85025d7e639623f7c0815ad337f96884941db1c7
[deliverable/linux.git] / arch / powerpc / platforms / powernv / eeh-ioda.c
1 /*
2 * The file intends to implement the functions needed by EEH, which is
3 * built on IODA compliant chip. Actually, lots of functions related
4 * to EEH would be built based on the OPAL APIs.
5 *
6 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/bootmem.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/io.h>
19 #include <linux/irq.h>
20 #include <linux/kernel.h>
21 #include <linux/msi.h>
22 #include <linux/notifier.h>
23 #include <linux/pci.h>
24 #include <linux/string.h>
25
26 #include <asm/eeh.h>
27 #include <asm/eeh_event.h>
28 #include <asm/io.h>
29 #include <asm/iommu.h>
30 #include <asm/msi_bitmap.h>
31 #include <asm/opal.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/tce.h>
35
36 #include "powernv.h"
37 #include "pci.h"
38
39 /* Debugging option */
40 #ifdef IODA_EEH_DBG_ON
41 #define IODA_EEH_DBG(args...) pr_info(args)
42 #else
43 #define IODA_EEH_DBG(args...)
44 #endif
45
46 static char *hub_diag = NULL;
47 static int ioda_eeh_nb_init = 0;
48
49 static int ioda_eeh_event(struct notifier_block *nb,
50 unsigned long events, void *change)
51 {
52 uint64_t changed_evts = (uint64_t)change;
53
54 /* We simply send special EEH event */
55 if ((changed_evts & OPAL_EVENT_PCI_ERROR) &&
56 (events & OPAL_EVENT_PCI_ERROR))
57 eeh_send_failure_event(NULL);
58
59 return 0;
60 }
61
62 static struct notifier_block ioda_eeh_nb = {
63 .notifier_call = ioda_eeh_event,
64 .next = NULL,
65 .priority = 0
66 };
67
68 #ifdef CONFIG_DEBUG_FS
69 static int ioda_eeh_dbgfs_set(void *data, u64 val)
70 {
71 struct pci_controller *hose = data;
72 struct pnv_phb *phb = hose->private_data;
73
74 out_be64(phb->regs + 0xD10, val);
75 return 0;
76 }
77
78 static int ioda_eeh_dbgfs_get(void *data, u64 *val)
79 {
80 struct pci_controller *hose = data;
81 struct pnv_phb *phb = hose->private_data;
82
83 *val = in_be64(phb->regs + 0xD10);
84 return 0;
85 }
86
87 DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_dbgfs_ops, ioda_eeh_dbgfs_get,
88 ioda_eeh_dbgfs_set, "0x%llx\n");
89 #endif /* CONFIG_DEBUG_FS */
90
91 /**
92 * ioda_eeh_post_init - Chip dependent post initialization
93 * @hose: PCI controller
94 *
95 * The function will be called after eeh PEs and devices
96 * have been built. That means the EEH is ready to supply
97 * service with I/O cache.
98 */
99 static int ioda_eeh_post_init(struct pci_controller *hose)
100 {
101 struct pnv_phb *phb = hose->private_data;
102 int ret;
103
104 /* Register OPAL event notifier */
105 if (!ioda_eeh_nb_init) {
106 ret = opal_notifier_register(&ioda_eeh_nb);
107 if (ret) {
108 pr_err("%s: Can't register OPAL event notifier (%d)\n",
109 __func__, ret);
110 return ret;
111 }
112
113 ioda_eeh_nb_init = 1;
114 }
115
116 /* FIXME: Enable it for PHB3 later */
117 if (phb->type == PNV_PHB_IODA1) {
118 if (!hub_diag) {
119 hub_diag = (char *)__get_free_page(GFP_KERNEL |
120 __GFP_ZERO);
121 if (!hub_diag) {
122 pr_err("%s: Out of memory !\n",
123 __func__);
124 return -ENOMEM;
125 }
126 }
127
128 #ifdef CONFIG_DEBUG_FS
129 if (phb->dbgfs)
130 debugfs_create_file("err_injct", 0600,
131 phb->dbgfs, hose,
132 &ioda_eeh_dbgfs_ops);
133 #endif
134
135 phb->eeh_state |= PNV_EEH_STATE_ENABLED;
136 }
137
138 return 0;
139 }
140
141 /**
142 * ioda_eeh_set_option - Set EEH operation or I/O setting
143 * @pe: EEH PE
144 * @option: options
145 *
146 * Enable or disable EEH option for the indicated PE. The
147 * function also can be used to enable I/O or DMA for the
148 * PE.
