powerpc/powernv: Use PE instead of number during setup and release
[deliverable/linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS 1
56 #define POWERNV_IOMMU_MAX_LEVELS 5
57
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59
60 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61 const char *fmt, ...)
62 {
63 struct va_format vaf;
64 va_list args;
65 char pfix[32];
66
67 va_start(args, fmt);
68
69 vaf.fmt = fmt;
70 vaf.va = &args;
71
72 if (pe->flags & PNV_IODA_PE_DEV)
73 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75 sprintf(pfix, "%04x:%02x ",
76 pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78 else if (pe->flags & PNV_IODA_PE_VF)
79 sprintf(pfix, "%04x:%02x:%2x.%d",
80 pci_domain_nr(pe->parent_dev->bus),
81 (pe->rid & 0xff00) >> 8,
82 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84
85 printk("%spci %s: [PE# %.3d] %pV",
86 level, pfix, pe->pe_number, &vaf);
87
88 va_end(args);
89 }
90
91 #define pe_err(pe, fmt, ...) \
92 pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
93 #define pe_warn(pe, fmt, ...) \
94 pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
95 #define pe_info(pe, fmt, ...) \
96 pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
97
98 static bool pnv_iommu_bypass_disabled __read_mostly;
99
100 static int __init iommu_setup(char *str)
101 {
102 if (!str)
103 return -EINVAL;
104
105 while (*str) {
106 if (!strncmp(str, "nobypass", 8)) {
107 pnv_iommu_bypass_disabled = true;
108 pr_info("PowerNV: IOMMU bypass window disabled.\n");
109 break;
110 }
111 str += strcspn(str, ",");
112 if (*str == ',')
113 str++;
114 }
115
116 return 0;
117 }
118 early_param("iommu", iommu_setup);
119
120 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
121 {
122 return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
123 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
124 }
125
126 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
127 {
128 phb->ioda.pe_array[pe_no].phb = phb;
129 phb->ioda.pe_array[pe_no].pe_number = pe_no;
130
131 return &phb->ioda.pe_array[pe_no];
132 }
133
134 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
135 {
136 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
137 pr_warn("%s: Invalid PE %d on PHB#%x\n",
138 __func__, pe_no, phb->hose->global_number);
139 return;
140 }
141
142 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
143 pr_debug("%s: PE %d was reserved on PHB#%x\n",
144 __func__, pe_no, phb->hose->global_number);
145
146 pnv_ioda_init_pe(phb, pe_no);
147 }
148
149 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
150 {
151 unsigned long pe;
152
153 do {
154 pe = find_next_zero_bit(phb->ioda.pe_alloc,
155 phb->ioda.total_pe_num, 0);
156 if (pe >= phb->ioda.total_pe_num)
157 return NULL;
158 } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
159
160 return pnv_ioda_init_pe(phb, pe);
161 }
162
163 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
164 {
165 struct pnv_phb *phb = pe->phb;
166
167 WARN_ON(pe->pdev);
168
169 memset(pe, 0, sizeof(struct pnv_ioda_pe));
170 clear_bit(pe->pe_number, phb->ioda.pe_alloc);
171 }
172
173 /* The default M64 BAR is shared by all PEs */
174 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
175 {
176 const char *desc;
177 struct resource *r;
178 s64 rc;
179
180 /* Configure the default M64 BAR */
181 rc = opal_pci_set_phb_mem_window(phb->opal_id,
182 OPAL_M64_WINDOW_TYPE,
183 phb->ioda.m64_bar_idx,
184 phb->ioda.m64_base,
185 0, /* unused */
186 phb->ioda.m64_size);
187 if (rc != OPAL_SUCCESS) {
188 desc = "configuring";
189 goto fail;
190 }
191
192 /* Enable the default M64 BAR */
193 rc = opal_pci_phb_mmio_enable(phb->opal_id,
194 OPAL_M64_WINDOW_TYPE,
195 phb->ioda.m64_bar_idx,
196 OPAL_ENABLE_M64_SPLIT);
197 if (rc != OPAL_SUCCESS) {
198 desc = "enabling";
199 goto fail;
200 }
201
202 /* Mark the M64 BAR assigned */
203 set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
204
205 /*
206 * Strip off the segment used by the reserved PE, which is
207 * expected to be 0 or last one of PE capabicity.
208 */
209 r = &phb->hose->mem_resources[1];
210 if (phb->ioda.reserved_pe_idx == 0)
211 r->start += phb->ioda.m64_segsize;
212 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
213 r->end -= phb->ioda.m64_segsize;
214 else
215 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
216 phb->ioda.reserved_pe_idx);
217
218 return 0;
219
220 fail:
221 pr_warn(" Failure %lld %s M64 BAR#%d\n",
222 rc, desc, phb->ioda.m64_bar_idx);
223 opal_pci_phb_mmio_enable(phb->opal_id,
224 OPAL_M64_WINDOW_TYPE,
225 phb->ioda.m64_bar_idx,
226 OPAL_DISABLE_M64);
227 return -EIO;
228 }
229
230 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
231 unsigned long *pe_bitmap)
232 {
233 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
234 struct pnv_phb *phb = hose->private_data;
235 struct resource *r;
236 resource_size_t base, sgsz, start, end;
237 int segno, i;
238
239 base = phb->ioda.m64_base;
240 sgsz = phb->ioda.m64_segsize;
241 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
242 r = &pdev->resource[i];
243 if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
244 continue;
245
246 start = _ALIGN_DOWN(r->start - base, sgsz);
247 end = _ALIGN_UP(r->end - base, sgsz);
248 for (segno = start / sgsz; segno < end / sgsz; segno++) {
249 if (pe_bitmap)
250 set_bit(segno, pe_bitmap);
251 else
252 pnv_ioda_reserve_pe(phb, segno);
253 }
254 }
255 }
256
257 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
258 {
259 struct resource *r;
260 int index;
261
262 /*
263 * There are 16 M64 BARs, each of which has 8 segments. So
264 * there are as many M64 segments as the maximum number of
265 * PEs, which is 128.
266 */
267 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
268 unsigned long base, segsz = phb->ioda.m64_segsize;
269 int64_t rc;
270
271 base = phb->ioda.m64_base +
272 index * PNV_IODA1_M64_SEGS * segsz;
273 rc = opal_pci_set_phb_mem_window(phb->opal_id,
274 OPAL_M64_WINDOW_TYPE, index, base, 0,
275 PNV_IODA1_M64_SEGS * segsz);
276 if (rc != OPAL_SUCCESS) {
277 pr_warn(" Error %lld setting M64 PHB#%d-BAR#%d\n",
278 rc, phb->hose->global_number, index);
279 goto fail;
280 }
281
282 rc = opal_pci_phb_mmio_enable(phb->opal_id,
283 OPAL_M64_WINDOW_TYPE, index,
284 OPAL_ENABLE_M64_SPLIT);
285 if (rc != OPAL_SUCCESS) {
286 pr_warn(" Error %lld enabling M64 PHB#%d-BAR#%d\n",
287 rc, phb->hose->global_number, index);
288 goto fail;
289 }
290 }
291
292 /*
293 * Exclude the segment used by the reserved PE, which
294 * is expected to be 0 or last supported PE#.
