.
524 */
525 csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
526 }
527
528 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
529 {
530 struct spu_priv2 __iomem *priv2 = spu->priv2;
531
532 /* Save, Step 33:
533 * Restore, Step 16:
534 * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
535 */
536 out_be64(&priv2->spu_privcntl_RW, 0UL);
537 eieio();
538 }
539
540 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
541 {
542 struct spu_priv2 __iomem *priv2 = spu->priv2;
543
544 /* Save, Step 34:
545 * Save SPU_LSLR in the CSA.
546 */
547 csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
548 }
549
550 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
551 {
552 struct spu_priv2 __iomem *priv2 = spu->priv2;
553
554 /* Save, Step 35:
555 * Restore, Step 17.
556 * Reset SPU_LSLR.
557 */
558 out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
559 eieio();
560 }
561
562 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
563 {
564 struct spu_priv2 __iomem *priv2 = spu->priv2;
565
566 /* Save, Step 36:
567 * Save SPU_Cfg in the CSA.
568 */
569 csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
570 }
571
572 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
573 {
574 /* Save, Step 37:
575 * Save PM_Trace_Tag_Wait_Mask in the CSA.
576 * Not performed by this implementation.
577 */
578 }
579
580 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
581 {
582 /* Save, Step 38:
583 * Save RA_GROUP_ID register and the
584 * RA_ENABLE reigster in the CSA.
585 */
586 csa->priv1.resource_allocation_groupID_RW =
587 spu_resource_allocation_groupID_get(spu);
588 csa->priv1.resource_allocation_enable_RW =
589 spu_resource_allocation_enable_get(spu);
590 }
591
592 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
593 {
594 struct spu_problem __iomem *prob = spu->problem;
595
596 /* Save, Step 39:
597 * Save MB_Stat register in the CSA.
598 */
599 csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
600 }
601
602 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
603 {
604 struct spu_problem __iomem *prob = spu->problem;
605
606 /* Save, Step 40:
607 * Save the PPU_MB register in the CSA.
608 */
609 csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
610 }
611
612 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
613 {
614 struct spu_priv2 __iomem *priv2 = spu->priv2;
615
616 /* Save, Step 41:
617 * Save the PPUINT_MB register in the CSA.
618 */
619 csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
620 }
621
622 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
623 {
624 struct spu_priv2 __iomem *priv2 = spu->priv2;
625 u64 idx, ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
626 int i;
627
628 /* Save, Step 42:
629 * Save the following CH: [0,1,3,4,24,25,27]
630 */
631 for (i = 0; i < 7; i++) {
632 idx = ch_indices[i];
633 out_be64(&priv2->spu_chnlcntptr_RW, idx);
634 eieio();
635 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
636 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
637 out_be64(&priv2->spu_chnldata_RW, 0UL);
638 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
639 eieio();
640 }
641 }
642
643 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
644 {
645 struct spu_priv2 __iomem *priv2 = spu->priv2;
646 int i;
647
648 /* Save, Step 43:
649 * Save SPU Read Mailbox Channel.
650 */
651 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
652 eieio();
653 csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
654 for (i = 0; i < 4; i++) {
655 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
656 }
657 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
658 eieio();
659 }
660
661 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
662 {
663 struct spu_priv2 __iomem *priv2 = spu->priv2;
664
665 /* Save, Step 44:
666 * Save MFC_CMD Channel.
667 */
668 out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
669 eieio();
670 csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
671 eieio();
672 }
673
674 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
675 {
676 struct spu_priv2 __iomem *priv2 = spu->priv2;
677 u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
678 u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
679 u64 idx;
680 int i;
681
682 /* Save, Step 45:
683 * Reset the following CH: [21, 23, 28, 30]
684 */
685 for (i = 0; i < 4; i++) {
686 idx = ch_indices[i];
687 out_be64(&priv2->spu_chnlcntptr_RW, idx);
688 eieio();
689 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
690 eieio();
691 }
692 }
693
694 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
695 {
696 struct spu_priv2 __iomem *priv2 = spu->priv2;
697
698 /* Save, Step 46:
699 * Restore, Step 25.
700 * Write MFC_CNTL[Sc]=0 (resume queue processing).
701 */
702 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
703 }
704
705 static inline void invalidate_slbs(struct spu_state *csa, struct spu *spu)
706 {
707 struct spu_priv2 __iomem *priv2 = spu->priv2;
708
709 /* Save, Step 45:
710 * Restore, Step 19:
711 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All.
712 */
713 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
714 out_be64(&priv2->slb_invalidate_all_W, 0UL);
715 eieio();
716 }
717 }
718
719 static inline void get_kernel_slb(u64 ea, u64 slb[2])
720 {
721 slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
722 slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
723
724 /* Large pages are used for kernel text/data, but not vmalloc. */
725 if (cpu_has_feature(CPU_FTR_16M_PAGE)
726 && REGION_ID(ea) == KERNEL_REGION_ID)
727 slb[0] |= SLB_VSID_L;
728 }
729
730 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
731 {
732 struct spu_priv2 __iomem *priv2 = spu->priv2;
733
734 out_be64(&priv2->slb_index_W, slbe);
735 eieio();
736 out_be64(&priv2->slb_vsid_RW, slb[0]);
737 out_be64(&priv2->slb_esid_RW, slb[1]);
738 eieio();
739 }
740
741 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
742 {
743 u64 code_slb[2];
744 u64 lscsa_slb[2];
745
746 /* Save, Step 47:
747 * Restore, Step 30.
748 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
749 * register, then initialize SLB_VSID and SLB_ESID
750 * to provide access to SPU context save code and
751 * LSCSA.
752 *
753 * This implementation places both the context
754 * switch code and LSCSA in kernel address space.
755 *
756 * Further this implementation assumes that the
757 * MFC_SR1[R]=1 (in other words, assume that
758 * translation is desired by OS environment).
759 */
760 invalidate_slbs(csa, spu);
761 get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
762 get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
763 load_mfc_slb(spu, code_slb, 0);
764 if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
765 load_mfc_slb(spu, lscsa_slb, 1);
766 }
767
768 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
769 {
770 /* Save, Step 48:
771 * Restore, Step 23.
772 * Change the software context switch pending flag
773 * to context switch active.
774 */
775 set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
776 clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
777 mb();
778 }
779
780 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
781 {
782 unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
783 CLASS1_ENABLE_STORAGE_FAULT_INTR;
784
785 /* Save, Step 49:
786 * Restore, Step 22:
787 * Reset and then enable interrupts, as
788 * needed by OS.
789 *
790 * This implementation enables only class1
791 * (translation) interrupts.
