Merge branch 'sfi' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux into...
[deliverable/linux.git] / arch / powerpc / platforms / powernv / eeh-ioda.c
1 /*
2 * The file intends to implement the functions needed by EEH, which is
3 * built on IODA compliant chip. Actually, lots of functions related
4 * to EEH would be built based on the OPAL APIs.
5 *
6 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/debugfs.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/msi.h>
20 #include <linux/notifier.h>
21 #include <linux/pci.h>
22 #include <linux/string.h>
23
24 #include <asm/eeh.h>
25 #include <asm/eeh_event.h>
26 #include <asm/io.h>
27 #include <asm/iommu.h>
28 #include <asm/msi_bitmap.h>
29 #include <asm/opal.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/ppc-pci.h>
32 #include <asm/tce.h>
33
34 #include "powernv.h"
35 #include "pci.h"
36
37 static int ioda_eeh_nb_init = 0;
38
39 static int ioda_eeh_event(struct notifier_block *nb,
40 unsigned long events, void *change)
41 {
42 uint64_t changed_evts = (uint64_t)change;
43
44 /*
45 * We simply send special EEH event if EEH has
46 * been enabled, or clear pending events in
47 * case that we enable EEH soon
48 */
49 if (!(changed_evts & OPAL_EVENT_PCI_ERROR) ||
50 !(events & OPAL_EVENT_PCI_ERROR))
51 return 0;
52
53 if (eeh_enabled())
54 eeh_send_failure_event(NULL);
55 else
56 opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);
57
58 return 0;
59 }
60
61 static struct notifier_block ioda_eeh_nb = {
62 .notifier_call = ioda_eeh_event,
63 .next = NULL,
64 .priority = 0
65 };
66
67 #ifdef CONFIG_DEBUG_FS
68 static ssize_t ioda_eeh_ei_write(struct file *filp,
69 const char __user *user_buf,
70 size_t count, loff_t *ppos)
71 {
72 struct pci_controller *hose = filp->private_data;
73 struct pnv_phb *phb = hose->private_data;
74 struct eeh_dev *edev;
75 struct eeh_pe *pe;
76 int pe_no, type, func;
77 unsigned long addr, mask;
78 char buf[50];
79 int ret;
80
81 if (!phb->eeh_ops || !phb->eeh_ops->err_inject)
82 return -ENXIO;
83
84 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
85 if (!ret)
86 return -EFAULT;
87
88 /* Retrieve parameters */
89 ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
90 &pe_no, &type, &func, &addr, &mask);
91 if (ret != 5)
92 return -EINVAL;
93
94 /* Retrieve PE */
95 edev = kzalloc(sizeof(*edev), GFP_KERNEL);
96 if (!edev)
97 return -ENOMEM;
98 edev->phb = hose;
99 edev->pe_config_addr = pe_no;
100 pe = eeh_pe_get(edev);
101 kfree(edev);
102 if (!pe)
103 return -ENODEV;
104
105 /* Do error injection */
106 ret = phb->eeh_ops->err_inject(pe, type, func, addr, mask);
107 return ret < 0 ? ret : count;
108 }
109
110 static const struct file_operations ioda_eeh_ei_fops = {
111 .open = simple_open,
112 .llseek = no_llseek,
113 .write = ioda_eeh_ei_write,
114 };
115
116 static int ioda_eeh_dbgfs_set(void *data, int offset, u64 val)
117 {
118 struct pci_controller *hose = data;
119 struct pnv_phb *phb = hose->private_data;
120
121 out_be64(phb->regs + offset, val);
122 return 0;
123 }
124
125 static int ioda_eeh_dbgfs_get(void *data, int offset, u64 *val)
126 {
127 struct pci_controller *hose = data;
128 struct pnv_phb *phb = hose->private_data;
129
130 *val = in_be64(phb->regs + offset);
131 return 0;
132 }
133
134 static int ioda_eeh_outb_dbgfs_set(void *data, u64 val)
135 {
136 return ioda_eeh_dbgfs_set(data, 0xD10, val);
137 }
138
139 static int ioda_eeh_outb_dbgfs_get(void *data, u64 *val)
140 {
141 return ioda_eeh_dbgfs_get(data, 0xD10, val);
142 }
143
144 static int ioda_eeh_inbA_dbgfs_set(void *data, u64 val)
145 {
146 return ioda_eeh_dbgfs_set(data, 0xD90, val);
147 }
148
149 static int ioda_eeh_inbA_dbgfs_get(void *data, u64 *val)
150 {
151 return ioda_eeh_dbgfs_get(data, 0xD90, val);
152 }
153
154 static int ioda_eeh_inbB_dbgfs_set(void *data, u64 val)
155 {
156 return ioda_eeh_dbgfs_set(data, 0xE10, val);
157 }
158
159 static int ioda_eeh_inbB_dbgfs_get(void *data, u64 *val)
160 {
161 return ioda_eeh_dbgfs_get(data, 0xE10, val);
162 }
163
164 DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_outb_dbgfs_ops, ioda_eeh_outb_dbgfs_get,
165 ioda_eeh_outb_dbgfs_set, "0x%llx\n");
166 DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbA_dbgfs_ops, ioda_eeh_inbA_dbgfs_get,
167 ioda_eeh_inbA_dbgfs_set, "0x%llx\n");
168 DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbB_dbgfs_ops, ioda_eeh_inbB_dbgfs_get,
169 ioda_eeh_inbB_dbgfs_set, "0x%llx\n");
170 #endif /* CONFIG_DEBUG_FS */
171
172
173 /**
174 * ioda_eeh_post_init - Chip dependent post initialization
175 * @hose: PCI controller
176 *
177 * The function will be called after eeh PEs and devices
178 * have been built. That means the EEH is ready to supply
179 * service with I/O cache.