295 */
296 r = &phb->hose->mem_resources[1];
297 if (phb->ioda.reserved_pe_idx == 0)
298 r->start += phb->ioda.m64_segsize;
299 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
300 r->end -= phb->ioda.m64_segsize;
301 else
302 WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
303 phb->ioda.reserved_pe_idx, phb->hose->global_number);
304
305 return 0;
306
307 fail:
308 for ( ; index >= 0; index--)
309 opal_pci_phb_mmio_enable(phb->opal_id,
310 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
311
312 return -EIO;
313 }
314
315 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
316 unsigned long *pe_bitmap,
317 bool all)
318 {
319 struct pci_dev *pdev;
320
321 list_for_each_entry(pdev, &bus->devices, bus_list) {
322 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
323
324 if (all && pdev->subordinate)
325 pnv_ioda_reserve_m64_pe(pdev->subordinate,
326 pe_bitmap, all);
327 }
328 }
329
330 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
331 {
332 struct pci_controller *hose = pci_bus_to_host(bus);
333 struct pnv_phb *phb = hose->private_data;
334 struct pnv_ioda_pe *master_pe, *pe;
335 unsigned long size, *pe_alloc;
336 int i;
337
338 /* Root bus shouldn't use M64 */
339 if (pci_is_root_bus(bus))
340 return NULL;
341
342 /* Allocate bitmap */
343 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
344 pe_alloc = kzalloc(size, GFP_KERNEL);
345 if (!pe_alloc) {
346 pr_warn("%s: Out of memory !\n",
347 __func__);
348 return NULL;
349 }
350
351 /* Figure out reserved PE numbers by the PE */
352 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
353
354 /*
355 * the current bus might not own M64 window and that's all
356 * contributed by its child buses. For the case, we needn't
357 * pick M64 dependent PE#.
358 */
359 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
360 kfree(pe_alloc);
361 return NULL;
362 }
363
364 /*
365 * Figure out the master PE and put all slave PEs to master
366 * PE's list to form compound PE.
367 */
368 master_pe = NULL;
369 i = -1;
370 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
371 phb->ioda.total_pe_num) {
372 pe = &phb->ioda.pe_array[i];
373
374 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
375 if (!master_pe) {
376 pe->flags |= PNV_IODA_PE_MASTER;
377 INIT_LIST_HEAD(&pe->slaves);
378 master_pe = pe;
379 } else {
380 pe->flags |= PNV_IODA_PE_SLAVE;
381 pe->master = master_pe;
382 list_add_tail(&pe->list, &master_pe->slaves);
383 }
384
385 /*
386 * P7IOC supports M64DT, which helps mapping M64 segment
387 * to one particular PE#. However, PHB3 has fixed mapping
388 * between M64 segment and PE#. In order to have same logic
389 * for P7IOC and PHB3, we enforce fixed mapping between M64
390 * segment and PE# on P7IOC.
391 */
392 if (phb->type == PNV_PHB_IODA1) {
393 int64_t rc;
394
395 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
396 pe->pe_number, OPAL_M64_WINDOW_TYPE,
397 pe->pe_number / PNV_IODA1_M64_SEGS,
398 pe->pe_number % PNV_IODA1_M64_SEGS);
399 if (rc != OPAL_SUCCESS)
400 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
401 __func__, rc, phb->hose->global_number,
402 pe->pe_number);
403 }
404 }
405
406 kfree(pe_alloc);
407 return master_pe;
408 }
409
410 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
411 {
412 struct pci_controller *hose = phb->hose;
413 struct device_node *dn = hose->dn;
414 struct resource *res;
415 const u32 *r;
416 u64 pci_addr;
417
418 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
419 pr_info(" Not support M64 window\n");
420 return;
421 }
422
423 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
424 pr_info(" Firmware too old to support M64 window\n");
425 return;
426 }
427
428 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
429 if (!r) {
430 pr_info(" No <ibm,opal-m64-window> on %s\n",
431 dn->full_name);
432 return;
433 }
434
435 res = &hose->mem_resources[1];
436 res->name = dn->full_name;
437 res->start = of_translate_address(dn, r + 2);
438 res->end = res->start + of_read_number(r + 4, 2) - 1;
439 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
440 pci_addr = of_read_number(r, 2);
441 hose->mem_offset[1] = res->start - pci_addr;
442
443 phb->ioda.m64_size = resource_size(res);
444 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
445 phb->ioda.m64_base = pci_addr;
446
447 pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
448 res->start, res->end, pci_addr);
449
450 /* Use last M64 BAR to cover M64 window */
451 phb->ioda.m64_bar_idx = 15;
452 if (phb->type == PNV_PHB_IODA1)
453 phb->init_m64 = pnv_ioda1_init_m64;
454 else
455 phb->init_m64 = pnv_ioda2_init_m64;
456 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
457 phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
458 }
459
460 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
461 {
462 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
463 struct pnv_ioda_pe *slave;
464 s64 rc;
465
466 /* Fetch master PE */
467 if (pe->flags & PNV_IODA_PE_SLAVE) {
468 pe = pe->master;
469 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
470 return;
471
472 pe_no = pe->pe_number;
473 }
474
475 /* Freeze master PE */
476 rc = opal_pci_eeh_freeze_set(phb->opal_id,
477 pe_no,
478 OPAL_EEH_ACTION_SET_FREEZE_ALL);
479 if (rc != OPAL_SUCCESS) {
480 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
481 __func__, rc, phb->hose->global_number, pe_no);
482 return;
483 }
484
485 /* Freeze slave PEs */
486 if (!(pe->flags & PNV_IODA_PE_MASTER))
487 return;
488
489 list_for_each_entry(slave, &pe->slaves, list) {
490 rc = opal_pci_eeh_freeze_set(phb->opal_id,
491 slave->pe_number,
492 OPAL_EEH_ACTION_SET_FREEZE_ALL);
493 if (rc != OPAL_SUCCESS)
494 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
495 __func__, rc, phb->hose->global_number,
496 slave->pe_number);
497 }
498 }
499
500 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
501 {
502 struct pnv_ioda_pe *pe, *slave;
503 s64 rc;
504
505 /* Find master PE */
506 pe = &phb->ioda.pe_array[pe_no];
507 if (pe->flags & PNV_IODA_PE_SLAVE) {
508 pe = pe->master;
509 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
510 pe_no = pe->pe_number;
511 }
512
513 /* Clear frozen state for master PE */
514 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
515 if (rc != OPAL_SUCCESS) {
516 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
517 __func__, rc, opt, phb->hose->global_number, pe_no);
518 return -EIO;
519 }
520
521 if (!(pe->flags & PNV_IODA_PE_MASTER))
522 return 0;
523
524 /* Clear frozen state for slave PEs */
525 list_for_each_entry(slave, &pe->slaves, list) {
526 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
527 slave->pe_number,
528 opt);
529 if (rc != OPAL_SUCCESS) {
530 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
531 __func__, rc, opt, phb->hose->global_number,
532 slave->pe_number);
533 return -EIO;
534 }
535 }
536
537 return 0;
538 }
539
540 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
541 {
542 struct pnv_ioda_pe *slave, *pe;
543 u8 fstate, state;
544 __be16 pcierr;
545 s64 rc;
546
547 /* Sanity check on PE number */
548 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
549 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
550
551 /*
552 * Fetch the master PE and the PE instance might be
553 * not initialized yet.