792 */
793 spin_lock_irq(&spu->register_lock);
794 spu_int_stat_clear(spu, 0, ~0ul);
795 spu_int_stat_clear(spu, 1, ~0ul);
796 spu_int_stat_clear(spu, 2, ~0ul);
797 spu_int_mask_set(spu, 0, 0ul);
798 spu_int_mask_set(spu, 1, class1_mask);
799 spu_int_mask_set(spu, 2, 0ul);
800 spin_unlock_irq(&spu->register_lock);
801 }
802
803 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
804 unsigned int ls_offset, unsigned int size,
805 unsigned int tag, unsigned int rclass,
806 unsigned int cmd)
807 {
808 struct spu_problem __iomem *prob = spu->problem;
809 union mfc_tag_size_class_cmd command;
810 unsigned int transfer_size;
811 volatile unsigned int status = 0x0;
812
813 while (size > 0) {
814 transfer_size =
815 (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
816 command.u.mfc_size = transfer_size;
817 command.u.mfc_tag = tag;
818 command.u.mfc_rclassid = rclass;
819 command.u.mfc_cmd = cmd;
820 do {
821 out_be32(&prob->mfc_lsa_W, ls_offset);
822 out_be64(&prob->mfc_ea_W, ea);
823 out_be64(&prob->mfc_union_W.all64, command.all64);
824 status =
825 in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
826 if (unlikely(status & 0x2)) {
827 cpu_relax();
828 }
829 } while (status & 0x3);
830 size -= transfer_size;
831 ea += transfer_size;
832 ls_offset += transfer_size;
833 }
834 return 0;
835 }
836
837 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
838 {
839 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
840 unsigned int ls_offset = 0x0;
841 unsigned int size = 16384;
842 unsigned int tag = 0;
843 unsigned int rclass = 0;
844 unsigned int cmd = MFC_PUT_CMD;
845
846 /* Save, Step 50:
847 * Issue a DMA command to copy the first 16K bytes
848 * of local storage to the CSA.
849 */
850 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
851 }
852
853 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
854 {
855 struct spu_problem __iomem *prob = spu->problem;
856
857 /* Save, Step 51:
858 * Restore, Step 31.
859 * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
860 * point address of context save code in local
861 * storage.
862 *
863 * This implementation uses SPU-side save/restore
864 * programs with entry points at LSA of 0.
865 */
866 out_be32(&prob->spu_npc_RW, 0);
867 eieio();
868 }
869
870 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
871 {
872 struct spu_problem __iomem *prob = spu->problem;
873 union {
874 u64 ull;
875 u32 ui[2];
876 } addr64;
877
878 /* Save, Step 52:
879 * Restore, Step 32:
880 * Write SPU_Sig_Notify_1 register with upper 32-bits
881 * of the CSA.LSCSA effective address.
882 */
883 addr64.ull = (u64) csa->lscsa;
884 out_be32(&prob->signal_notify1, addr64.ui[0]);
885 eieio();
886 }
887
888 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
889 {
890 struct spu_problem __iomem *prob = spu->problem;
891 union {
892 u64 ull;
893 u32 ui[2];
894 } addr64;
895
896 /* Save, Step 53:
897 * Restore, Step 33:
898 * Write SPU_Sig_Notify_2 register with lower 32-bits
899 * of the CSA.LSCSA effective address.
900 */
901 addr64.ull = (u64) csa->lscsa;
902 out_be32(&prob->signal_notify2, addr64.ui[1]);
903 eieio();
904 }
905
906 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
907 {
908 unsigned long addr = (unsigned long)&spu_save_code[0];
909 unsigned int ls_offset = 0x0;
910 unsigned int size = sizeof(spu_save_code);
911 unsigned int tag = 0;
912 unsigned int rclass = 0;
913 unsigned int cmd = MFC_GETFS_CMD;
914
915 /* Save, Step 54:
916 * Issue a DMA command to copy context save code
917 * to local storage and start SPU.
918 */
919 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
920 }
921
922 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
923 {
924 struct spu_problem __iomem *prob = spu->problem;
925
926 /* Save, Step 55:
927 * Restore, Step 38.
928 * Write PPU_QueryMask=1 (enable Tag Group 0)
929 * and issue eieio instruction.
930 */
931 out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
932 eieio();
933 }
934
935 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
936 {
937 struct spu_problem __iomem *prob = spu->problem;
938 u32 mask = MFC_TAGID_TO_TAGMASK(0);
939 unsigned long flags;
940
941 /* Save, Step 56:
942 * Restore, Step 39.
943 * Restore, Step 39.
944 * Restore, Step 46.
945 * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
946 * or write PPU_QueryType[TS]=01 and wait for Tag Group
947 * Complete Interrupt. Write INT_Stat_Class0 or
948 * INT_Stat_Class2 with value of 'handled'.
949 */
950 POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
951
952 local_irq_save(flags);
953 spu_int_stat_clear(spu, 0, ~(0ul));
954 spu_int_stat_clear(spu, 2, ~(0ul));
955 local_irq_restore(flags);
956 }
957
958 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
959 {
960 struct spu_problem __iomem *prob = spu->problem;
961 unsigned long flags;
962
963 /* Save, Step 57:
964 * Restore, Step 40.
965 * Poll until SPU_Status[R]=0 or wait for SPU Class 0
966 * or SPU Class 2 interrupt. Write INT_Stat_class0
967 * or INT_Stat_class2 with value of handled.
968 */
969 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
970
971 local_irq_save(flags);
972 spu_int_stat_clear(spu, 0, ~(0ul));
973 spu_int_stat_clear(spu, 2, ~(0ul));
974 local_irq_restore(flags);
975 }
976
977 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
978 {
979 struct spu_problem __iomem *prob = spu->problem;
980 u32 complete;
981
982 /* Save, Step 54:
983 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
984 * context save succeeded, otherwise context save
985 * failed.
986 */
987 complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
988 SPU_STATUS_STOPPED_BY_STOP);
989 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
990 }
991
992 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
993 {
994 /* Restore, Step 4:
995 * If required, notify the "using application" that
996 * the SPU task has been terminated. TBD.
997 */
998 }
999
1000 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1001 {
1002 struct spu_priv2 __iomem *priv2 = spu->priv2;
1003
1004 /* Restore, Step 7:
1005 * Restore, Step 47.
1006 * Write MFC_Cntl[Dh,Sc]='1','1' to suspend
1007 * the queue and halt the decrementer.
1008 */
1009 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
1010 MFC_CNTL_DECREMENTER_HALTED);
1011 eieio();
1012 }
1013
1014 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
1015 struct spu *spu)
1016 {
1017 struct spu_priv2 __iomem *priv2 = spu->priv2;
1018
1019 /* Restore, Step 8:
1020 * Restore, Step 47.