149 */
150 static int ioda_eeh_set_option(struct eeh_pe *pe, int option)
151 {
152 s64 ret;
153 u32 pe_no;
154 struct pci_controller *hose = pe->phb;
155 struct pnv_phb *phb = hose->private_data;
156
157 /* Check on PE number */
158 if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
159 pr_err("%s: PE address %x out of range [0, %x] "
160 "on PHB#%x\n",
161 __func__, pe->addr, phb->ioda.total_pe,
162 hose->global_number);
163 return -EINVAL;
164 }
165
166 pe_no = pe->addr;
167 switch (option) {
168 case EEH_OPT_DISABLE:
169 ret = -EEXIST;
170 break;
171 case EEH_OPT_ENABLE:
172 ret = 0;
173 break;
174 case EEH_OPT_THAW_MMIO:
175 ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
176 OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO);
177 if (ret) {
178 pr_warning("%s: Failed to enable MMIO for "
179 "PHB#%x-PE#%x, err=%lld\n",
180 __func__, hose->global_number, pe_no, ret);
181 return -EIO;
182 }
183
184 break;
185 case EEH_OPT_THAW_DMA:
186 ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
187 OPAL_EEH_ACTION_CLEAR_FREEZE_DMA);
188 if (ret) {
189 pr_warning("%s: Failed to enable DMA for "
190 "PHB#%x-PE#%x, err=%lld\n",
191 __func__, hose->global_number, pe_no, ret);
192 return -EIO;
193 }
194
195 break;
196 default:
197 pr_warning("%s: Invalid option %d\n", __func__, option);
198 return -EINVAL;
199 }
200
201 return ret;
202 }
203
204 /**
205 * ioda_eeh_get_state - Retrieve the state of PE
206 * @pe: EEH PE
207 *
208 * The PE's state should be retrieved from the PEEV, PEST
209 * IODA tables. Since the OPAL has exported the function
210 * to do it, it'd better to use that.
211 */
212 static int ioda_eeh_get_state(struct eeh_pe *pe)
213 {
214 s64 ret = 0;
215 u8 fstate;
216 u16 pcierr;
217 u32 pe_no;
218 int result;
219 struct pci_controller *hose = pe->phb;
220 struct pnv_phb *phb = hose->private_data;
221
222 /*
223 * Sanity check on PE address. The PHB PE address should
224 * be zero.
225 */
226 if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
227 pr_err("%s: PE address %x out of range [0, %x] "
228 "on PHB#%x\n",
229 __func__, pe->addr, phb->ioda.total_pe,
230 hose->global_number);
231 return EEH_STATE_NOT_SUPPORT;
232 }
233
234 /* Retrieve PE status through OPAL */
235 pe_no = pe->addr;
236 ret = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
237 &fstate, &pcierr, NULL);
238 if (ret) {
239 pr_err("%s: Failed to get EEH status on "
240 "PHB#%x-PE#%x\n, err=%lld\n",
241 __func__, hose->global_number, pe_no, ret);
242 return EEH_STATE_NOT_SUPPORT;
243 }
244
245 /* Check PHB status */
246 if (pe->type & EEH_PE_PHB) {
247 result = 0;
248 result &= ~EEH_STATE_RESET_ACTIVE;
249
250 if (pcierr != OPAL_EEH_PHB_ERROR) {
251 result |= EEH_STATE_MMIO_ACTIVE;
252 result |= EEH_STATE_DMA_ACTIVE;
253 result |= EEH_STATE_MMIO_ENABLED;
254 result |= EEH_STATE_DMA_ENABLED;
255 }
256
257 return result;
258 }
259
260 /* Parse result out */
261 result = 0;
262 switch (fstate) {
263 case OPAL_EEH_STOPPED_NOT_FROZEN:
264 result &= ~EEH_STATE_RESET_ACTIVE;
265 result |= EEH_STATE_MMIO_ACTIVE;
266 result |= EEH_STATE_DMA_ACTIVE;