554 */
555 pe = &phb->ioda.pe_array[pe_no];
556 if (pe->flags & PNV_IODA_PE_SLAVE) {
557 pe = pe->master;
558 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
559 pe_no = pe->pe_number;
560 }
561
562 /* Check the master PE */
563 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
564 &state, &pcierr, NULL);
565 if (rc != OPAL_SUCCESS) {
566 pr_warn("%s: Failure %lld getting "
567 "PHB#%x-PE#%x state\n",
568 __func__, rc,
569 phb->hose->global_number, pe_no);
570 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
571 }
572
573 /* Check the slave PE */
574 if (!(pe->flags & PNV_IODA_PE_MASTER))
575 return state;
576
577 list_for_each_entry(slave, &pe->slaves, list) {
578 rc = opal_pci_eeh_freeze_status(phb->opal_id,
579 slave->pe_number,
580 &fstate,
581 &pcierr,
582 NULL);
583 if (rc != OPAL_SUCCESS) {
584 pr_warn("%s: Failure %lld getting "
585 "PHB#%x-PE#%x state\n",
586 __func__, rc,
587 phb->hose->global_number, slave->pe_number);
588 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
589 }
590
591 /*
592 * Override the result based on the ascending
593 * priority.
594 */
595 if (fstate > state)
596 state = fstate;
597 }
598
599 return state;
600 }
601
602 /* Currently those 2 are only used when MSIs are enabled, this will change
603 * but in the meantime, we need to protect them to avoid warnings
604 */
605 #ifdef CONFIG_PCI_MSI
606 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
607 {
608 struct pci_controller *hose = pci_bus_to_host(dev->bus);
609 struct pnv_phb *phb = hose->private_data;
610 struct pci_dn *pdn = pci_get_pdn(dev);
611
612 if (!pdn)
613 return NULL;
614 if (pdn->pe_number == IODA_INVALID_PE)
615 return NULL;
616 return &phb->ioda.pe_array[pdn->pe_number];
617 }
618 #endif /* CONFIG_PCI_MSI */
619
620 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
621 struct pnv_ioda_pe *parent,
622 struct pnv_ioda_pe *child,
623 bool is_add)
624 {
625 const char *desc = is_add ? "adding" : "removing";
626 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
627 OPAL_REMOVE_PE_FROM_DOMAIN;
628 struct pnv_ioda_pe *slave;
629 long rc;
630
631 /* Parent PE affects child PE */
632 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
633 child->pe_number, op);
634 if (rc != OPAL_SUCCESS) {
635 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
636 rc, desc);
637 return -ENXIO;
638 }
639
640 if (!(child->flags & PNV_IODA_PE_MASTER))
641 return 0;
642
643 /* Compound case: parent PE affects slave PEs */
644 list_for_each_entry(slave, &child->slaves, list) {
645 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
646 slave->pe_number, op);
647 if (rc != OPAL_SUCCESS) {
648 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
649 rc, desc);
650 return -ENXIO;
651 }
652 }
653
654 return 0;
655 }
656
657 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
658 struct pnv_ioda_pe *pe,
659 bool is_add)
660 {
661 struct pnv_ioda_pe *slave;
662 struct pci_dev *pdev = NULL;
663 int ret;
664
665 /*
666 * Clear PE frozen state. If it's master PE, we need
667 * clear slave PE frozen state as well.
668 */
669 if (is_add) {
670 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
671 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
672 if (pe->flags & PNV_IODA_PE_MASTER) {
673 list_for_each_entry(slave, &pe->slaves, list)
674 opal_pci_eeh_freeze_clear(phb->opal_id,
675 slave->pe_number,
676 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
677 }
678 }
679
680 /*
681 * Associate PE in PELT. We need add the PE into the
682 * corresponding PELT-V as well. Otherwise, the error
683 * originated from the PE might contribute to other
684 * PEs.