1021 * Poll MFC_CNTL[Ss] until 11 is returned.
1022 */
1023 POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
1024 MFC_CNTL_SUSPEND_COMPLETE);
1025 }
1026
1027 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1028 {
1029 struct spu_problem __iomem *prob = spu->problem;
1030
1031 /* Restore, Step 9:
1032 * If SPU_Status[R]=1, stop SPU execution
1033 * and wait for stop to complete.
1034 *
1035 * Returns 1 if SPU_Status[R]=1 on entry.
1036 * 0 otherwise
1037 */
1038 if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1039 if (in_be32(&prob->spu_status_R) &
1040 SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1041 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1042 SPU_STATUS_RUNNING);
1043 }
1044 if ((in_be32(&prob->spu_status_R) &
1045 SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1046 || (in_be32(&prob->spu_status_R) &
1047 SPU_STATUS_ISOLATED_STATE)) {
1048 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1049 eieio();
1050 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1051 SPU_STATUS_RUNNING);
1052 out_be32(&prob->spu_runcntl_RW, 0x2);
1053 eieio();
1054 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1055 SPU_STATUS_RUNNING);
1056 }
1057 if (in_be32(&prob->spu_status_R) &
1058 SPU_STATUS_WAITING_FOR_CHANNEL) {
1059 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1060 eieio();
1061 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1062 SPU_STATUS_RUNNING);
1063 }
1064 return 1;
1065 }
1066 return 0;
1067 }
1068
1069 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1070 {
1071 struct spu_problem __iomem *prob = spu->problem;
1072
1073 /* Restore, Step 10:
1074 * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1075 * release SPU from isolate state.
1076 */
1077 if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1078 if (in_be32(&prob->spu_status_R) &
1079 SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1080 spu_mfc_sr1_set(spu,
1081 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1082 eieio();
1083 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1084 eieio();
1085 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1086 SPU_STATUS_RUNNING);
1087 }
1088 if ((in_be32(&prob->spu_status_R) &
1089 SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1090 || (in_be32(&prob->spu_status_R) &
1091 SPU_STATUS_ISOLATED_STATE)) {
1092 spu_mfc_sr1_set(spu,
1093 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1094 eieio();
1095 out_be32(&prob->spu_runcntl_RW, 0x2);
1096 eieio();
1097 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1098 SPU_STATUS_RUNNING);
1099 }
1100 }
1101 }
1102
1103 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1104 {
1105 struct spu_priv2 __iomem *priv2 = spu->priv2;
1106 u64 ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1107 u64 idx;
1108 int i;
1109
1110 /* Restore, Step 20:
1111 * Reset the following CH: [0,1,3,4,24,25,27]
1112 */
1113 for (i = 0; i < 7; i++) {
1114 idx = ch_indices[i];
1115 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1116 eieio();
1117 out_be64(&priv2->spu_chnldata_RW, 0UL);
1118 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1119 eieio();
1120 }
1121 }
1122
1123 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1124 {
1125 struct spu_priv2 __iomem *priv2 = spu->priv2;
1126 u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1127 u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1128 u64 idx;
1129 int i;
1130
1131 /* Restore, Step 21:
1132 * Reset the following CH: [21, 23, 28, 29, 30]
1133 */
1134 for (i = 0; i < 5; i++) {
1135 idx = ch_indices[i];
1136 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1137 eieio();
1138 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1139 eieio();
1140 }
1141 }
1142
1143 static inline void setup_spu_status_part1(struct spu_state *csa,
1144 struct spu *spu)
1145 {
1146 u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1147 u32 status_I = SPU_STATUS_INVALID_INSTR;
1148 u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1149 u32 status_S = SPU_STATUS_SINGLE_STEP;
1150 u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1151 u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1152 u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1153 u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1154 u32 status_code;
1155
1156 /* Restore, Step 27:
1157 * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1158 * instruction sequence to the end of the SPU based restore
1159 * code (after the "context restored" stop and signal) to
1160 * restore the correct SPU status.
1161 *
1162 * NOTE: Rather than modifying the SPU executable, we
1163 * instead add a new 'stopped_status' field to the
1164 * LSCSA. The SPU-side restore reads this field and
1165 * takes the appropriate action when exiting.
1166 */
1167
1168 status_code =
1169 (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1170 if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1171
1172 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1173 * by Stop and Signal instruction, followed by 'br -4'.
1174 *
1175 */
1176 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1177 csa->lscsa->stopped_status.slot[1] = status_code;
1178
1179 } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1180
1181 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1182 * by Stop and Signal instruction, followed by
1183 * 'br -4'.
1184 */
1185 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1186 csa->lscsa->stopped_status.slot[1] = status_code;
1187
1188 } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1189
1190 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1191 * followed by 'br -4'.
1192 */
1193 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1194 csa->lscsa->stopped_status.slot[1] = status_code;
1195
1196 } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1197
1198 /* SPU_Status[S,I]=1 - Illegal instruction followed
1199 * by 'br -4'.
1200 */
1201 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1202 csa->lscsa->stopped_status.slot[1] = status_code;
1203
1204 } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1205
1206 /* SPU_Status[P]=1 - Stop and Signal instruction
1207 * followed by 'br -4'.
1208 */
1209 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1210 csa->lscsa->stopped_status.slot[1] = status_code;
1211
1212 } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1213
1214 /* SPU_Status[H]=1 - Halt Conditional, followed
1215 * by 'br -4'.
1216 */
1217 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1218
1219 } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1220
1221 /* SPU_Status[S]=1 - Two nop instructions.
1222 */
1223 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1224
1225 } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1226
1227 /* SPU_Status[I]=1 - Illegal instruction followed
1228 * by 'br -4'.
1229 */
1230 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1231
1232 }
1233 }
1234
1235 static inline void setup_spu_status_part2(struct spu_state *csa,
1236 struct spu *spu)
1237 {
1238 u32 mask;
1239
1240 /* Restore, Step 28:
1241 * If the CSA.SPU_Status[I,S,H,P,R]=0 then
1242 * add a 'br *' instruction to the end of
1243 * the SPU based restore code.
1244 *
1245 * NOTE: Rather than modifying the SPU executable, we
1246 * instead add a new 'stopped_status' field to the
1247 * LSCSA. The SPU-side restore reads this field and
1248 * takes the appropriate action when exiting.