180 */
181 static int ioda_eeh_post_init(struct pci_controller *hose)
182 {
183 struct pnv_phb *phb = hose->private_data;
184 int ret;
185
186 /* Register OPAL event notifier */
187 if (!ioda_eeh_nb_init) {
188 ret = opal_notifier_register(&ioda_eeh_nb);
189 if (ret) {
190 pr_err("%s: Can't register OPAL event notifier (%d)\n",
191 __func__, ret);
192 return ret;
193 }
194
195 ioda_eeh_nb_init = 1;
196 }
197
198 #ifdef CONFIG_DEBUG_FS
199 if (!phb->has_dbgfs && phb->dbgfs) {
200 phb->has_dbgfs = 1;
201
202 debugfs_create_file("err_injct", 0200,
203 phb->dbgfs, hose,
204 &ioda_eeh_ei_fops);
205
206 debugfs_create_file("err_injct_outbound", 0600,
207 phb->dbgfs, hose,
208 &ioda_eeh_outb_dbgfs_ops);
209 debugfs_create_file("err_injct_inboundA", 0600,
210 phb->dbgfs, hose,
211 &ioda_eeh_inbA_dbgfs_ops);
212 debugfs_create_file("err_injct_inboundB", 0600,
213 phb->dbgfs, hose,
214 &ioda_eeh_inbB_dbgfs_ops);
215 }
216 #endif
217
218 /* If EEH is enabled, we're going to rely on that.
219 * Otherwise, we restore to conventional mechanism
220 * to clear frozen PE during PCI config access.
221 */
222 if (eeh_enabled())
223 phb->flags |= PNV_PHB_FLAG_EEH;
224 else
225 phb->flags &= ~PNV_PHB_FLAG_EEH;
226
227 return 0;
228 }
229
230 /**
231 * ioda_eeh_set_option - Set EEH operation or I/O setting
232 * @pe: EEH PE
233 * @option: options
234 *
235 * Enable or disable EEH option for the indicated PE. The
236 * function also can be used to enable I/O or DMA for the
237 * PE.
238 */
239 static int ioda_eeh_set_option(struct eeh_pe *pe, int option)
240 {
241 struct pci_controller *hose = pe->phb;
242 struct pnv_phb *phb = hose->private_data;
243 bool freeze_pe = false;
244 int enable, ret = 0;
245 s64 rc;
246
247 /* Check on PE number */
248 if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
249 pr_err("%s: PE address %x out of range [0, %x] "
250 "on PHB#%x\n",
251 __func__, pe->addr, phb->ioda.total_pe,
252 hose->global_number);
253 return -EINVAL;
254 }
255
256 switch (option) {
257 case EEH_OPT_DISABLE:
258 return -EPERM;
259 case EEH_OPT_ENABLE:
260 return 0;
261 case EEH_OPT_THAW_MMIO:
262 enable = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
263 break;
264 case EEH_OPT_THAW_DMA:
265 enable = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
266 break;
267 case EEH_OPT_FREEZE_PE:
268 freeze_pe = true;
269 enable = OPAL_EEH_ACTION_SET_FREEZE_ALL;
270 break;
271 default:
272 pr_warn("%s: Invalid option %d\n",
273 __func__, option);
274 return -EINVAL;
275 }
276
277 /* If PHB supports compound PE, to handle it */
278 if (freeze_pe) {
279 if (phb->freeze_pe) {
280 phb->freeze_pe(phb, pe->addr);
281 } else {
282 rc = opal_pci_eeh_freeze_set(phb->opal_id,
283 pe->addr,
284 enable);
285 if (rc != OPAL_SUCCESS) {
286 pr_warn("%s: Failure %lld freezing "
287 "PHB#%x-PE#%x\n",
288 __func__, rc,
289 phb->hose->global_number, pe->addr);
290 ret = -EIO;
291 }
292 }
293 } else {
294 if (phb->unfreeze_pe) {
295 ret = phb->unfreeze_pe(phb, pe->addr, enable);
296 } else {
297 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
298 pe->addr,
299 enable);
300 if (rc != OPAL_SUCCESS) {
301 pr_warn("%s: Failure %lld enable %d "
302 "for PHB#%x-PE#%x\n",
303 __func__, rc, option,
304 phb->hose->global_number, pe->addr);
305 ret = -EIO;
306 }
307 }
308 }
309
310 return ret;
311 }
312
313 static void ioda_eeh_phb_diag(struct eeh_pe *pe)
314 {
315 struct pnv_phb *phb = pe->phb->private_data;
316 long rc;
317
318 rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
319 PNV_PCI_DIAG_BUF_SIZE);
320 if (rc != OPAL_SUCCESS)
321 pr_warn("%s: Failed to get diag-data for PHB#%x (%ld)\n",
322 __func__, pe->phb->global_number, rc);
323 }
324
325 static int ioda_eeh_get_phb_state(struct eeh_pe *pe)
326 {
327 struct pnv_phb *phb = pe->phb->private_data;
328 u8 fstate;
329 __be16 pcierr;
330 s64 rc;
331 int result = 0;
332
333 rc = opal_pci_eeh_freeze_status(phb->opal_id,
334 pe->addr,
335 &fstate,
336 &pcierr,
337 NULL);
338 if (rc != OPAL_SUCCESS) {
339 pr_warn("%s: Failure %lld getting PHB#%x state\n",
340 __func__, rc, phb->hose->global_number);
341 return EEH_STATE_NOT_SUPPORT;
342 }
343
344 /*
345 * Check PHB state. If the PHB is frozen for the
346 * first time, to dump the PHB diag-data.