267 result |= EEH_STATE_MMIO_ENABLED;
268 result |= EEH_STATE_DMA_ENABLED;
269 break;
270 case OPAL_EEH_STOPPED_MMIO_FREEZE:
271 result &= ~EEH_STATE_RESET_ACTIVE;
272 result |= EEH_STATE_DMA_ACTIVE;
273 result |= EEH_STATE_DMA_ENABLED;
274 break;
275 case OPAL_EEH_STOPPED_DMA_FREEZE:
276 result &= ~EEH_STATE_RESET_ACTIVE;
277 result |= EEH_STATE_MMIO_ACTIVE;
278 result |= EEH_STATE_MMIO_ENABLED;
279 break;
280 case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
281 result &= ~EEH_STATE_RESET_ACTIVE;
282 break;
283 case OPAL_EEH_STOPPED_RESET:
284 result |= EEH_STATE_RESET_ACTIVE;
285 break;
286 case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
287 result |= EEH_STATE_UNAVAILABLE;
288 break;
289 case OPAL_EEH_STOPPED_PERM_UNAVAIL:
290 result |= EEH_STATE_NOT_SUPPORT;
291 break;
292 default:
293 pr_warning("%s: Unexpected EEH status 0x%x "
294 "on PHB#%x-PE#%x\n",
295 __func__, fstate, hose->global_number, pe_no);
296 }
297
298 return result;
299 }
300
301 static int ioda_eeh_pe_clear(struct eeh_pe *pe)
302 {
303 struct pci_controller *hose;
304 struct pnv_phb *phb;
305 u32 pe_no;
306 u8 fstate;
307 u16 pcierr;
308 s64 ret;
309
310 pe_no = pe->addr;
311 hose = pe->phb;
312 phb = pe->phb->private_data;
313
314 /* Clear the EEH error on the PE */
315 ret = opal_pci_eeh_freeze_clear(phb->opal_id,
316 pe_no, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
317 if (ret) {
318 pr_err("%s: Failed to clear EEH error for "
319 "PHB#%x-PE#%x, err=%lld\n",
320 __func__, hose->global_number, pe_no, ret);
321 return -EIO;
322 }
323
324 /*
325 * Read the PE state back and verify that the frozen
326 * state has been removed.
327 */
328 ret = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
329 &fstate, &pcierr, NULL);
330 if (ret) {
331 pr_err("%s: Failed to get EEH status on "
332 "PHB#%x-PE#%x\n, err=%lld\n",
333 __func__, hose->global_number, pe_no, ret);
334 return -EIO;
335 }
336
337 if (fstate != OPAL_EEH_STOPPED_NOT_FROZEN) {
338 pr_err("%s: Frozen state not cleared on "
339 "PHB#%x-PE#%x, sts=%x\n",
340 __func__, hose->global_number, pe_no, fstate);
341 return -EIO;
342 }
343
344 return 0;
345 }
346
347 static s64 ioda_eeh_phb_poll(struct pnv_phb *phb)
348 {
349 s64 rc = OPAL_HARDWARE;
350
351 while (1) {
352 rc = opal_pci_poll(phb->opal_id);
353 if (rc <= 0)
354 break;
355
356 msleep(rc);
357 }
358
359 return rc;
360 }
361
362 static int ioda_eeh_phb_reset(struct pci_controller *hose, int option)
363 {
364 struct pnv_phb *phb = hose->private_data;
365 s64 rc = OPAL_HARDWARE;
366
367 pr_debug("%s: Reset PHB#%x, option=%d\n",
368 __func__, hose->global_number, option);
369
370 /* Issue PHB complete reset request */
371 if (option == EEH_RESET_FUNDAMENTAL ||
372 option == EEH_RESET_HOT)
373 rc = opal_pci_reset(phb->opal_id,
374 OPAL_PHB_COMPLETE,
375 OPAL_ASSERT_RESET);
376 else if (option == EEH_RESET_DEACTIVATE)
377 rc = opal_pci_reset(phb->opal_id,
378 OPAL_PHB_COMPLETE,
379 OPAL_DEASSERT_RESET);
380 if (rc < 0)
381 goto out;
382
383 /*
384 * Poll state of the PHB until the request is done
385 * successfully.