1249 */
1250 mask = SPU_STATUS_INVALID_INSTR |
1251 SPU_STATUS_SINGLE_STEP |
1252 SPU_STATUS_STOPPED_BY_HALT |
1253 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1254 if (!(csa->prob.spu_status_R & mask)) {
1255 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1256 }
1257 }
1258
1259 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1260 {
1261 /* Restore, Step 29:
1262 * Restore RA_GROUP_ID register and the
1263 * RA_ENABLE reigster from the CSA.
1264 */
1265 spu_resource_allocation_groupID_set(spu,
1266 csa->priv1.resource_allocation_groupID_RW);
1267 spu_resource_allocation_enable_set(spu,
1268 csa->priv1.resource_allocation_enable_RW);
1269 }
1270
1271 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1272 {
1273 unsigned long addr = (unsigned long)&spu_restore_code[0];
1274 unsigned int ls_offset = 0x0;
1275 unsigned int size = sizeof(spu_restore_code);
1276 unsigned int tag = 0;
1277 unsigned int rclass = 0;
1278 unsigned int cmd = MFC_GETFS_CMD;
1279
1280 /* Restore, Step 37:
1281 * Issue MFC DMA command to copy context
1282 * restore code to local storage.
1283 */
1284 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1285 }
1286
1287 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1288 {
1289 /* Restore, Step 34:
1290 * If CSA.MFC_CNTL[Ds]=1 (decrementer was
1291 * running) then adjust decrementer, set
1292 * decrementer running status in LSCSA,
1293 * and set decrementer "wrapped" status
1294 * in LSCSA.
1295 */
1296 if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1297 cycles_t resume_time = get_cycles();
1298 cycles_t delta_time = resume_time - csa->suspend_time;
1299
1300 csa->lscsa->decr.slot[0] = delta_time;
1301 }
1302 }
1303
1304 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1305 {
1306 /* Restore, Step 35:
1307 * Copy the CSA.PU_MB data into the LSCSA.
1308 */
1309 csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1310 }
1311
1312 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1313 {
1314 /* Restore, Step 36:
1315 * Copy the CSA.PUINT_MB data into the LSCSA.
1316 */
1317 csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1318 }
1319
1320 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1321 {
1322 struct spu_problem __iomem *prob = spu->problem;
1323 u32 complete;
1324
1325 /* Restore, Step 40:
1326 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1327 * context restore succeeded, otherwise context restore
1328 * failed.
1329 */
1330 complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1331 SPU_STATUS_STOPPED_BY_STOP);
1332 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1333 }
1334
1335 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1336 {
1337 struct spu_priv2 __iomem *priv2 = spu->priv2;
1338
1339 /* Restore, Step 41:
1340 * Restore SPU_PrivCntl from the CSA.
1341 */
1342 out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1343 eieio();
1344 }
1345
1346 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1347 {
1348 struct spu_problem __iomem *prob = spu->problem;
1349 u32 mask;
1350
1351 /* Restore, Step 42:
1352 * If any CSA.SPU_Status[I,S,H,P]=1, then
1353 * restore the error or single step state.
1354 */
1355 mask = SPU_STATUS_INVALID_INSTR |
1356 SPU_STATUS_SINGLE_STEP |
1357 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1358 if (csa->prob.spu_status_R & mask) {
1359 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1360 eieio();
1361 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1362 SPU_STATUS_RUNNING);
1363 }
1364 }
1365
1366 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1367 {
1368 struct spu_problem __iomem *prob = spu->problem;
1369 u32 mask;
1370
1371 /* Restore, Step 43:
1372 * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1373 * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1374 * then write '00' to SPU_RunCntl[R0R1] and wait
1375 * for SPU_Status[R]=0.
1376 */
1377 mask = SPU_STATUS_INVALID_INSTR |
1378 SPU_STATUS_SINGLE_STEP |
1379 SPU_STATUS_STOPPED_BY_HALT |
1380 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1381 if (!(csa->prob.spu_status_R & mask)) {
1382 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1383 eieio();
1384 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1385 SPU_STATUS_RUNNING);
1386 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1387 eieio();
1388 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1389 SPU_STATUS_RUNNING);
1390 }
1391 }
1392
1393 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1394 {
1395 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1396 unsigned int ls_offset = 0x0;
1397 unsigned int size = 16384;
1398 unsigned int tag = 0;
1399 unsigned int rclass = 0;
1400 unsigned int cmd = MFC_GET_CMD;
1401
1402 /* Restore, Step 44:
1403 * Issue a DMA command to restore the first
1404 * 16kb of local storage from CSA.
1405 */
1406 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1407 }
1408
1409 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1410 {
1411 /* Restore, Step 49:
1412 * Write INT_MASK_class0 with value of 0.
1413 * Write INT_MASK_class1 with value of 0.
1414 * Write INT_MASK_class2 with value of 0.
1415 * Write INT_STAT_class0 with value of -1.
1416 * Write INT_STAT_class1 with value of -1.
1417 * Write INT_STAT_class2 with value of -1.
1418 */
1419 spin_lock_irq(&spu->register_lock);
1420 spu_int_mask_set(spu, 0, 0ul);
1421 spu_int_mask_set(spu, 1, 0ul);
1422 spu_int_mask_set(spu, 2, 0ul);
1423 spu_int_stat_clear(spu, 0, ~0ul);
1424 spu_int_stat_clear(spu, 1, ~0ul);
1425 spu_int_stat_clear(spu, 2, ~0ul);
1426 spin_unlock_irq(&spu->register_lock);
1427 }
1428
1429 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1430 {
1431 struct spu_priv2 __iomem *priv2 = spu->priv2;
1432 int i;
1433
1434 /* Restore, Step 50:
1435 * If MFC_Cntl[Se]!=0 then restore
1436 * MFC command queues.
1437 */
1438 if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1439 for (i = 0; i < 8; i++) {
1440 out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1441 csa->priv2.puq[i].mfc_cq_data0_RW);
1442 out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1443 csa->priv2.puq[i].mfc_cq_data1_RW);
1444 out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1445 csa->priv2.puq[i].mfc_cq_data2_RW);
1446 out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1447 csa->priv2.puq[i].mfc_cq_data3_RW);
1448 }
1449 for (i = 0; i < 16; i++) {
1450 out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1451 csa->priv2.spuq[i].mfc_cq_data0_RW);
1452 out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1453 csa->priv2.spuq[i].mfc_cq_data1_RW);
1454 out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1455 csa->priv2.spuq[i].mfc_cq_data2_RW);
1456 out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1457 csa->priv2.spuq[i].mfc_cq_data3_RW);
1458 }
1459 }
1460 eieio();
1461 }
1462
1463 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1464 {
1465 struct spu_problem __iomem *prob = spu->problem;
1466
1467 /* Restore, Step 51:
1468 * Restore the PPU_QueryMask register from CSA.