685 */
686 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
687 if (ret)
688 return ret;
689
690 /* For compound PEs, any one affects all of them */
691 if (pe->flags & PNV_IODA_PE_MASTER) {
692 list_for_each_entry(slave, &pe->slaves, list) {
693 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
694 if (ret)
695 return ret;
696 }
697 }
698
699 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
700 pdev = pe->pbus->self;
701 else if (pe->flags & PNV_IODA_PE_DEV)
702 pdev = pe->pdev->bus->self;
703 #ifdef CONFIG_PCI_IOV
704 else if (pe->flags & PNV_IODA_PE_VF)
705 pdev = pe->parent_dev;
706 #endif /* CONFIG_PCI_IOV */
707 while (pdev) {
708 struct pci_dn *pdn = pci_get_pdn(pdev);
709 struct pnv_ioda_pe *parent;
710
711 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
712 parent = &phb->ioda.pe_array[pdn->pe_number];
713 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
714 if (ret)
715 return ret;
716 }
717
718 pdev = pdev->bus->self;
719 }
720
721 return 0;
722 }
723
724 #ifdef CONFIG_PCI_IOV
725 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
726 {
727 struct pci_dev *parent;
728 uint8_t bcomp, dcomp, fcomp;
729 int64_t rc;
730 long rid_end, rid;
731
732 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
733 if (pe->pbus) {
734 int count;
735
736 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
737 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
738 parent = pe->pbus->self;
739 if (pe->flags & PNV_IODA_PE_BUS_ALL)
740 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
741 else
742 count = 1;
743
744 switch(count) {
745 case 1: bcomp = OpalPciBusAll; break;
746 case 2: bcomp = OpalPciBus7Bits; break;
747 case 4: bcomp = OpalPciBus6Bits; break;
748 case 8: bcomp = OpalPciBus5Bits; break;
749 case 16: bcomp = OpalPciBus4Bits; break;
750 case 32: bcomp = OpalPciBus3Bits; break;
751 default:
752 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
753 count);
754 /* Do an exact match only */
755 bcomp = OpalPciBusAll;
756 }
757 rid_end = pe->rid + (count << 8);
758 } else {
759 if (pe->flags & PNV_IODA_PE_VF)
760 parent = pe->parent_dev;
761 else
762 parent = pe->pdev->bus->self;
763 bcomp = OpalPciBusAll;
764 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
765 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
766 rid_end = pe->rid + 1;
767 }
768
769 /* Clear the reverse map */
770 for (rid = pe->rid; rid < rid_end; rid++)
771 phb->ioda.pe_rmap[rid] = 0;
772
773 /* Release from all parents PELT-V */
774 while (parent) {
775 struct pci_dn *pdn = pci_get_pdn(parent);
776 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
777 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
778 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
779 /* XXX What to do in case of error ? */
780 }
781 parent = parent->bus->self;
782 }
783
784 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
785 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
786
787 /* Disassociate PE in PELT */
788 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
789 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
790 if (rc)
791 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
792 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
793 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
794 if (rc)
795 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
796
797 pe->pbus = NULL;
798 pe->pdev = NULL;
799 pe->parent_dev = NULL;
800
801 return 0;
802 }
803 #endif /* CONFIG_PCI_IOV */
804
805 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
806 {
807 struct pci_dev *parent;
808 uint8_t bcomp, dcomp, fcomp;
809 long rc, rid_end, rid;
810
811 /* Bus validation ? */
812 if (pe->pbus) {
813 int count;
814
815 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
816 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
817 parent = pe->pbus->self;
818 if (pe->flags & PNV_IODA_PE_BUS_ALL)
819 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
820 else
821 count = 1;
822
823 switch(count) {
824 case 1: bcomp = OpalPciBusAll; break;
825 case 2: bcomp = OpalPciBus7Bits; break;
826 case 4: bcomp = OpalPciBus6Bits; break;
827 case 8: bcomp = OpalPciBus5Bits; break;
828 case 16: bcomp = OpalPciBus4Bits; break;
829 case 32: bcomp = OpalPciBus3Bits; break;
830 default:
831 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
832 count);
833 /* Do an exact match only */
834 bcomp = OpalPciBusAll;
835 }
836 rid_end = pe->rid + (count << 8);
837 } else {
838 #ifdef CONFIG_PCI_IOV
839 if (pe->flags & PNV_IODA_PE_VF)
840 parent = pe->parent_dev;
841 else
842 #endif /* CONFIG_PCI_IOV */
843 parent = pe->pdev->bus->self;
844 bcomp = OpalPciBusAll;
845 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
846 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
847 rid_end = pe->rid + 1;
848 }
849
850 /*
851 * Associate PE in PELT. We need add the PE into the
852 * corresponding PELT-V as well. Otherwise, the error
853 * originated from the PE might contribute to other
854 * PEs.
855 */
856 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
857 bcomp, dcomp, fcomp, OPAL_MAP_PE);
858 if (rc) {
859 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
860 return -ENXIO;
861 }
862
863 /*
864 * Configure PELTV. NPUs don't have a PELTV table so skip
865 * configuration on them.
866 */
867 if (phb->type != PNV_PHB_NPU)
868 pnv_ioda_set_peltv(phb, pe, true);
869
870 /* Setup reverse map */
871 for (rid = pe->rid; rid < rid_end; rid++)
872 phb->ioda.pe_rmap[rid] = pe->pe_number;
873
874 /* Setup one MVTs on IODA1 */
875 if (phb->type != PNV_PHB_IODA1) {
876 pe->mve_number = 0;
877 goto out;
878 }
879
880 pe->mve_number = pe->pe_number;
881 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
882 if (rc != OPAL_SUCCESS) {
883 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
884 rc, pe->mve_number);
885 pe->mve_number = -1;
886 } else {
887 rc = opal_pci_set_mve_enable(phb->opal_id,
888 pe->mve_number, OPAL_ENABLE_MVE);
889 if (rc) {
890 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
891 rc, pe->mve_number);
892 pe->mve_number = -1;
893 }
894 }
895
896 out:
897 return 0;
898 }
899
900 #ifdef CONFIG_PCI_IOV
901 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
902 {
903 struct pci_dn *pdn = pci_get_pdn(dev);
904 int i;
905 struct resource *res, res2;
906 resource_size_t size;
907 u16 num_vfs;
908
909 if (!dev->is_physfn)
910 return -EINVAL;
911
912 /*
913 * "offset" is in VFs. The M64 windows are sized so that when they
914 * are segmented, each segment is the same size as the IOV BAR.
915 * Each segment is in a separate PE, and the high order bits of the
916 * address are the PE number. Therefore, each VF's BAR is in a
917 * separate PE, and changing the IOV BAR start address changes the
918 * range of PEs the VFs are in.
919 */
920 num_vfs = pdn->num_vfs;
921 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
922 res = &dev->resource[i + PCI_IOV_RESOURCES];
923 if (!res->flags || !res->parent)
924 continue;
925
926 /*
927 * The actual IOV BAR range is determined by the start address
928 * and the actual size for num_vfs VFs BAR. This check is to
929 * make sure that after shifting, the range will not overlap
930 * with another device.
931 */
932 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
933 res2.flags = res->flags;
934 res2.start = res->start + (size * offset);
935 res2.end = res2.start + (size * num_vfs) - 1;
936
937 if (res2.end > res->end) {
938 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
939 i, &res2, res, num_vfs, offset);
940 return -EBUSY;
941 }
942 }
943
944 /*
945 * After doing so, there would be a "hole" in the /proc/iomem when
946 * offset is a positive value. It looks like the device return some
947 * mmio back to the system, which actually no one could use it.