386 */
387 rc = ioda_eeh_phb_poll(phb);
388 out:
389 if (rc != OPAL_SUCCESS)
390 return -EIO;
391
392 return 0;
393 }
394
395 static int ioda_eeh_root_reset(struct pci_controller *hose, int option)
396 {
397 struct pnv_phb *phb = hose->private_data;
398 s64 rc = OPAL_SUCCESS;
399
400 pr_debug("%s: Reset PHB#%x, option=%d\n",
401 __func__, hose->global_number, option);
402
403 /*
404 * During the reset deassert time, we needn't care
405 * the reset scope because the firmware does nothing
406 * for fundamental or hot reset during deassert phase.
407 */
408 if (option == EEH_RESET_FUNDAMENTAL)
409 rc = opal_pci_reset(phb->opal_id,
410 OPAL_PCI_FUNDAMENTAL_RESET,
411 OPAL_ASSERT_RESET);
412 else if (option == EEH_RESET_HOT)
413 rc = opal_pci_reset(phb->opal_id,
414 OPAL_PCI_HOT_RESET,
415 OPAL_ASSERT_RESET);
416 else if (option == EEH_RESET_DEACTIVATE)
417 rc = opal_pci_reset(phb->opal_id,
418 OPAL_PCI_HOT_RESET,
419 OPAL_DEASSERT_RESET);
420 if (rc < 0)
421 goto out;
422
423 /* Poll state of the PHB until the request is done */
424 rc = ioda_eeh_phb_poll(phb);
425 out:
426 if (rc != OPAL_SUCCESS)
427 return -EIO;
428
429 return 0;
430 }
431
432 static int ioda_eeh_bridge_reset(struct pci_controller *hose,
433 struct pci_dev *dev, int option)
434 {
435 u16 ctrl;
436
437 pr_debug("%s: Reset device %04x:%02x:%02x.%01x with option %d\n",
438 __func__, hose->global_number, dev->bus->number,
439 PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), option);
440
441 switch (option) {
442 case EEH_RESET_FUNDAMENTAL:
443 case EEH_RESET_HOT:
444 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
445 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
446 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
447 break;
448 case EEH_RESET_DEACTIVATE:
449 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
450 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
451 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
452 break;
453 }
454
455 return 0;
456 }
457
458 /**
459 * ioda_eeh_reset - Reset the indicated PE
460 * @pe: EEH PE
461 * @option: reset option
462 *
463 * Do reset on the indicated PE. For PCI bus sensitive PE,
464 * we need to reset the parent p2p bridge. The PHB has to
465 * be reinitialized if the p2p bridge is root bridge. For
466 * PCI device sensitive PE, we will try to reset the device
467 * through FLR. For now, we don't have OPAL APIs to do HARD
468 * reset yet, so all reset would be SOFT (HOT) reset.
469 */
470 static int ioda_eeh_reset(struct eeh_pe *pe, int option)
471 {
472 struct pci_controller *hose = pe->phb;
473 struct eeh_dev *edev;
474 struct pci_dev *dev;
475 int ret;
476
477 /*
478 * Anyway, we have to clear the problematic state for the
479 * corresponding PE. However, we needn't do it if the PE
480 * is PHB associated. That means the PHB is having fatal
481 * errors and it needs reset. Further more, the AIB interface
482 * isn't reliable any more.
483 */
484 if (!(pe->type & EEH_PE_PHB) &&
485 (option == EEH_RESET_HOT ||
486 option == EEH_RESET_FUNDAMENTAL)) {
487 ret = ioda_eeh_pe_clear(pe);
488 if (ret)
489 return -EIO;
490 }
491
492 /*
493 * The rules applied to reset, either fundamental or hot reset:
494 *
495 * We always reset the direct upstream bridge of the PE. If the
496 * direct upstream bridge isn't root bridge, we always take hot
497 * reset no matter what option (fundamental or hot) is. Otherwise,
498 * we should do the reset according to the required option.
499 */
500 if (pe->type & EEH_PE_PHB) {
501 ret = ioda_eeh_phb_reset(hose, option);
502 } else {
503 if (pe->type & EEH_PE_DEVICE) {
504 /*
505 * If it's device PE, we didn't refer to the parent
506 * PCI bus yet. So we have to figure it out indirectly.
507 */
508 edev = list_first_entry(&pe->edevs,
509 struct eeh_dev, list);
510 dev = eeh_dev_to_pci_dev(edev);
511 dev = dev->bus->self;
512 } else {
513 /*
514 * If it's bus PE, the parent PCI bus is already there
515 * and just pick it up.