1469 */
1470 out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1471 eieio();
1472 }
1473
1474 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1475 {
1476 struct spu_problem __iomem *prob = spu->problem;
1477
1478 /* Restore, Step 52:
1479 * Restore the PPU_QueryType register from CSA.
1480 */
1481 out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1482 eieio();
1483 }
1484
1485 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1486 {
1487 struct spu_priv2 __iomem *priv2 = spu->priv2;
1488
1489 /* Restore, Step 53:
1490 * Restore the MFC_CSR_TSQ register from CSA.
1491 */
1492 out_be64(&priv2->spu_tag_status_query_RW,
1493 csa->priv2.spu_tag_status_query_RW);
1494 eieio();
1495 }
1496
1497 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1498 {
1499 struct spu_priv2 __iomem *priv2 = spu->priv2;
1500
1501 /* Restore, Step 54:
1502 * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1503 * registers from CSA.
1504 */
1505 out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1506 out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1507 eieio();
1508 }
1509
1510 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1511 {
1512 struct spu_priv2 __iomem *priv2 = spu->priv2;
1513
1514 /* Restore, Step 55:
1515 * Restore the MFC_CSR_ATO register from CSA.
1516 */
1517 out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1518 }
1519
1520 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1521 {
1522 /* Restore, Step 56:
1523 * Restore the MFC_TCLASS_ID register from CSA.
1524 */
1525 spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1526 eieio();
1527 }
1528
1529 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1530 {
1531 u64 ch0_cnt, ch0_data;
1532 u64 ch1_data;
1533
1534 /* Restore, Step 57:
1535 * Set the Lock Line Reservation Lost Event by:
1536 * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1537 * 2. If CSA.SPU_Channel_0_Count=0 and
1538 * CSA.SPU_Wr_Event_Mask[Lr]=1 and
1539 * CSA.SPU_Event_Status[Lr]=0 then set
1540 * CSA.SPU_Event_Status_Count=1.
1541 */
1542 ch0_cnt = csa->spu_chnlcnt_RW[0];
1543 ch0_data = csa->spu_chnldata_RW[0];
1544 ch1_data = csa->spu_chnldata_RW[1];
1545 csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1546 if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1547 (ch1_data & MFC_LLR_LOST_EVENT)) {
1548 csa->spu_chnlcnt_RW[0] = 1;
1549 }
1550 }
1551
1552 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1553 {
1554 /* Restore, Step 58:
1555 * If the status of the CSA software decrementer
1556 * "wrapped" flag is set, OR in a '1' to
1557 * CSA.SPU_Event_Status[Tm].
1558 */
1559 if (csa->lscsa->decr_status.slot[0] == 1) {
1560 csa->spu_chnldata_RW[0] |= 0x20;
1561 }
1562 if ((csa->lscsa->decr_status.slot[0] == 1) &&
1563 (csa->spu_chnlcnt_RW[0] == 0 &&
1564 ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1565 ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1566 csa->spu_chnlcnt_RW[0] = 1;
1567 }
1568 }
1569
1570 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1571 {
1572 struct spu_priv2 __iomem *priv2 = spu->priv2;
1573 u64 idx, ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1574 int i;
1575
1576 /* Restore, Step 59:
1577 * Restore the following CH: [0,1,3,4,24,25,27]
1578 */
1579 for (i = 0; i < 7; i++) {
1580 idx = ch_indices[i];
1581 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1582 eieio();
1583 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1584 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1585 eieio();
1586 }
1587 }
1588
1589 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1590 {
1591 struct spu_priv2 __iomem *priv2 = spu->priv2;
1592 u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1593 u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1594 u64 idx;
1595 int i;
1596
1597 /* Restore, Step 60:
1598 * Restore the following CH: [9,21,23].
1599 */
1600 ch_counts[0] = 1UL;
1601 ch_counts[1] = csa->spu_chnlcnt_RW[21];
1602 ch_counts[2] = 1UL;
1603 for (i = 0; i < 3; i++) {
1604 idx = ch_indices[i];
1605 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1606 eieio();
1607 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1608 eieio();
1609 }
1610 }
1611
1612 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1613 {
1614 struct spu_priv2 __iomem *priv2 = spu->priv2;
1615
1616 /* Restore, Step 61:
1617 * Restore the SPU_LSLR register from CSA.
1618 */
1619 out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1620 eieio();
1621 }
1622
1623 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1624 {
1625 struct spu_priv2 __iomem *priv2 = spu->priv2;
1626
1627 /* Restore, Step 62:
1628 * Restore the SPU_Cfg register from CSA.
1629 */
1630 out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1631 eieio();
1632 }
1633
1634 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1635 {
1636 /* Restore, Step 63:
1637 * Restore PM_Trace_Tag_Wait_Mask from CSA.
1638 * Not performed by this implementation.
1639 */
1640 }
1641
1642 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1643 {
1644 struct spu_problem __iomem *prob = spu->problem;
1645
1646 /* Restore, Step 64:
1647 * Restore SPU_NPC from CSA.
1648 */
1649 out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1650 eieio();
1651 }
1652
1653 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1654 {
1655 struct spu_priv2 __iomem *priv2 = spu->priv2;
1656 int i;
1657
1658 /* Restore, Step 65:
1659 * Restore MFC_RdSPU_MB from CSA.
1660 */
1661 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1662 eieio();
1663 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1664 for (i = 0; i < 4; i++) {
1665 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1666 }
1667 eieio();
1668 }
1669
1670 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1671 {
1672 struct spu_problem __iomem *prob = spu->problem;
1673 u32 dummy = 0;
1674
1675 /* Restore, Step 66:
1676 * If CSA.MB_Stat[P]=0 (mailbox empty) then
1677 * read from the PPU_MB register.
1678 */
1679 if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1680 dummy = in_be32(&prob->pu_mb_R);
1681 eieio();
1682 }
1683 }
1684
1685 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1686 {
1687 struct spu_priv2 __iomem *priv2 = spu->priv2;
1688 u64 dummy = 0UL;
1689
1690 /* Restore, Step 66:
1691 * If CSA.MB_Stat[I]=0 (mailbox empty) then
1692 * read from the PPUINT_MB register.
1693 */
1694 if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1695 dummy = in_be64(&priv2->puint_mb_R);
1696 eieio();
1697 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1698 eieio();
1699 }
1700 }
1701
1702 static inline void restore_mfc_slbs(struct spu_state *csa, struct spu *spu)
1703 {
1704 struct spu_priv2 __iomem *priv2 = spu->priv2;
1705 int i;
1706
1707 /* Restore, Step 68:
1708 * If MFC_SR1[R]='1', restore SLBs from CSA.