948 */
949 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
950 res = &dev->resource[i + PCI_IOV_RESOURCES];
951 if (!res->flags || !res->parent)
952 continue;
953
954 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
955 res2 = *res;
956 res->start += size * offset;
957
958 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
959 i, &res2, res, (offset > 0) ? "En" : "Dis",
960 num_vfs, offset);
961 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
962 }
963 return 0;
964 }
965 #endif /* CONFIG_PCI_IOV */
966
967 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
968 {
969 struct pci_controller *hose = pci_bus_to_host(dev->bus);
970 struct pnv_phb *phb = hose->private_data;
971 struct pci_dn *pdn = pci_get_pdn(dev);
972 struct pnv_ioda_pe *pe;
973
974 if (!pdn) {
975 pr_err("%s: Device tree node not associated properly\n",
976 pci_name(dev));
977 return NULL;
978 }
979 if (pdn->pe_number != IODA_INVALID_PE)
980 return NULL;
981
982 pe = pnv_ioda_alloc_pe(phb);
983 if (!pe) {
984 pr_warning("%s: Not enough PE# available, disabling device\n",
985 pci_name(dev));
986 return NULL;
987 }
988
989 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
990 * pointer in the PE data structure, both should be destroyed at the
991 * same time. However, this needs to be looked at more closely again
992 * once we actually start removing things (Hotplug, SR-IOV, ...)
993 *
994 * At some point we want to remove the PDN completely anyways
995 */
996 pci_dev_get(dev);
997 pdn->pcidev = dev;
998 pdn->pe_number = pe->pe_number;
999 pe->flags = PNV_IODA_PE_DEV;
1000 pe->pdev = dev;
1001 pe->pbus = NULL;
1002 pe->mve_number = -1;
1003 pe->rid = dev->bus->number << 8 | pdn->devfn;
1004
1005 pe_info(pe, "Associated device to PE\n");
1006
1007 if (pnv_ioda_configure_pe(phb, pe)) {
1008 /* XXX What do we do here ? */
1009 pnv_ioda_free_pe(pe);
1010 pdn->pe_number = IODA_INVALID_PE;
1011 pe->pdev = NULL;
1012 pci_dev_put(dev);
1013 return NULL;
1014 }
1015
1016 return pe;
1017 }
1018
1019 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1020 {
1021 struct pci_dev *dev;
1022
1023 list_for_each_entry(dev, &bus->devices, bus_list) {
1024 struct pci_dn *pdn = pci_get_pdn(dev);
1025
1026 if (pdn == NULL) {
1027 pr_warn("%s: No device node associated with device !\n",
1028 pci_name(dev));
1029 continue;
1030 }
1031 pdn->pcidev = dev;
1032 pdn->pe_number = pe->pe_number;
1033 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1034 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1035 }
1036 }
1037
1038 /*
1039 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1040 * single PCI bus. Another one that contains the primary PCI bus and its
1041 * subordinate PCI devices and buses. The second type of PE is normally
1042 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1043 */
1044 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1045 {
1046 struct pci_controller *hose = pci_bus_to_host(bus);
1047 struct pnv_phb *phb = hose->private_data;
1048 struct pnv_ioda_pe *pe = NULL;
1049
1050 /* Check if PE is determined by M64 */
1051 if (phb->pick_m64_pe)
1052 pe = phb->pick_m64_pe(bus, all);
1053
1054 /* The PE number isn't pinned by M64 */
1055 if (!pe)
1056 pe = pnv_ioda_alloc_pe(phb);
1057
1058 if (!pe) {
1059 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1060 __func__, pci_domain_nr(bus), bus->number);
1061 return NULL;
1062 }
1063
1064 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1065 pe->pbus = bus;
1066 pe->pdev = NULL;
1067 pe->mve_number = -1;
1068 pe->rid = bus->busn_res.start << 8;
1069
1070 if (all)
1071 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1072 bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1073 else
1074 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1075 bus->busn_res.start, pe->pe_number);
1076
1077 if (pnv_ioda_configure_pe(phb, pe)) {
1078 /* XXX What do we do here ? */
1079 pnv_ioda_free_pe(pe);
1080 pe->pbus = NULL;
1081 return NULL;
1082 }
1083
1084 /* Associate it with all child devices */
1085 pnv_ioda_setup_same_PE(bus, pe);
1086
1087 /* Put PE to the list */
1088 list_add_tail(&pe->list, &phb->ioda.pe_list);
1089
1090 return pe;
1091 }
1092
1093 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1094 {
1095 int pe_num, found_pe = false, rc;
1096 long rid;
1097 struct pnv_ioda_pe *pe;
1098 struct pci_dev *gpu_pdev;
1099 struct pci_dn *npu_pdn;
1100 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1101 struct pnv_phb *phb = hose->private_data;
1102
1103 /*
1104 * Due to a hardware errata PE#0 on the NPU is reserved for
1105 * error handling. This means we only have three PEs remaining
1106 * which need to be assigned to four links, implying some
1107 * links must share PEs.
1108 *
1109 * To achieve this we assign PEs such that NPUs linking the
1110 * same GPU get assigned the same PE.
1111 */
1112 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1113 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1114 pe = &phb->ioda.pe_array[pe_num];
1115 if (!pe->pdev)
1116 continue;
1117
1118 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1119 /*
1120 * This device has the same peer GPU so should
1121 * be assigned the same PE as the existing
1122 * peer NPU.
1123 */
1124 dev_info(&npu_pdev->dev,
1125 "Associating to existing PE %d\n", pe_num);
1126 pci_dev_get(npu_pdev);
1127 npu_pdn = pci_get_pdn(npu_pdev);
1128 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1129 npu_pdn->pcidev = npu_pdev;
1130 npu_pdn->pe_number = pe_num;
1131 phb->ioda.pe_rmap[rid] = pe->pe_number;
1132
1133 /* Map the PE to this link */
1134 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1135 OpalPciBusAll,
1136 OPAL_COMPARE_RID_DEVICE_NUMBER,
1137 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1138 OPAL_MAP_PE);
1139 WARN_ON(rc != OPAL_SUCCESS);
1140 found_pe = true;
1141 break;
1142 }
1143 }
1144
1145 if (!found_pe)
1146 /*
1147 * Could not find an existing PE so allocate a new
1148 * one.
1149 */
1150 return pnv_ioda_setup_dev_PE(npu_pdev);
1151 else
1152 return pe;
1153 }
1154
1155 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1156 {
1157 struct pci_dev *pdev;
1158
1159 list_for_each_entry(pdev, &bus->devices, bus_list)
1160 pnv_ioda_setup_npu_PE(pdev);
1161 }
1162
1163 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1164 {
1165 struct pci_dev *dev;
1166
1167 pnv_ioda_setup_bus_PE(bus, false);
1168
1169 list_for_each_entry(dev, &bus->devices, bus_list) {
1170 if (dev->subordinate) {
1171 if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1172 pnv_ioda_setup_bus_PE(dev->subordinate, true);
1173 else
1174 pnv_ioda_setup_PEs(dev->subordinate);
1175 }
1176 }
1177 }
1178
1179 /*
1180 * Configure PEs so that the downstream PCI buses and devices
1181 * could have their associated PE#. Unfortunately, we didn't
1182 * figure out the way to identify the PLX bridge yet. So we
1183 * simply put the PCI bus and the subordinate behind the root
1184 * port to PE# here. The game rule here is expected to be changed
1185 * as soon as we can detected PLX bridge correctly.