516 */
517 dev = pe->bus->self;
518 }
519
520 /*
521 * Do reset based on the fact that the direct upstream bridge
522 * is root bridge (port) or not.
523 */
524 if (dev->bus->number == 0)
525 ret = ioda_eeh_root_reset(hose, option);
526 else
527 ret = ioda_eeh_bridge_reset(hose, dev, option);
528 }
529
530 return ret;
531 }
532
533 /**
534 * ioda_eeh_get_log - Retrieve error log
535 * @pe: EEH PE
536 * @severity: Severity level of the log
537 * @drv_log: buffer to store the log
538 * @len: space of the log buffer
539 *
540 * The function is used to retrieve error log from P7IOC.
541 */
542 static int ioda_eeh_get_log(struct eeh_pe *pe, int severity,
543 char *drv_log, unsigned long len)
544 {
545 s64 ret;
546 unsigned long flags;
547 struct pci_controller *hose = pe->phb;
548 struct pnv_phb *phb = hose->private_data;
549
550 spin_lock_irqsave(&phb->lock, flags);
551
552 ret = opal_pci_get_phb_diag_data2(phb->opal_id,
553 phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE);
554 if (ret) {
555 spin_unlock_irqrestore(&phb->lock, flags);
556 pr_warning("%s: Failed to get log for PHB#%x-PE#%x\n",
557 __func__, hose->global_number, pe->addr);
558 return -EIO;
559 }
560
561 /*
562 * FIXME: We probably need log the error in somewhere.
563 * Lets make it up in future.
564 */
565 /* pr_info("%s", phb->diag.blob); */
566
567 spin_unlock_irqrestore(&phb->lock, flags);
568
569 return 0;
570 }
571
572 /**
573 * ioda_eeh_configure_bridge - Configure the PCI bridges for the indicated PE
574 * @pe: EEH PE
575 *
576 * For particular PE, it might have included PCI bridges. In order
577 * to make the PE work properly, those PCI bridges should be configured
578 * correctly. However, we need do nothing on P7IOC since the reset
579 * function will do everything that should be covered by the function.
580 */
581 static int ioda_eeh_configure_bridge(struct eeh_pe *pe)
582 {
583 return 0;
584 }
585
586 static void ioda_eeh_hub_diag_common(struct OpalIoP7IOCErrorData *data)
587 {
588 /* GEM */
589 pr_info(" GEM XFIR: %016llx\n", data->gemXfir);
590 pr_info(" GEM RFIR: %016llx\n", data->gemRfir);
591 pr_info(" GEM RIRQFIR: %016llx\n", data->gemRirqfir);
592 pr_info(" GEM Mask: %016llx\n", data->gemMask);
593 pr_info(" GEM RWOF: %016llx\n", data->gemRwof);
594
595 /* LEM */
596 pr_info(" LEM FIR: %016llx\n", data->lemFir);
597 pr_info(" LEM Error Mask: %016llx\n", data->lemErrMask);
598 pr_info(" LEM Action 0: %016llx\n", data->lemAction0);
599 pr_info(" LEM Action 1: %016llx\n", data->lemAction1);
600 pr_info(" LEM WOF: %016llx\n", data->lemWof);
601 }
602
603 static void ioda_eeh_hub_diag(struct pci_controller *hose)
604 {
605 struct pnv_phb *phb = hose->private_data;
606 struct OpalIoP7IOCErrorData *data;
607 long rc;
608
609 data = (struct OpalIoP7IOCErrorData *)ioda_eeh_hub_diag;
610 rc = opal_pci_get_hub_diag_data(phb->hub_id, data, PAGE_SIZE);
611 if (rc != OPAL_SUCCESS) {
612 pr_warning("%s: Failed to get HUB#%llx diag-data (%ld)\n",
613 __func__, phb->hub_id, rc);
614 return;
615 }
616
617 switch (data->type) {
618 case OPAL_P7IOC_DIAG_TYPE_RGC:
619 pr_info("P7IOC diag-data for RGC\n\n");
620 ioda_eeh_hub_diag_common(data);