347 */
348 if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
349 result = (EEH_STATE_MMIO_ACTIVE |
350 EEH_STATE_DMA_ACTIVE |
351 EEH_STATE_MMIO_ENABLED |
352 EEH_STATE_DMA_ENABLED);
353 } else if (!(pe->state & EEH_PE_ISOLATED)) {
354 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
355 ioda_eeh_phb_diag(pe);
356
357 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
358 pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
359 }
360
361 return result;
362 }
363
364 static int ioda_eeh_get_pe_state(struct eeh_pe *pe)
365 {
366 struct pnv_phb *phb = pe->phb->private_data;
367 u8 fstate;
368 __be16 pcierr;
369 s64 rc;
370 int result;
371
372 /*
373 * We don't clobber hardware frozen state until PE
374 * reset is completed. In order to keep EEH core
375 * moving forward, we have to return operational
376 * state during PE reset.
377 */
378 if (pe->state & EEH_PE_RESET) {
379 result = (EEH_STATE_MMIO_ACTIVE |
380 EEH_STATE_DMA_ACTIVE |
381 EEH_STATE_MMIO_ENABLED |
382 EEH_STATE_DMA_ENABLED);
383 return result;
384 }
385
386 /*
387 * Fetch PE state from hardware. If the PHB
388 * supports compound PE, let it handle that.
389 */
390 if (phb->get_pe_state) {
391 fstate = phb->get_pe_state(phb, pe->addr);
392 } else {
393 rc = opal_pci_eeh_freeze_status(phb->opal_id,
394 pe->addr,
395 &fstate,
396 &pcierr,
397 NULL);
398 if (rc != OPAL_SUCCESS) {
399 pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
400 __func__, rc, phb->hose->global_number, pe->addr);
401 return EEH_STATE_NOT_SUPPORT;
402 }
403 }
404
405 /* Figure out state */
406 switch (fstate) {
407 case OPAL_EEH_STOPPED_NOT_FROZEN:
408 result = (EEH_STATE_MMIO_ACTIVE |
409 EEH_STATE_DMA_ACTIVE |
410 EEH_STATE_MMIO_ENABLED |
411 EEH_STATE_DMA_ENABLED);
412 break;
413 case OPAL_EEH_STOPPED_MMIO_FREEZE:
414 result = (EEH_STATE_DMA_ACTIVE |
415 EEH_STATE_DMA_ENABLED);
416 break;
417 case OPAL_EEH_STOPPED_DMA_FREEZE:
418 result = (EEH_STATE_MMIO_ACTIVE |
419 EEH_STATE_MMIO_ENABLED);
420 break;
421 case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
422 result = 0;
423 break;
424 case OPAL_EEH_STOPPED_RESET:
425 result = EEH_STATE_RESET_ACTIVE;
426 break;
427 case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
428 result = EEH_STATE_UNAVAILABLE;
429 break;
430 case OPAL_EEH_STOPPED_PERM_UNAVAIL:
431 result = EEH_STATE_NOT_SUPPORT;
432 break;
433 default:
434 result = EEH_STATE_NOT_SUPPORT;
435 pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
436 __func__, phb->hose->global_number,
437 pe->addr, fstate);
438 }
439
440 /*
441 * If PHB supports compound PE, to freeze all
442 * slave PEs for consistency.
443 *
444 * If the PE is switching to frozen state for the
445 * first time, to dump the PHB diag-data.