1186 */
1187 static void pnv_pci_ioda_setup_PEs(void)
1188 {
1189 struct pci_controller *hose, *tmp;
1190 struct pnv_phb *phb;
1191
1192 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1193 phb = hose->private_data;
1194
1195 /* M64 layout might affect PE allocation */
1196 if (phb->reserve_m64_pe)
1197 phb->reserve_m64_pe(hose->bus, NULL, true);
1198
1199 /*
1200 * On NPU PHB, we expect separate PEs for individual PCI
1201 * functions. PCI bus dependent PEs are required for the
1202 * remaining types of PHBs.
1203 */
1204 if (phb->type == PNV_PHB_NPU) {
1205 /* PE#0 is needed for error reporting */
1206 pnv_ioda_reserve_pe(phb, 0);
1207 pnv_ioda_setup_npu_PEs(hose->bus);
1208 } else
1209 pnv_ioda_setup_PEs(hose->bus);
1210 }
1211 }
1212
1213 #ifdef CONFIG_PCI_IOV
1214 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1215 {
1216 struct pci_bus *bus;
1217 struct pci_controller *hose;
1218 struct pnv_phb *phb;
1219 struct pci_dn *pdn;
1220 int i, j;
1221 int m64_bars;
1222
1223 bus = pdev->bus;
1224 hose = pci_bus_to_host(bus);
1225 phb = hose->private_data;
1226 pdn = pci_get_pdn(pdev);
1227
1228 if (pdn->m64_single_mode)
1229 m64_bars = num_vfs;
1230 else
1231 m64_bars = 1;
1232
1233 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1234 for (j = 0; j < m64_bars; j++) {
1235 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1236 continue;
1237 opal_pci_phb_mmio_enable(phb->opal_id,
1238 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1239 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1240 pdn->m64_map[j][i] = IODA_INVALID_M64;
1241 }
1242
1243 kfree(pdn->m64_map);
1244 return 0;
1245 }
1246
1247 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1248 {
1249 struct pci_bus *bus;
1250 struct pci_controller *hose;
1251 struct pnv_phb *phb;
1252 struct pci_dn *pdn;
1253 unsigned int win;
1254 struct resource *res;
1255 int i, j;
1256 int64_t rc;
1257 int total_vfs;
1258 resource_size_t size, start;
1259 int pe_num;
1260 int m64_bars;
1261
1262 bus = pdev->bus;
1263 hose = pci_bus_to_host(bus);
1264 phb = hose->private_data;
1265 pdn = pci_get_pdn(pdev);
1266 total_vfs = pci_sriov_get_totalvfs(pdev);
1267
1268 if (pdn->m64_single_mode)
1269 m64_bars = num_vfs;
1270 else
1271 m64_bars = 1;
1272
1273 pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1274 if (!pdn->m64_map)
1275 return -ENOMEM;
1276 /* Initialize the m64_map to IODA_INVALID_M64 */
1277 for (i = 0; i < m64_bars ; i++)
1278 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1279 pdn->m64_map[i][j] = IODA_INVALID_M64;
1280
1281
1282 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1283 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1284 if (!res->flags || !res->parent)
1285 continue;
1286
1287 for (j = 0; j < m64_bars; j++) {
1288 do {
1289 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1290 phb->ioda.m64_bar_idx + 1, 0);
1291
1292 if (win >= phb->ioda.m64_bar_idx + 1)
1293 goto m64_failed;
1294 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1295
1296 pdn->m64_map[j][i] = win;
1297
1298 if (pdn->m64_single_mode) {
1299 size = pci_iov_resource_size(pdev,
1300 PCI_IOV_RESOURCES + i);
1301 start = res->start + size * j;
1302 } else {
1303 size = resource_size(res);
1304 start = res->start;
1305 }
1306
1307 /* Map the M64 here */
1308 if (pdn->m64_single_mode) {
1309 pe_num = pdn->pe_num_map[j];
1310 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1311 pe_num, OPAL_M64_WINDOW_TYPE,
1312 pdn->m64_map[j][i], 0);
1313 }
1314
1315 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1316 OPAL_M64_WINDOW_TYPE,
1317 pdn->m64_map[j][i],
1318 start,
1319 0, /* unused */
1320 size);
1321
1322
1323 if (rc != OPAL_SUCCESS) {
1324 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1325 win, rc);
1326 goto m64_failed;
1327 }
1328
1329 if (pdn->m64_single_mode)
1330 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1331 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1332 else
1333 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1334 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1335
1336 if (rc != OPAL_SUCCESS) {
1337 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1338 win, rc);
1339 goto m64_failed;
1340 }
1341 }
1342 }
1343 return 0;
1344
1345 m64_failed:
1346 pnv_pci_vf_release_m64(pdev, num_vfs);
1347 return -EBUSY;
1348 }
1349
1350 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1351 int num);
1352 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1353
1354 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1355 {
1356 struct iommu_table *tbl;
1357 int64_t rc;
1358
1359 tbl = pe->table_group.tables[0];
1360 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1361 if (rc)
1362 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1363
1364 pnv_pci_ioda2_set_bypass(pe, false);
1365 if (pe->table_group.group) {
1366 iommu_group_put(pe->table_group.group);
1367 BUG_ON(pe->table_group.group);
1368 }
1369 pnv_pci_ioda2_table_free_pages(tbl);
1370 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1371 }
1372
1373 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1374 {
1375 struct pci_bus *bus;
1376 struct pci_controller *hose;
1377 struct pnv_phb *phb;
1378 struct pnv_ioda_pe *pe, *pe_n;
1379 struct pci_dn *pdn;
1380
1381 bus = pdev->bus;
1382 hose = pci_bus_to_host(bus);
1383 phb = hose->private_data;
1384 pdn = pci_get_pdn(pdev);
1385
1386 if (!pdev->is_physfn)
1387 return;
1388
1389 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1390 if (pe->parent_dev != pdev)
1391 continue;
1392
1393 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1394
1395 /* Remove from list */
1396 mutex_lock(&phb->ioda.pe_list_mutex);
1397 list_del(&pe->list);
1398 mutex_unlock(&phb->ioda.pe_list_mutex);
1399
1400 pnv_ioda_deconfigure_pe(phb, pe);
1401
1402 pnv_ioda_free_pe(pe);
1403 }
1404 }
1405
1406 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1407 {
1408 struct pci_bus *bus;
1409 struct pci_controller *hose;
1410 struct pnv_phb *phb;
1411 struct pnv_ioda_pe *pe;
1412 struct pci_dn *pdn;
1413 struct pci_sriov *iov;
1414 u16 num_vfs, i;
1415
1416 bus = pdev->bus;
1417 hose = pci_bus_to_host(bus);
1418 phb = hose->private_data;
1419 pdn = pci_get_pdn(pdev);
1420 iov = pdev->sriov;