621 pr_info(" RGC Status: %016llx\n", data->rgc.rgcStatus);
622 pr_info(" RGC LDCP: %016llx\n", data->rgc.rgcLdcp);
623 break;
624 case OPAL_P7IOC_DIAG_TYPE_BI:
625 pr_info("P7IOC diag-data for BI %s\n\n",
626 data->bi.biDownbound ? "Downbound" : "Upbound");
627 ioda_eeh_hub_diag_common(data);
628 pr_info(" BI LDCP 0: %016llx\n", data->bi.biLdcp0);
629 pr_info(" BI LDCP 1: %016llx\n", data->bi.biLdcp1);
630 pr_info(" BI LDCP 2: %016llx\n", data->bi.biLdcp2);
631 pr_info(" BI Fence Status: %016llx\n", data->bi.biFenceStatus);
632 break;
633 case OPAL_P7IOC_DIAG_TYPE_CI:
634 pr_info("P7IOC diag-data for CI Port %d\\nn",
635 data->ci.ciPort);
636 ioda_eeh_hub_diag_common(data);
637 pr_info(" CI Port Status: %016llx\n", data->ci.ciPortStatus);
638 pr_info(" CI Port LDCP: %016llx\n", data->ci.ciPortLdcp);
639 break;
640 case OPAL_P7IOC_DIAG_TYPE_MISC:
641 pr_info("P7IOC diag-data for MISC\n\n");
642 ioda_eeh_hub_diag_common(data);
643 break;
644 case OPAL_P7IOC_DIAG_TYPE_I2C:
645 pr_info("P7IOC diag-data for I2C\n\n");
646 ioda_eeh_hub_diag_common(data);
647 break;
648 default:
649 pr_warning("%s: Invalid type of HUB#%llx diag-data (%d)\n",
650 __func__, phb->hub_id, data->type);
651 }
652 }
653
654 static void ioda_eeh_p7ioc_phb_diag(struct pci_controller *hose,
655 struct OpalIoPhbErrorCommon *common)
656 {
657 struct OpalIoP7IOCPhbErrorData *data;
658 int i;
659
660 data = (struct OpalIoP7IOCPhbErrorData *)common;
661
662 pr_info("P7IOC PHB#%x Diag-data (Version: %d)\n\n",
663 hose->global_number, common->version);
664
665 pr_info(" brdgCtl: %08x\n", data->brdgCtl);
666
667 pr_info(" portStatusReg: %08x\n", data->portStatusReg);
668 pr_info(" rootCmplxStatus: %08x\n", data->rootCmplxStatus);
669 pr_info(" busAgentStatus: %08x\n", data->busAgentStatus);
670
671 pr_info(" deviceStatus: %08x\n", data->deviceStatus);
672 pr_info(" slotStatus: %08x\n", data->slotStatus);
673 pr_info(" linkStatus: %08x\n", data->linkStatus);
674 pr_info(" devCmdStatus: %08x\n", data->devCmdStatus);
675 pr_info(" devSecStatus: %08x\n", data->devSecStatus);
676
677 pr_info(" rootErrorStatus: %08x\n", data->rootErrorStatus);
678 pr_info(" uncorrErrorStatus: %08x\n", data->uncorrErrorStatus);
679 pr_info(" corrErrorStatus: %08x\n", data->corrErrorStatus);
680 pr_info(" tlpHdr1: %08x\n", data->tlpHdr1);
681 pr_info(" tlpHdr2: %08x\n", data->tlpHdr2);
682 pr_info(" tlpHdr3: %08x\n", data->tlpHdr3);
683 pr_info(" tlpHdr4: %08x\n", data->tlpHdr4);
684 pr_info(" sourceId: %08x\n", data->sourceId);
685
686 pr_info(" errorClass: %016llx\n", data->errorClass);
687 pr_info(" correlator: %016llx\n", data->correlator);
688 pr_info(" p7iocPlssr: %016llx\n", data->p7iocPlssr);
689 pr_info(" p7iocCsr: %016llx\n", data->p7iocCsr);
690 pr_info(" lemFir: %016llx\n", data->lemFir);
691 pr_info(" lemErrorMask: %016llx\n", data->lemErrorMask);
692 pr_info(" lemWOF: %016llx\n", data->lemWOF);
693 pr_info(" phbErrorStatus: %016llx\n", data->phbErrorStatus);
694 pr_info(" phbFirstErrorStatus: %016llx\n", data->phbFirstErrorStatus);
695 pr_info(" phbErrorLog0: %016llx\n", data->phbErrorLog0);
696 pr_info(" phbErrorLog1: %016llx\n", data->phbErrorLog1);