446 */
447 if (!(result & EEH_STATE_NOT_SUPPORT) &&
448 !(result & EEH_STATE_UNAVAILABLE) &&
449 !(result & EEH_STATE_MMIO_ACTIVE) &&
450 !(result & EEH_STATE_DMA_ACTIVE) &&
451 !(pe->state & EEH_PE_ISOLATED)) {
452 if (phb->freeze_pe)
453 phb->freeze_pe(phb, pe->addr);
454
455 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
456 ioda_eeh_phb_diag(pe);
457
458 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
459 pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
460 }
461
462 return result;
463 }
464
465 /**
466 * ioda_eeh_get_state - Retrieve the state of PE
467 * @pe: EEH PE
468 *
469 * The PE's state should be retrieved from the PEEV, PEST
470 * IODA tables. Since the OPAL has exported the function
471 * to do it, it'd better to use that.
472 */
473 static int ioda_eeh_get_state(struct eeh_pe *pe)
474 {
475 struct pnv_phb *phb = pe->phb->private_data;
476
477 /* Sanity check on PE number. PHB PE should have 0 */
478 if (pe->addr < 0 ||
479 pe->addr >= phb->ioda.total_pe) {
480 pr_warn("%s: PHB#%x-PE#%x out of range [0, %x]\n",
481 __func__, phb->hose->global_number,
482 pe->addr, phb->ioda.total_pe);
483 return EEH_STATE_NOT_SUPPORT;
484 }
485
486 if (pe->type & EEH_PE_PHB)
487 return ioda_eeh_get_phb_state(pe);
488
489 return ioda_eeh_get_pe_state(pe);
490 }
491
492 static s64 ioda_eeh_phb_poll(struct pnv_phb *phb)
493 {
494 s64 rc = OPAL_HARDWARE;
495
496 while (1) {
497 rc = opal_pci_poll(phb->opal_id);
498 if (rc <= 0)
499 break;
500
501 if (system_state < SYSTEM_RUNNING)
502 udelay(1000 * rc);
503 else
504 msleep(rc);
505 }
506
507 return rc;
508 }
509
510 int ioda_eeh_phb_reset(struct pci_controller *hose, int option)
511 {
512 struct pnv_phb *phb = hose->private_data;
513 s64 rc = OPAL_HARDWARE;
514
515 pr_debug("%s: Reset PHB#%x, option=%d\n",
516 __func__, hose->global_number, option);
517
518 /* Issue PHB complete reset request */
519 if (option == EEH_RESET_FUNDAMENTAL ||
520 option == EEH_RESET_HOT)
521 rc = opal_pci_reset(phb->opal_id,
522 OPAL_RESET_PHB_COMPLETE,
523 OPAL_ASSERT_RESET);
524 else if (option == EEH_RESET_DEACTIVATE)
525 rc = opal_pci_reset(phb->opal_id,
526 OPAL_RESET_PHB_COMPLETE,
527 OPAL_DEASSERT_RESET);
528 if (rc < 0)
529 goto out;
530
531 /*
532 * Poll state of the PHB until the request is done
533 * successfully. The PHB reset is usually PHB complete
534 * reset followed by hot reset on root bus. So we also
535 * need the PCI bus settlement delay.
536 */
537 rc = ioda_eeh_phb_poll(phb);
538 if (option == EEH_RESET_DEACTIVATE) {
539 if (system_state < SYSTEM_RUNNING)
540 udelay(1000 * EEH_PE_RST_SETTLE_TIME);
541 else
542 msleep(EEH_PE_RST_SETTLE_TIME);
543 }
544 out:
545 if (rc != OPAL_SUCCESS)
546 return -EIO;
547
548 return 0;
549 }
550
551 static int ioda_eeh_root_reset(struct pci_controller *hose, int option)
552 {
553 struct pnv_phb *phb = hose->private_data;
554 s64 rc = OPAL_SUCCESS;
555
556 pr_debug("%s: Reset PHB#%x, option=%d\n",
557 __func__, hose->global_number, option);
558
559 /*
560 * During the reset deassert time, we needn't care
561 * the reset scope because the firmware does nothing
562 * for fundamental or hot reset during deassert phase.