1421 num_vfs = pdn->num_vfs;
1422
1423 /* Release VF PEs */
1424 pnv_ioda_release_vf_PE(pdev);
1425
1426 if (phb->type == PNV_PHB_IODA2) {
1427 if (!pdn->m64_single_mode)
1428 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1429
1430 /* Release M64 windows */
1431 pnv_pci_vf_release_m64(pdev, num_vfs);
1432
1433 /* Release PE numbers */
1434 if (pdn->m64_single_mode) {
1435 for (i = 0; i < num_vfs; i++) {
1436 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1437 continue;
1438
1439 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1440 pnv_ioda_free_pe(pe);
1441 }
1442 } else
1443 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1444 /* Releasing pe_num_map */
1445 kfree(pdn->pe_num_map);
1446 }
1447 }
1448
1449 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1450 struct pnv_ioda_pe *pe);
1451 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1452 {
1453 struct pci_bus *bus;
1454 struct pci_controller *hose;
1455 struct pnv_phb *phb;
1456 struct pnv_ioda_pe *pe;
1457 int pe_num;
1458 u16 vf_index;
1459 struct pci_dn *pdn;
1460
1461 bus = pdev->bus;
1462 hose = pci_bus_to_host(bus);
1463 phb = hose->private_data;
1464 pdn = pci_get_pdn(pdev);
1465
1466 if (!pdev->is_physfn)
1467 return;
1468
1469 /* Reserve PE for each VF */
1470 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1471 if (pdn->m64_single_mode)
1472 pe_num = pdn->pe_num_map[vf_index];
1473 else
1474 pe_num = *pdn->pe_num_map + vf_index;
1475
1476 pe = &phb->ioda.pe_array[pe_num];
1477 pe->pe_number = pe_num;
1478 pe->phb = phb;
1479 pe->flags = PNV_IODA_PE_VF;
1480 pe->pbus = NULL;
1481 pe->parent_dev = pdev;
1482 pe->mve_number = -1;
1483 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1484 pci_iov_virtfn_devfn(pdev, vf_index);
1485
1486 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1487 hose->global_number, pdev->bus->number,
1488 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1489 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1490
1491 if (pnv_ioda_configure_pe(phb, pe)) {
1492 /* XXX What do we do here ? */
1493 pnv_ioda_free_pe(pe);
1494 pe->pdev = NULL;
1495 continue;
1496 }
1497
1498 /* Put PE to the list */
1499 mutex_lock(&phb->ioda.pe_list_mutex);
1500 list_add_tail(&pe->list, &phb->ioda.pe_list);
1501 mutex_unlock(&phb->ioda.pe_list_mutex);
1502
1503 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1504 }
1505 }
1506
1507 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509 struct pci_bus *bus;
1510 struct pci_controller *hose;
1511 struct pnv_phb *phb;
1512 struct pnv_ioda_pe *pe;
1513 struct pci_dn *pdn;
1514 int ret;
1515 u16 i;
1516
1517 bus = pdev->bus;
1518 hose = pci_bus_to_host(bus);
1519 phb = hose->private_data;
1520 pdn = pci_get_pdn(pdev);
1521
1522 if (phb->type == PNV_PHB_IODA2) {
1523 if (!pdn->vfs_expanded) {
1524 dev_info(&pdev->dev, "don't support this SRIOV device"
1525 " with non 64bit-prefetchable IOV BAR\n");
1526 return -ENOSPC;
1527 }
1528
1529 /*
1530 * When M64 BARs functions in Single PE mode, the number of VFs
1531 * could be enabled must be less than the number of M64 BARs.
1532 */
1533 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1534 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1535 return -EBUSY;
1536 }
1537
1538 /* Allocating pe_num_map */
1539 if (pdn->m64_single_mode)
1540 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1541 GFP_KERNEL);
1542 else
1543 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1544
1545 if (!pdn->pe_num_map)
1546 return -ENOMEM;
1547
1548 if (pdn->m64_single_mode)
1549 for (i = 0; i < num_vfs; i++)
1550 pdn->pe_num_map[i] = IODA_INVALID_PE;
1551
1552 /* Calculate available PE for required VFs */
1553 if (pdn->m64_single_mode) {
1554 for (i = 0; i < num_vfs; i++) {
1555 pe = pnv_ioda_alloc_pe(phb);
1556 if (!pe) {
1557 ret = -EBUSY;
1558 goto m64_failed;
1559 }
1560
1561 pdn->pe_num_map[i] = pe->pe_number;
1562 }
1563 } else {
1564 mutex_lock(&phb->ioda.pe_alloc_mutex);
1565 *pdn->pe_num_map = bitmap_find_next_zero_area(
1566 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1567 0, num_vfs, 0);
1568 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1569 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1570 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1571 kfree(pdn->pe_num_map);
1572 return -EBUSY;
1573 }
1574 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1575 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1576 }
1577 pdn->num_vfs = num_vfs;
1578
1579 /* Assign M64 window accordingly */
1580 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1581 if (ret) {
1582 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1583 goto m64_failed;
1584 }
1585
1586 /*
1587 * When using one M64 BAR to map one IOV BAR, we need to shift
1588 * the IOV BAR according to the PE# allocated to the VFs.
1589 * Otherwise, the PE# for the VF will conflict with others.
1590 */
1591 if (!pdn->m64_single_mode) {
1592 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1593 if (ret)
1594 goto m64_failed;
1595 }
1596 }
1597
1598 /* Setup VF PEs */
1599 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1600
1601 return 0;
1602
1603 m64_failed:
1604 if (pdn->m64_single_mode) {
1605 for (i = 0; i < num_vfs; i++) {
1606 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1607 continue;
1608
1609 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1610 pnv_ioda_free_pe(pe);
1611 }
1612 } else
1613 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1614
1615 /* Releasing pe_num_map */
1616 kfree(pdn->pe_num_map);
1617
1618 return ret;
1619 }
1620
1621 int pcibios_sriov_disable(struct pci_dev *pdev)
1622 {
1623 pnv_pci_sriov_disable(pdev);
1624
1625 /* Release PCI data */
1626 remove_dev_pci_data(pdev);
1627 return 0;
1628 }
1629
1630 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1631 {
1632 /* Allocate PCI data */
1633 add_dev_pci_data(pdev);
1634
1635 return pnv_pci_sriov_enable(pdev, num_vfs);
1636 }
1637 #endif /* CONFIG_PCI_IOV */
1638
1639 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1640 {
1641 struct pci_dn *pdn = pci_get_pdn(pdev);
1642 struct pnv_ioda_pe *pe;
1643
1644 /*
1645 * The function can be called while the PE#
1646 * hasn't been assigned. Do nothing for the
1647 * case.