697 pr_info(" mmioErrorStatus: %016llx\n", data->mmioErrorStatus);
698 pr_info(" mmioFirstErrorStatus: %016llx\n", data->mmioFirstErrorStatus);
699 pr_info(" mmioErrorLog0: %016llx\n", data->mmioErrorLog0);
700 pr_info(" mmioErrorLog1: %016llx\n", data->mmioErrorLog1);
701 pr_info(" dma0ErrorStatus: %016llx\n", data->dma0ErrorStatus);
702 pr_info(" dma0FirstErrorStatus: %016llx\n", data->dma0FirstErrorStatus);
703 pr_info(" dma0ErrorLog0: %016llx\n", data->dma0ErrorLog0);
704 pr_info(" dma0ErrorLog1: %016llx\n", data->dma0ErrorLog1);
705 pr_info(" dma1ErrorStatus: %016llx\n", data->dma1ErrorStatus);
706 pr_info(" dma1FirstErrorStatus: %016llx\n", data->dma1FirstErrorStatus);
707 pr_info(" dma1ErrorLog0: %016llx\n", data->dma1ErrorLog0);
708 pr_info(" dma1ErrorLog1: %016llx\n", data->dma1ErrorLog1);
709
710 for (i = 0; i < OPAL_P7IOC_NUM_PEST_REGS; i++) {
711 if ((data->pestA[i] >> 63) == 0 &&
712 (data->pestB[i] >> 63) == 0)
713 continue;
714
715 pr_info(" PE[%3d] PESTA: %016llx\n", i, data->pestA[i]);
716 pr_info(" PESTB: %016llx\n", data->pestB[i]);
717 }
718 }
719
720 static void ioda_eeh_phb_diag(struct pci_controller *hose)
721 {
722 struct pnv_phb *phb = hose->private_data;
723 struct OpalIoPhbErrorCommon *common;
724 long rc;
725
726 common = (struct OpalIoPhbErrorCommon *)phb->diag.blob;
727 rc = opal_pci_get_phb_diag_data2(phb->opal_id, common, PAGE_SIZE);
728 if (rc != OPAL_SUCCESS) {
729 pr_warning("%s: Failed to get diag-data for PHB#%x (%ld)\n",
730 __func__, hose->global_number, rc);
731 return;
732 }
733
734 switch (common->ioType) {
735 case OPAL_PHB_ERROR_DATA_TYPE_P7IOC:
736 ioda_eeh_p7ioc_phb_diag(hose, common);
737 break;
738 default:
739 pr_warning("%s: Unrecognized I/O chip %d\n",
740 __func__, common->ioType);
741 }
742 }
743
744 static int ioda_eeh_get_phb_pe(struct pci_controller *hose,
745 struct eeh_pe **pe)
746 {
747 struct eeh_pe *phb_pe;
748
749 phb_pe = eeh_phb_pe_get(hose);
750 if (!phb_pe) {
751 pr_warning("%s Can't find PE for PHB#%d\n",
752 __func__, hose->global_number);
753 return -EEXIST;
754 }
755
756 *pe = phb_pe;
757 return 0;
758 }
759
760 static int ioda_eeh_get_pe(struct pci_controller *hose,
761 u16 pe_no, struct eeh_pe **pe)
762 {
763 struct eeh_pe *phb_pe, *dev_pe;
764 struct eeh_dev dev;
765
766 /* Find the PHB PE */
767 if (ioda_eeh_get_phb_pe(hose, &phb_pe))
768 return -EEXIST;
769
770 /* Find the PE according to PE# */
771 memset(&dev, 0, sizeof(struct eeh_dev));
772 dev.phb = hose;
773 dev.pe_config_addr = pe_no;
774 dev_pe = eeh_pe_get(&dev);
775 if (!dev_pe) {
776 pr_warning("%s: Can't find PE for PHB#%x - PE#%x\n",
777 __func__, hose->global_number, pe_no);
778 return -EEXIST;
779 }
780
781 *pe = dev_pe;
782 return 0;
783 }
784
785 /**
786 * ioda_eeh_next_error - Retrieve next error for EEH core to handle
787 * @pe: The affected PE
788 *
789 * The function is expected to be called by EEH core while it gets
790 * special EEH event (without binding PE). The function calls to
791 * OPAL APIs for next error to handle. The informational error is
792 * handled internally by platform. However, the dead IOC, dead PHB,
793 * fenced PHB and frozen PE should be handled by EEH core eventually.