563 */
564 if (option == EEH_RESET_FUNDAMENTAL)
565 rc = opal_pci_reset(phb->opal_id,
566 OPAL_RESET_PCI_FUNDAMENTAL,
567 OPAL_ASSERT_RESET);
568 else if (option == EEH_RESET_HOT)
569 rc = opal_pci_reset(phb->opal_id,
570 OPAL_RESET_PCI_HOT,
571 OPAL_ASSERT_RESET);
572 else if (option == EEH_RESET_DEACTIVATE)
573 rc = opal_pci_reset(phb->opal_id,
574 OPAL_RESET_PCI_HOT,
575 OPAL_DEASSERT_RESET);
576 if (rc < 0)
577 goto out;
578
579 /* Poll state of the PHB until the request is done */
580 rc = ioda_eeh_phb_poll(phb);
581 if (option == EEH_RESET_DEACTIVATE)
582 msleep(EEH_PE_RST_SETTLE_TIME);
583 out:
584 if (rc != OPAL_SUCCESS)
585 return -EIO;
586
587 return 0;
588 }
589
590 static int ioda_eeh_bridge_reset(struct pci_dev *dev, int option)
591
592 {
593 struct device_node *dn = pci_device_to_OF_node(dev);
594 struct eeh_dev *edev = of_node_to_eeh_dev(dn);
595 int aer = edev ? edev->aer_cap : 0;
596 u32 ctrl;
597
598 pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
599 __func__, pci_domain_nr(dev->bus),
600 dev->bus->number, option);
601
602 switch (option) {
603 case EEH_RESET_FUNDAMENTAL:
604 case EEH_RESET_HOT:
605 /* Don't report linkDown event */
606 if (aer) {
607 eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK,
608 4, &ctrl);
609 ctrl |= PCI_ERR_UNC_SURPDN;
610 eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK,
611 4, ctrl);
612 }
613
614 eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl);
615 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
616 eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl);
617 msleep(EEH_PE_RST_HOLD_TIME);
618
619 break;
620 case EEH_RESET_DEACTIVATE:
621 eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl);
622 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
623 eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl);
624 msleep(EEH_PE_RST_SETTLE_TIME);
625
626 /* Continue reporting linkDown event */
627 if (aer) {
628 eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK,
629 4, &ctrl);
630 ctrl &= ~PCI_ERR_UNC_SURPDN;
631 eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK,
632 4, ctrl);
633 }
634
635 break;
636 }
637
638 return 0;
639 }
640
641 void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
642 {
643 struct pci_controller *hose;
644
645 if (pci_is_root_bus(dev->bus)) {
646 hose = pci_bus_to_host(dev->bus);
647 ioda_eeh_root_reset(hose, EEH_RESET_HOT);
648 ioda_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
649 } else {
650 ioda_eeh_bridge_reset(dev, EEH_RESET_HOT);
651 ioda_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
652 }
653 }
654
655 /**
656 * ioda_eeh_reset - Reset the indicated PE
657 * @pe: EEH PE
658 * @option: reset option
659 *
660 * Do reset on the indicated PE. For PCI bus sensitive PE,
661 * we need to reset the parent p2p bridge. The PHB has to
662 * be reinitialized if the p2p bridge is root bridge. For
663 * PCI device sensitive PE, we will try to reset the device
664 * through FLR. For now, we don't have OPAL APIs to do HARD
665 * reset yet, so all reset would be SOFT (HOT) reset.
666 */
667 static int ioda_eeh_reset(struct eeh_pe *pe, int option)
668 {
669 struct pci_controller *hose = pe->phb;
670 struct pci_bus *bus;
671 int ret;
672
673 /*
674 * For PHB reset, we always have complete reset. For those PEs whose
675 * primary bus derived from root complex (root bus) or root port
676 * (usually bus#1), we apply hot or fundamental reset on the root port.
677 * For other PEs, we always have hot reset on the PE primary bus.
678 *
679 * Here, we have different design to pHyp, which always clear the
680 * frozen state during PE reset. However, the good idea here from
681 * benh is to keep frozen state before we get PE reset done completely
682 * (until BAR restore). With the frozen state, HW drops illegal IO
683 * or MMIO access, which can incur recrusive frozen PE during PE
684 * reset. The side effect is that EEH core has to clear the frozen
685 * state explicitly after BAR restore.
686 */
687 if (pe->type & EEH_PE_PHB) {
688 ret = ioda_eeh_phb_reset(hose, option);
689 } else {
690 struct pnv_phb *phb;
691 s64 rc;
692
693 /*
694 * The frozen PE might be caused by PAPR error injection
695 * registers, which are expected to be cleared after hitting
696 * frozen PE as stated in the hardware spec. Unfortunately,
697 * that's not true on P7IOC. So we have to clear it manually
698 * to avoid recursive EEH errors during recovery.
699 */
700 phb = hose->private_data;
701 if (phb->model == PNV_PHB_MODEL_P7IOC &&
702 (option == EEH_RESET_HOT ||
703 option == EEH_RESET_FUNDAMENTAL)) {
704 rc = opal_pci_reset(phb->opal_id,
705 OPAL_RESET_PHB_ERROR,
706 OPAL_ASSERT_RESET);
707 if (rc != OPAL_SUCCESS) {
708 pr_warn("%s: Failure %lld clearing "
709 "error injection registers\n",
710 __func__, rc);
711 return -EIO;
712 }
713 }
714
715 bus = eeh_pe_bus_get(pe);
716 if (pci_is_root_bus(bus) ||
717 pci_is_root_bus(bus->parent))
718 ret = ioda_eeh_root_reset(hose, option);
719 else
720 ret = ioda_eeh_bridge_reset(bus->self, option);
721 }
722
723 return ret;
724 }
725
726 /**
727 * ioda_eeh_get_log - Retrieve error log
728 * @pe: frozen PE
729 * @severity: permanent or temporary error
730 * @drv_log: device driver log
731 * @len: length of device driver log
732 *
733 * Retrieve error log, which contains log from device driver
734 * and firmware.