1709 */
1710 if (csa->priv1.mfc_sr1_RW & MFC_STATE1_RELOCATE_MASK) {
1711 for (i = 0; i < 8; i++) {
1712 out_be64(&priv2->slb_index_W, i);
1713 eieio();
1714 out_be64(&priv2->slb_esid_RW, csa->slb_esid_RW[i]);
1715 out_be64(&priv2->slb_vsid_RW, csa->slb_vsid_RW[i]);
1716 eieio();
1717 }
1718 out_be64(&priv2->slb_index_W, csa->priv2.slb_index_W);
1719 eieio();
1720 }
1721 }
1722
1723 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1724 {
1725 /* Restore, Step 69:
1726 * Restore the MFC_SR1 register from CSA.
1727 */
1728 spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1729 eieio();
1730 }
1731
1732 static inline void restore_other_spu_access(struct spu_state *csa,
1733 struct spu *spu)
1734 {
1735 /* Restore, Step 70:
1736 * Restore other SPU mappings to this SPU. TBD.
1737 */
1738 }
1739
1740 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1741 {
1742 struct spu_problem __iomem *prob = spu->problem;
1743
1744 /* Restore, Step 71:
1745 * If CSA.SPU_Status[R]=1 then write
1746 * SPU_RunCntl[R0R1]='01'.
1747 */
1748 if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1749 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1750 eieio();
1751 }
1752 }
1753
1754 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1755 {
1756 struct spu_priv2 __iomem *priv2 = spu->priv2;
1757
1758 /* Restore, Step 72:
1759 * Restore the MFC_CNTL register for the CSA.
1760 */
1761 out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1762 eieio();
1763 }
1764
1765 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1766 {
1767 /* Restore, Step 73:
1768 * Enable user-space access (if provided) to this
1769 * SPU by mapping the virtual pages assigned to
1770 * the SPU memory-mapped I/O (MMIO) for problem
1771 * state. TBD.
1772 */
1773 }
1774
1775 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1776 {
1777 /* Restore, Step 74:
1778 * Reset the "context switch active" flag.
1779 */
1780 clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1781 mb();
1782 }
1783
1784 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1785 {
1786 /* Restore, Step 75:
1787 * Re-enable SPU interrupts.
1788 */
1789 spin_lock_irq(&spu->register_lock);
1790 spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1791 spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1792 spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1793 spin_unlock_irq(&spu->register_lock);
1794 }
1795
1796 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1797 {
1798 /*
1799 * Combined steps 2-18 of SPU context save sequence, which
1800 * quiesce the SPU state (disable SPU execution, MFC command
1801 * queues, decrementer, SPU interrupts, etc.).
1802 *
1803 * Returns 0 on success.
1804 * 2 if failed step 2.
1805 * 6 if failed step 6.
1806 */
1807
1808 if (check_spu_isolate(prev, spu)) { /* Step 2. */
1809 return 2;
1810 }
1811 disable_interrupts(prev, spu); /* Step 3. */
1812 set_watchdog_timer(prev, spu); /* Step 4. */
1813 inhibit_user_access(prev, spu); /* Step 5. */
1814 if (check_spu_isolate(prev, spu)) { /* Step 6. */
1815 return 6;
1816 }
1817 set_switch_pending(prev, spu); /* Step 7. */
1818 save_mfc_cntl(prev, spu); /* Step 8. */
1819 save_spu_runcntl(prev, spu); /* Step 9. */
1820 save_mfc_sr1(prev, spu); /* Step 10. */
1821 save_spu_status(prev, spu); /* Step 11. */
1822 save_mfc_decr(prev, spu); /* Step 12. */
1823 halt_mfc_decr(prev, spu); /* Step 13. */
1824 save_timebase(prev, spu); /* Step 14. */
1825 remove_other_spu_access(prev, spu); /* Step 15. */
1826 do_mfc_mssync(prev, spu); /* Step 16. */
1827 issue_mfc_tlbie(prev, spu); /* Step 17. */
1828 handle_pending_interrupts(prev, spu); /* Step 18. */
1829
1830 return 0;
1831 }
1832
1833 static void save_csa(struct spu_state *prev, struct spu *spu)
1834 {
1835 /*
1836 * Combine steps 19-44 of SPU context save sequence, which
1837 * save regions of the privileged & problem state areas.
1838 */
1839
1840 save_mfc_queues(prev, spu); /* Step 19. */
1841 save_ppu_querymask(prev, spu); /* Step 20. */
1842 save_ppu_querytype(prev, spu); /* Step 21. */
1843 save_mfc_csr_tsq(prev, spu); /* Step 22. */
1844 save_mfc_csr_cmd(prev, spu); /* Step 23. */
1845 save_mfc_csr_ato(prev, spu); /* Step 24. */
1846 save_mfc_tclass_id(prev, spu); /* Step 25. */
1847 set_mfc_tclass_id(prev, spu); /* Step 26. */
1848 purge_mfc_queue(prev, spu); /* Step 27. */
1849 wait_purge_complete(prev, spu); /* Step 28. */
1850 save_mfc_slbs(prev, spu); /* Step 29. */
1851 setup_mfc_sr1(prev, spu); /* Step 30. */
1852 save_spu_npc(prev, spu); /* Step 31. */
1853 save_spu_privcntl(prev, spu); /* Step 32. */
1854 reset_spu_privcntl(prev, spu); /* Step 33. */
1855 save_spu_lslr(prev, spu); /* Step 34. */
1856 reset_spu_lslr(prev, spu); /* Step 35. */
1857 save_spu_cfg(prev, spu); /* Step 36. */
1858 save_pm_trace(prev, spu); /* Step 37. */
1859 save_mfc_rag(prev, spu); /* Step 38. */
1860 save_ppu_mb_stat(prev, spu); /* Step 39. */
1861 save_ppu_mb(prev, spu); /* Step 40. */
1862 save_ppuint_mb(prev, spu); /* Step 41. */
1863 save_ch_part1(prev, spu); /* Step 42. */
1864 save_spu_mb(prev, spu); /* Step 43. */
1865 save_mfc_cmd(prev, spu); /* Step 44. */
1866 reset_ch(prev, spu); /* Step 45. */
1867 }
1868
1869 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1870 {
1871 /*
1872 * Perform steps 46-57 of SPU context save sequence,
1873 * which save regions of the local store and register
1874 * file.