794 */
795 static int ioda_eeh_next_error(struct eeh_pe **pe)
796 {
797 struct pci_controller *hose, *tmp;
798 struct pnv_phb *phb;
799 u64 frozen_pe_no;
800 u16 err_type, severity;
801 long rc;
802 int ret = 1;
803
804 /*
805 * While running here, it's safe to purge the event queue.
806 * And we should keep the cached OPAL notifier event sychronized
807 * between the kernel and firmware.
808 */
809 eeh_remove_event(NULL);
810 opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);
811
812 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
813 /*
814 * If the subordinate PCI buses of the PHB has been
815 * removed, we needn't take care of it any more.
816 */
817 phb = hose->private_data;
818 if (phb->eeh_state & PNV_EEH_STATE_REMOVED)
819 continue;
820
821 rc = opal_pci_next_error(phb->opal_id,
822 &frozen_pe_no, &err_type, &severity);
823
824 /* If OPAL API returns error, we needn't proceed */
825 if (rc != OPAL_SUCCESS) {
826 IODA_EEH_DBG("%s: Invalid return value on "
827 "PHB#%x (0x%lx) from opal_pci_next_error",
828 __func__, hose->global_number, rc);
829 continue;
830 }
831
832 /* If the PHB doesn't have error, stop processing */
833 if (err_type == OPAL_EEH_NO_ERROR ||
834 severity == OPAL_EEH_SEV_NO_ERROR) {
835 IODA_EEH_DBG("%s: No error found on PHB#%x\n",
836 __func__, hose->global_number);
837 continue;
838 }
839
840 /*
841 * Processing the error. We're expecting the error with
842 * highest priority reported upon multiple errors on the
843 * specific PHB.
844 */
845 IODA_EEH_DBG("%s: Error (%d, %d, %d) on PHB#%x\n",
846 err_type, severity, pe_no, hose->global_number);
847 switch (err_type) {
848 case OPAL_EEH_IOC_ERROR:
849 if (severity == OPAL_EEH_SEV_IOC_DEAD) {
850 list_for_each_entry_safe(hose, tmp,
851 &hose_list, list_node) {
852 phb = hose->private_data;
853 phb->eeh_state |= PNV_EEH_STATE_REMOVED;
854 }
855
856 WARN(1, "EEH: dead IOC detected\n");
857 ret = 4;
858 goto out;
859 } else if (severity == OPAL_EEH_SEV_INF)
860 ioda_eeh_hub_diag(hose);
861
862 break;
863 case OPAL_EEH_PHB_ERROR:
864 if (severity == OPAL_EEH_SEV_PHB_DEAD) {
865 if (ioda_eeh_get_phb_pe(hose, pe))
866 break;
867
868 WARN(1, "EEH: dead PHB#%x detected\n",
869 hose->global_number);
870 phb->eeh_state |= PNV_EEH_STATE_REMOVED;
871 ret = 3;
872 goto out;
873 } else if (severity == OPAL_EEH_SEV_PHB_FENCED) {
874 if (ioda_eeh_get_phb_pe(hose, pe))
875 break;
876
877 WARN(1, "EEH: fenced PHB#%x detected\n",
878 hose->global_number);
879 ret = 2;
880 goto out;
881 } else if (severity == OPAL_EEH_SEV_INF)
882 ioda_eeh_phb_diag(hose);
883
884 break;
885 case OPAL_EEH_PE_ERROR:
886 if (ioda_eeh_get_pe(hose, frozen_pe_no, pe))
887 break;
888
889 WARN(1, "EEH: Frozen PE#%x on PHB#%x detected\n",
890 (*pe)->addr, (*pe)->phb->global_number);
891 ret = 1;
892 goto out;
893 }
894 }
895
896 ret = 0;
897 out:
898 return ret;
899 }
900
901 struct pnv_eeh_ops ioda_eeh_ops = {
902 .post_init = ioda_eeh_post_init,
903 .set_option = ioda_eeh_set_option,
904 .get_state = ioda_eeh_get_state,
905 .reset = ioda_eeh_reset,
906 .get_log = ioda_eeh_get_log,
907 .configure_bridge = ioda_eeh_configure_bridge,
908 .next_error = ioda_eeh_next_error
909 };
This page took 0.050704 seconds and 4 git commands to generate.