735 */
736 static int ioda_eeh_get_log(struct eeh_pe *pe, int severity,
737 char *drv_log, unsigned long len)
738 {
739 if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
740 pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
741
742 return 0;
743 }
744
745 /**
746 * ioda_eeh_configure_bridge - Configure the PCI bridges for the indicated PE
747 * @pe: EEH PE
748 *
749 * For particular PE, it might have included PCI bridges. In order
750 * to make the PE work properly, those PCI bridges should be configured
751 * correctly. However, we need do nothing on P7IOC since the reset
752 * function will do everything that should be covered by the function.
753 */
754 static int ioda_eeh_configure_bridge(struct eeh_pe *pe)
755 {
756 return 0;
757 }
758
759 static int ioda_eeh_err_inject(struct eeh_pe *pe, int type, int func,
760 unsigned long addr, unsigned long mask)
761 {
762 struct pci_controller *hose = pe->phb;
763 struct pnv_phb *phb = hose->private_data;
764 s64 ret;
765
766 /* Sanity check on error type */
767 if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
768 type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
769 pr_warn("%s: Invalid error type %d\n",
770 __func__, type);
771 return -ERANGE;
772 }
773
774 if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
775 func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
776 pr_warn("%s: Invalid error function %d\n",
777 __func__, func);
778 return -ERANGE;
779 }
780
781 /* Firmware supports error injection ? */
782 if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
783 pr_warn("%s: Firmware doesn't support error injection\n",
784 __func__);
785 return -ENXIO;
786 }
787
788 /* Do error injection */
789 ret = opal_pci_err_inject(phb->opal_id, pe->addr,
790 type, func, addr, mask);
791 if (ret != OPAL_SUCCESS) {
792 pr_warn("%s: Failure %lld injecting error "
793 "%d-%d to PHB#%x-PE#%x\n",
794 __func__, ret, type, func,
795 hose->global_number, pe->addr);
796 return -EIO;
797 }
798
799 return 0;
800 }
801
802 static void ioda_eeh_hub_diag_common(struct OpalIoP7IOCErrorData *data)
803 {
804 /* GEM */
805 if (data->gemXfir || data->gemRfir ||
806 data->gemRirqfir || data->gemMask || data->gemRwof)
807 pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n",
808 be64_to_cpu(data->gemXfir),
809 be64_to_cpu(data->gemRfir),
810 be64_to_cpu(data->gemRirqfir),
811 be64_to_cpu(data->gemMask),
812 be64_to_cpu(data->gemRwof));
813
814 /* LEM */
815 if (data->lemFir || data->lemErrMask ||
816 data->lemAction0 || data->lemAction1 || data->lemWof)
817 pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n",
818 be64_to_cpu(data->lemFir),
819 be64_to_cpu(data->lemErrMask),
820 be64_to_cpu(data->lemAction0),
821 be64_to_cpu(data->lemAction1),
822 be64_to_cpu(data->lemWof));
823 }
824
825 static void ioda_eeh_hub_diag(struct pci_controller *hose)
826 {
827 struct pnv_phb *phb = hose->private_data;
828 struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
829 long rc;
830
831 rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
832 if (rc != OPAL_SUCCESS) {
833 pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
834 __func__, phb->hub_id, rc);
835 return;
836 }
837
838 switch (data->type) {
839 case OPAL_P7IOC_DIAG_TYPE_RGC:
840 pr_info("P7IOC diag-data for RGC\n\n");
841 ioda_eeh_hub_diag_common(data);
842 if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
843 pr_info(" RGC: %016llx %016llx\n",
844 be64_to_cpu(data->rgc.rgcStatus),
845 be64_to_cpu(data->rgc.rgcLdcp));
846 break;
847 case OPAL_P7IOC_DIAG_TYPE_BI:
848 pr_info("P7IOC diag-data for BI %s\n\n",
849 data->bi.biDownbound ? "Downbound" : "Upbound");
850 ioda_eeh_hub_diag_common(data);
851 if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
852 data->bi.biLdcp2 || data->bi.biFenceStatus)
853 pr_info(" BI: %016llx %016llx %016llx %016llx\n",
854 be64_to_cpu(data->bi.biLdcp0),
855 be64_to_cpu(data->bi.biLdcp1),
856 be64_to_cpu(data->bi.biLdcp2),
857 be64_to_cpu(data->bi.biFenceStatus));
858 break;
859 case OPAL_P7IOC_DIAG_TYPE_CI:
860 pr_info("P7IOC diag-data for CI Port %d\n\n",
861 data->ci.ciPort);
862 ioda_eeh_hub_diag_common(data);
863 if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
864 pr_info(" CI: %016llx %016llx\n",
865 be64_to_cpu(data->ci.ciPortStatus),
866 be64_to_cpu(data->ci.ciPortLdcp));
867 break;
868 case OPAL_P7IOC_DIAG_TYPE_MISC:
869 pr_info("P7IOC diag-data for MISC\n\n");
870 ioda_eeh_hub_diag_common(data);
871 break;
872 case OPAL_P7IOC_DIAG_TYPE_I2C:
873 pr_info("P7IOC diag-data for I2C\n\n");
874 ioda_eeh_hub_diag_common(data);
875 break;
876 default:
877 pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
878 __func__, phb->hub_id, data->type);
879 }
880 }
881
882 static int ioda_eeh_get_pe(struct pci_controller *hose,
883 u16 pe_no, struct eeh_pe **pe)
884 {
885 struct pnv_phb *phb = hose->private_data;
886 struct pnv_ioda_pe *pnv_pe;
887 struct eeh_pe *dev_pe;
888 struct eeh_dev edev;
889
890 /*
891 * If PHB supports compound PE, to fetch
892 * the master PE because slave PE is invisible
893 * to EEH core.