1875 */
1876
1877 resume_mfc_queue(prev, spu); /* Step 46. */
1878 setup_mfc_slbs(prev, spu); /* Step 47. */
1879 set_switch_active(prev, spu); /* Step 48. */
1880 enable_interrupts(prev, spu); /* Step 49. */
1881 save_ls_16kb(prev, spu); /* Step 50. */
1882 set_spu_npc(prev, spu); /* Step 51. */
1883 set_signot1(prev, spu); /* Step 52. */
1884 set_signot2(prev, spu); /* Step 53. */
1885 send_save_code(prev, spu); /* Step 54. */
1886 set_ppu_querymask(prev, spu); /* Step 55. */
1887 wait_tag_complete(prev, spu); /* Step 56. */
1888 wait_spu_stopped(prev, spu); /* Step 57. */
1889 }
1890
1891 static void harvest(struct spu_state *prev, struct spu *spu)
1892 {
1893 /*
1894 * Perform steps 2-25 of SPU context restore sequence,
1895 * which resets an SPU either after a failed save, or
1896 * when using SPU for first time.
1897 */
1898
1899 disable_interrupts(prev, spu); /* Step 2. */
1900 inhibit_user_access(prev, spu); /* Step 3. */
1901 terminate_spu_app(prev, spu); /* Step 4. */
1902 set_switch_pending(prev, spu); /* Step 5. */
1903 remove_other_spu_access(prev, spu); /* Step 6. */
1904 suspend_mfc(prev, spu); /* Step 7. */
1905 wait_suspend_mfc_complete(prev, spu); /* Step 8. */
1906 if (!suspend_spe(prev, spu)) /* Step 9. */
1907 clear_spu_status(prev, spu); /* Step 10. */
1908 do_mfc_mssync(prev, spu); /* Step 11. */
1909 issue_mfc_tlbie(prev, spu); /* Step 12. */
1910 handle_pending_interrupts(prev, spu); /* Step 13. */
1911 purge_mfc_queue(prev, spu); /* Step 14. */
1912 wait_purge_complete(prev, spu); /* Step 15. */
1913 reset_spu_privcntl(prev, spu); /* Step 16. */
1914 reset_spu_lslr(prev, spu); /* Step 17. */
1915 setup_mfc_sr1(prev, spu); /* Step 18. */
1916 invalidate_slbs(prev, spu); /* Step 19. */
1917 reset_ch_part1(prev, spu); /* Step 20. */
1918 reset_ch_part2(prev, spu); /* Step 21. */
1919 enable_interrupts(prev, spu); /* Step 22. */
1920 set_switch_active(prev, spu); /* Step 23. */
1921 set_mfc_tclass_id(prev, spu); /* Step 24. */
1922 resume_mfc_queue(prev, spu); /* Step 25. */
1923 }
1924
1925 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1926 {
1927 /*
1928 * Perform steps 26-40 of SPU context restore sequence,
1929 * which restores regions of the local store and register
1930 * file.
1931 */
1932
1933 set_watchdog_timer(next, spu); /* Step 26. */
1934 setup_spu_status_part1(next, spu); /* Step 27. */
1935 setup_spu_status_part2(next, spu); /* Step 28. */
1936 restore_mfc_rag(next, spu); /* Step 29. */
1937 setup_mfc_slbs(next, spu); /* Step 30. */
1938 set_spu_npc(next, spu); /* Step 31. */
1939 set_signot1(next, spu); /* Step 32. */
1940 set_signot2(next, spu); /* Step 33. */
1941 setup_decr(next, spu); /* Step 34. */
1942 setup_ppu_mb(next, spu); /* Step 35. */
1943 setup_ppuint_mb(next, spu); /* Step 36. */
1944 send_restore_code(next, spu); /* Step 37. */
1945 set_ppu_querymask(next, spu); /* Step 38. */
1946 wait_tag_complete(next, spu); /* Step 39. */
1947 wait_spu_stopped(next, spu); /* Step 40. */
1948 }
1949
1950 static void restore_csa(struct spu_state *next, struct spu *spu)
1951 {
1952 /*
1953 * Combine steps 41-76 of SPU context restore sequence, which
1954 * restore regions of the privileged & problem state areas.
1955 */
1956
1957 restore_spu_privcntl(next, spu); /* Step 41. */
1958 restore_status_part1(next, spu); /* Step 42. */
1959 restore_status_part2(next, spu); /* Step 43. */
1960 restore_ls_16kb(next, spu); /* Step 44. */
1961 wait_tag_complete(next, spu); /* Step 45. */
1962 suspend_mfc(next, spu); /* Step 46. */
1963 wait_suspend_mfc_complete(next, spu); /* Step 47. */
1964 issue_mfc_tlbie(next, spu); /* Step 48. */
1965 clear_interrupts(next, spu); /* Step 49. */
1966 restore_mfc_queues(next, spu); /* Step 50. */
1967 restore_ppu_querymask(next, spu); /* Step 51. */
1968 restore_ppu_querytype(next, spu); /* Step 52. */
1969 restore_mfc_csr_tsq(next, spu); /* Step 53. */
1970 restore_mfc_csr_cmd(next, spu); /* Step 54. */
1971 restore_mfc_csr_ato(next, spu); /* Step 55. */
1972 restore_mfc_tclass_id(next, spu); /* Step 56. */
1973 set_llr_event(next, spu); /* Step 57. */
1974 restore_decr_wrapped(next, spu); /* Step 58. */
1975 restore_ch_part1(next, spu); /* Step 59. */
1976 restore_ch_part2(next, spu); /* Step 60. */
1977 restore_spu_lslr(next, spu); /* Step 61. */
1978 restore_spu_cfg(next, spu); /* Step 62. */
1979 restore_pm_trace(next, spu); /* Step 63. */
1980 restore_spu_npc(next, spu); /* Step 64. */
1981 restore_spu_mb(next, spu); /* Step 65. */
1982 check_ppu_mb_stat(next, spu); /* Step 66. */
1983 check_ppuint_mb_stat(next, spu); /* Step 67. */
1984 restore_mfc_slbs(next, spu); /* Step 68. */
1985 restore_mfc_sr1(next, spu); /* Step 69. */
1986 restore_other_spu_access(next, spu); /* Step 70. */
1987 restore_spu_runcntl(next, spu); /* Step 71. */
1988 restore_mfc_cntl(next, spu); /* Step 72. */
1989 enable_user_access(next, spu); /* Step 73. */
1990 reset_switch_active(next, spu); /* Step 74. */
1991 reenable_interrupts(next, spu); /* Step 75. */
1992 }
1993
1994 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
1995 {
1996 int rc;
1997
1998 /*
1999 * SPU context save can be broken into three phases:
2000 *
2001 * (a) quiesce [steps 2-16].
2002 * (b) save of CSA, performed by PPE [steps 17-42]
2003 * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2004 *
2005 * Returns 0 on success.