894 */
895 pnv_pe = &phb->ioda.pe_array[pe_no];
896 if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
897 pnv_pe = pnv_pe->master;
898 WARN_ON(!pnv_pe ||
899 !(pnv_pe->flags & PNV_IODA_PE_MASTER));
900 pe_no = pnv_pe->pe_number;
901 }
902
903 /* Find the PE according to PE# */
904 memset(&edev, 0, sizeof(struct eeh_dev));
905 edev.phb = hose;
906 edev.pe_config_addr = pe_no;
907 dev_pe = eeh_pe_get(&edev);
908 if (!dev_pe)
909 return -EEXIST;
910
911 /* Freeze the (compound) PE */
912 *pe = dev_pe;
913 if (!(dev_pe->state & EEH_PE_ISOLATED))
914 phb->freeze_pe(phb, pe_no);
915
916 /*
917 * At this point, we're sure the (compound) PE should
918 * have been frozen. However, we still need poke until
919 * hitting the frozen PE on top level.
920 */
921 dev_pe = dev_pe->parent;
922 while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
923 int ret;
924 int active_flags = (EEH_STATE_MMIO_ACTIVE |
925 EEH_STATE_DMA_ACTIVE);
926
927 ret = eeh_ops->get_state(dev_pe, NULL);
928 if (ret <= 0 || (ret & active_flags) == active_flags) {
929 dev_pe = dev_pe->parent;
930 continue;
931 }
932
933 /* Frozen parent PE */
934 *pe = dev_pe;
935 if (!(dev_pe->state & EEH_PE_ISOLATED))
936 phb->freeze_pe(phb, dev_pe->addr);
937
938 /* Next one */
939 dev_pe = dev_pe->parent;
940 }
941
942 return 0;
943 }
944
945 /**
946 * ioda_eeh_next_error - Retrieve next error for EEH core to handle
947 * @pe: The affected PE
948 *
949 * The function is expected to be called by EEH core while it gets
950 * special EEH event (without binding PE). The function calls to
951 * OPAL APIs for next error to handle. The informational error is
952 * handled internally by platform. However, the dead IOC, dead PHB,
953 * fenced PHB and frozen PE should be handled by EEH core eventually.
954 */
955 static int ioda_eeh_next_error(struct eeh_pe **pe)
956 {
957 struct pci_controller *hose;
958 struct pnv_phb *phb;
959 struct eeh_pe *phb_pe, *parent_pe;
960 __be64 frozen_pe_no;
961 __be16 err_type, severity;
962 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
963 long rc;
964 int state, ret = EEH_NEXT_ERR_NONE;
965
966 /*
967 * While running here, it's safe to purge the event queue.
968 * And we should keep the cached OPAL notifier event sychronized
969 * between the kernel and firmware.
970 */
971 eeh_remove_event(NULL, false);
972 opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);
973
974 list_for_each_entry(hose, &hose_list, list_node) {
975 /*
976 * If the subordinate PCI buses of the PHB has been
977 * removed or is exactly under error recovery, we
978 * needn't take care of it any more.
979 */
980 phb = hose->private_data;
981 phb_pe = eeh_phb_pe_get(hose);
982 if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
983 continue;
984
985 rc = opal_pci_next_error(phb->opal_id,
986 &frozen_pe_no, &err_type, &severity);
987
988 /* If OPAL API returns error, we needn't proceed */
989 if (rc != OPAL_SUCCESS) {
990 pr_devel("%s: Invalid return value on "
991 "PHB#%x (0x%lx) from opal_pci_next_error",
992 __func__, hose->global_number, rc);
993 continue;
994 }
995
996 /* If the PHB doesn't have error, stop processing */
997 if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
998 be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
999 pr_devel("%s: No error found on PHB#%x\n",
1000 __func__, hose->global_number);
1001 continue;
1002 }
1003
1004 /*
1005 * Processing the error. We're expecting the error with
1006 * highest priority reported upon multiple errors on the
1007 * specific PHB.