2006 * 2,6 if failed to quiece SPU
2007 * 53 if SPU-side of save failed.
2008 */
2009
2010 rc = quiece_spu(prev, spu); /* Steps 2-16. */
2011 switch (rc) {
2012 default:
2013 case 2:
2014 case 6:
2015 harvest(prev, spu);
2016 return rc;
2017 break;
2018 case 0:
2019 break;
2020 }
2021 save_csa(prev, spu); /* Steps 17-43. */
2022 save_lscsa(prev, spu); /* Steps 44-53. */
2023 return check_save_status(prev, spu); /* Step 54. */
2024 }
2025
2026 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2027 {
2028 int rc;
2029
2030 /*
2031 * SPU context restore can be broken into three phases:
2032 *
2033 * (a) harvest (or reset) SPU [steps 2-24].
2034 * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2035 * (c) restore CSA [steps 41-76], performed by PPE.
2036 *
2037 * The 'harvest' step is not performed here, but rather
2038 * as needed below.
2039 */
2040
2041 restore_lscsa(next, spu); /* Steps 24-39. */
2042 rc = check_restore_status(next, spu); /* Step 40. */
2043 switch (rc) {
2044 default:
2045 /* Failed. Return now. */
2046 return rc;
2047 break;
2048 case 0:
2049 /* Fall through to next step. */
2050 break;
2051 }
2052 restore_csa(next, spu);
2053
2054 return 0;
2055 }
2056
2057 /**
2058 * spu_save - SPU context save, with locking.
2059 * @prev: pointer to SPU context save area, to be saved.
2060 * @spu: pointer to SPU iomem structure.
2061 *
2062 * Acquire locks, perform the save operation then return.
2063 */
2064 int spu_save(struct spu_state *prev, struct spu *spu)
2065 {
2066 int rc;
2067
2068 acquire_spu_lock(spu); /* Step 1. */
2069 rc = __do_spu_save(prev, spu); /* Steps 2-53. */
2070 release_spu_lock(spu);
2071 if (rc) {
2072 panic("%s failed on SPU[%d], rc=%d.\n",
2073 __func__, spu->number, rc);
2074 }
2075 return rc;
2076 }
2077
2078 /**
2079 * spu_restore - SPU context restore, with harvest and locking.
2080 * @new: pointer to SPU context save area, to be restored.
2081 * @spu: pointer to SPU iomem structure.
2082 *
2083 * Perform harvest + restore, as we may not be coming
2084 * from a previous succesful save operation, and the
2085 * hardware state is unknown.
2086 */
2087 int spu_restore(struct spu_state *new, struct spu *spu)
2088 {
2089 int rc;
2090
2091 acquire_spu_lock(spu);
2092 harvest(NULL, spu);
2093 spu->stop_code = 0;
2094 spu->dar = 0;
2095 spu->dsisr = 0;
2096 spu->slb_replace = 0;
2097 spu->class_0_pending = 0;
2098 rc = __do_spu_restore(new, spu);
2099 release_spu_lock(spu);
2100 if (rc) {
2101 panic("%s failed on SPU[%d] rc=%d.\n",
2102 __func__, spu->number, rc);
2103 }
2104 return rc;
2105 }
2106
2107 /**
2108 * spu_harvest - SPU harvest (reset) operation
2109 * @spu: pointer to SPU iomem structure.
2110 *
2111 * Perform SPU harvest (reset) operation.
2112 */
2113 void spu_harvest(struct spu *spu)
2114 {
2115 acquire_spu_lock(spu);
2116 harvest(NULL, spu);
2117 release_spu_lock(spu);
2118 }
2119
2120 static void init_prob(struct spu_state *csa)
2121 {
2122 csa->spu_chnlcnt_RW[9] = 1;
2123 csa->spu_chnlcnt_RW[21] = 16;
2124 csa->spu_chnlcnt_RW[23] = 1;
2125 csa->spu_chnlcnt_RW[28] = 1;
2126 csa->spu_chnlcnt_RW[30] = 1;
2127 csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2128 }
2129
2130 static void init_priv1(struct spu_state *csa)
2131 {
2132 /* Enable decode, relocate, tlbie response, master runcntl. */
2133 csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2134 MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2135 MFC_STATE1_PROBLEM_STATE_MASK |
2136 MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2137
2138 /* Set storage description. */
2139 csa->priv1.mfc_sdr_RW = mfspr(SPRN_SDR1);
2140
2141 /* Enable OS-specific set of interrupts. */
2142 csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2143 CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2144 CLASS0_ENABLE_SPU_ERROR_INTR;
2145 csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2146 CLASS1_ENABLE_STORAGE_FAULT_INTR;
2147 csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2148 CLASS2_ENABLE_SPU_HALT_INTR |
2149 CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2150 }
2151
2152 static void init_priv2(struct spu_state *csa)
2153 {
2154 csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2155 csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2156 MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2157 MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2158 }
2159
2160 /**
2161 * spu_alloc_csa - allocate and initialize an SPU context save area.
2162 *
2163 * Allocate and initialize the contents of an SPU context save area.
2164 * This includes enabling address translation, interrupt masks, etc.,
2165 * as appropriate for the given OS environment.
2166 *
2167 * Note that storage for the 'lscsa' is allocated separately,
2168 * as it is by far the largest of the context save regions,
2169 * and may need to be pinned or otherwise specially aligned.
2170 */
2171 void spu_init_csa(struct spu_state *csa)
2172 {
2173 struct spu_lscsa *lscsa;
2174 unsigned char *p;
2175
2176 if (!csa)
2177 return;
2178 memset(csa, 0, sizeof(struct spu_state));
2179
2180 lscsa = vmalloc(sizeof(struct spu_lscsa));
2181 if (!lscsa)
2182 return;
2183
2184 memset(lscsa, 0, sizeof(struct spu_lscsa));
2185 csa->lscsa = lscsa;
2186 csa->register_lock = SPIN_LOCK_UNLOCKED;
2187
2188 /* Set LS pages reserved to allow for user-space mapping. */
2189 for (p = lscsa->ls; p < lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2190 SetPageReserved(vmalloc_to_page(p));
2191
2192 init_prob(csa);
2193 init_priv1(csa);
2194 init_priv2(csa);
2195 }
2196
2197 void spu_fini_csa(struct spu_state *csa)
2198 {
2199 /* Clear reserved bit before vfree. */
2200 unsigned char *p;
2201 for (p = csa->lscsa->ls; p < csa->lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2202 ClearPageReserved(vmalloc_to_page(p));
2203
2204 vfree(csa->lscsa);
2205 }
This page took 0.080159 seconds and 5 git commands to generate.