1008 */
1009 pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1010 __func__, be16_to_cpu(err_type), be16_to_cpu(severity),
1011 be64_to_cpu(frozen_pe_no), hose->global_number);
1012 switch (be16_to_cpu(err_type)) {
1013 case OPAL_EEH_IOC_ERROR:
1014 if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1015 pr_err("EEH: dead IOC detected\n");
1016 ret = EEH_NEXT_ERR_DEAD_IOC;
1017 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1018 pr_info("EEH: IOC informative error "
1019 "detected\n");
1020 ioda_eeh_hub_diag(hose);
1021 ret = EEH_NEXT_ERR_NONE;
1022 }
1023
1024 break;
1025 case OPAL_EEH_PHB_ERROR:
1026 if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1027 *pe = phb_pe;
1028 pr_err("EEH: dead PHB#%x detected, "
1029 "location: %s\n",
1030 hose->global_number,
1031 eeh_pe_loc_get(phb_pe));
1032 ret = EEH_NEXT_ERR_DEAD_PHB;
1033 } else if (be16_to_cpu(severity) ==
1034 OPAL_EEH_SEV_PHB_FENCED) {
1035 *pe = phb_pe;
1036 pr_err("EEH: Fenced PHB#%x detected, "
1037 "location: %s\n",
1038 hose->global_number,
1039 eeh_pe_loc_get(phb_pe));
1040 ret = EEH_NEXT_ERR_FENCED_PHB;
1041 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1042 pr_info("EEH: PHB#%x informative error "
1043 "detected, location: %s\n",
1044 hose->global_number,
1045 eeh_pe_loc_get(phb_pe));
1046 ioda_eeh_phb_diag(phb_pe);
1047 pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1048 ret = EEH_NEXT_ERR_NONE;
1049 }
1050
1051 break;
1052 case OPAL_EEH_PE_ERROR:
1053 /*
1054 * If we can't find the corresponding PE, we
1055 * just try to unfreeze.
1056 */
1057 if (ioda_eeh_get_pe(hose,
1058 be64_to_cpu(frozen_pe_no), pe)) {
1059 /* Try best to clear it */
1060 pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1061 hose->global_number, frozen_pe_no);
1062 pr_info("EEH: PHB location: %s\n",
1063 eeh_pe_loc_get(phb_pe));
1064 opal_pci_eeh_freeze_clear(phb->opal_id, frozen_pe_no,
1065 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1066 ret = EEH_NEXT_ERR_NONE;
1067 } else if ((*pe)->state & EEH_PE_ISOLATED ||
1068 eeh_pe_passed(*pe)) {
1069 ret = EEH_NEXT_ERR_NONE;
1070 } else {
1071 pr_err("EEH: Frozen PE#%x on PHB#%x detected\n",
1072 (*pe)->addr, (*pe)->phb->global_number);
1073 pr_err("EEH: PE location: %s, PHB location: %s\n",
1074 eeh_pe_loc_get(*pe), eeh_pe_loc_get(phb_pe));
1075 ret = EEH_NEXT_ERR_FROZEN_PE;
1076 }
1077
1078 break;
1079 default:
1080 pr_warn("%s: Unexpected error type %d\n",
1081 __func__, be16_to_cpu(err_type));
1082 }
1083
1084 /*
1085 * EEH core will try recover from fenced PHB or
1086 * frozen PE. In the time for frozen PE, EEH core
1087 * enable IO path for that before collecting logs,
1088 * but it ruins the site. So we have to dump the
1089 * log in advance here.
1090 */
1091 if ((ret == EEH_NEXT_ERR_FROZEN_PE ||
1092 ret == EEH_NEXT_ERR_FENCED_PHB) &&
1093 !((*pe)->state & EEH_PE_ISOLATED)) {
1094 eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1095 ioda_eeh_phb_diag(*pe);
1096
1097 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1098 pnv_pci_dump_phb_diag_data((*pe)->phb,
1099 (*pe)->data);
1100 }
1101
1102 /*
1103 * We probably have the frozen parent PE out there and
1104 * we need have to handle frozen parent PE firstly.
1105 */
1106 if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1107 parent_pe = (*pe)->parent;
1108 while (parent_pe) {
1109 /* Hit the ceiling ? */
1110 if (parent_pe->type & EEH_PE_PHB)
1111 break;
1112
1113 /* Frozen parent PE ? */
1114 state = ioda_eeh_get_state(parent_pe);
1115 if (state > 0 &&
1116 (state & active_flags) != active_flags)
1117 *pe = parent_pe;
1118
1119 /* Next parent level */
1120 parent_pe = parent_pe->parent;
1121 }
1122
1123 /* We possibly migrate to another PE */
1124 eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1125 }
1126
1127 /*
1128 * If we have no errors on the specific PHB or only
1129 * informative error there, we continue poking it.
1130 * Otherwise, we need actions to be taken by upper
1131 * layer.
1132 */
1133 if (ret > EEH_NEXT_ERR_INF)
1134 break;
1135 }
1136
1137 return ret;
1138 }
1139
1140 struct pnv_eeh_ops ioda_eeh_ops = {
1141 .post_init = ioda_eeh_post_init,
1142 .set_option = ioda_eeh_set_option,
1143 .get_state = ioda_eeh_get_state,
1144 .reset = ioda_eeh_reset,
1145 .get_log = ioda_eeh_get_log,
1146 .configure_bridge = ioda_eeh_configure_bridge,
1147 .err_inject = ioda_eeh_err_inject,
1148 .next_error = ioda_eeh_next_error
1149 };
This page took 0.336724 seconds and 6 git commands to generate.