1648 */
1649 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1650 return;
1651
1652 pe = &phb->ioda.pe_array[pdn->pe_number];
1653 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1654 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1655 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1656 /*
1657 * Note: iommu_add_device() will fail here as
1658 * for physical PE: the device is already added by now;
1659 * for virtual PE: sysfs entries are not ready yet and
1660 * tce_iommu_bus_notifier will add the device to a group later.
1661 */
1662 }
1663
1664 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1665 {
1666 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1667 struct pnv_phb *phb = hose->private_data;
1668 struct pci_dn *pdn = pci_get_pdn(pdev);
1669 struct pnv_ioda_pe *pe;
1670 uint64_t top;
1671 bool bypass = false;
1672 struct pci_dev *linked_npu_dev;
1673 int i;
1674
1675 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1676 return -ENODEV;;
1677
1678 pe = &phb->ioda.pe_array[pdn->pe_number];
1679 if (pe->tce_bypass_enabled) {
1680 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1681 bypass = (dma_mask >= top);
1682 }
1683
1684 if (bypass) {
1685 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1686 set_dma_ops(&pdev->dev, &dma_direct_ops);
1687 } else {
1688 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1689 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1690 }
1691 *pdev->dev.dma_mask = dma_mask;
1692
1693 /* Update peer npu devices */
1694 if (pe->flags & PNV_IODA_PE_PEER)
1695 for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1696 if (!pe->peers[i])
1697 continue;
1698
1699 linked_npu_dev = pe->peers[i]->pdev;
1700 if (dma_get_mask(&linked_npu_dev->dev) != dma_mask)
1701 dma_set_mask(&linked_npu_dev->dev, dma_mask);
1702 }
1703
1704 return 0;
1705 }
1706
1707 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1708 {
1709 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1710 struct pnv_phb *phb = hose->private_data;
1711 struct pci_dn *pdn = pci_get_pdn(pdev);
1712 struct pnv_ioda_pe *pe;
1713 u64 end, mask;
1714
1715 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1716 return 0;
1717
1718 pe = &phb->ioda.pe_array[pdn->pe_number];
1719 if (!pe->tce_bypass_enabled)
1720 return __dma_get_required_mask(&pdev->dev);
1721
1722
1723 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1724 mask = 1ULL << (fls64(end) - 1);
1725 mask += mask - 1;
1726
1727 return mask;
1728 }
1729
1730 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1731 struct pci_bus *bus)
1732 {
1733 struct pci_dev *dev;
1734
1735 list_for_each_entry(dev, &bus->devices, bus_list) {
1736 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1737 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1738 iommu_add_device(&dev->dev);
1739
1740 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1741 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1742 }
1743 }
1744
1745 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1746 unsigned long index, unsigned long npages, bool rm)
1747 {
1748 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1749 &tbl->it_group_list, struct iommu_table_group_link,
1750 next);
1751 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1752 struct pnv_ioda_pe, table_group);
1753 __be64 __iomem *invalidate = rm ?
1754 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1755 pe->phb->ioda.tce_inval_reg;
1756 unsigned long start, end, inc;
1757 const unsigned shift = tbl->it_page_shift;
1758
1759 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1760 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1761 npages - 1);
1762
1763 /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1764 if (tbl->it_busno) {
1765 start <<= shift;
1766 end <<= shift;
1767 inc = 128ull << shift;
1768 start |= tbl->it_busno;
1769 end |= tbl->it_busno;
1770 } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1771 /* p7ioc-style invalidation, 2 TCEs per write */
1772 start |= (1ull << 63);
1773 end |= (1ull << 63);
1774 inc = 16;
1775 } else {
1776 /* Default (older HW) */
1777 inc = 128;
1778 }
1779
1780 end |= inc - 1; /* round up end to be different than start */
1781
1782 mb(); /* Ensure above stores are visible */
1783 while (start <= end) {
1784 if (rm)
1785 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1786 else
1787 __raw_writeq(cpu_to_be64(start), invalidate);
1788 start += inc;
1789 }
1790
1791 /*
1792 * The iommu layer will do another mb() for us on build()
1793 * and we don't care on free()
1794 */
1795 }
1796
1797 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1798 long npages, unsigned long uaddr,
1799 enum dma_data_direction direction,
1800 struct dma_attrs *attrs)
1801 {
1802 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1803 attrs);
1804
1805 if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1806 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1807
1808 return ret;
1809 }
1810
1811 #ifdef CONFIG_IOMMU_API
1812 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1813 unsigned long *hpa, enum dma_data_direction *direction)
1814 {
1815 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1816
1817 if (!ret && (tbl->it_type &
1818 (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1819 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1820
1821 return ret;
1822 }
1823 #endif
1824
1825 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1826 long npages)
1827 {
1828 pnv_tce_free(tbl, index, npages);
1829
1830 if (tbl->it_type & TCE_PCI_SWINV_FREE)
1831 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1832 }
1833
1834 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1835 .set = pnv_ioda1_tce_build,
1836 #ifdef CONFIG_IOMMU_API
1837 .exchange = pnv_ioda1_tce_xchg,
1838 #endif
1839 .clear = pnv_ioda1_tce_free,
1840 .get = pnv_tce_get,
1841 };
1842
1843 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1844 {
1845 /* 01xb - invalidate TCEs that match the specified PE# */
1846 unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1847 struct pnv_phb *phb = pe->phb;
1848 struct pnv_ioda_pe *npe;
1849 int i;
1850
1851 if (!phb->ioda.tce_inval_reg)
1852 return;
1853
1854 mb(); /* Ensure above stores are visible */
1855 __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1856
1857 if (pe->flags & PNV_IODA_PE_PEER)
1858 for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1859 npe = pe->peers[i];
1860 if (!npe || npe->phb->type != PNV_PHB_NPU)
1861 continue;
1862
1863 pnv_npu_tce_invalidate_entire(npe);
1864 }
1865 }
1866
1867 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1868 __be64 __iomem *invalidate, unsigned shift,
1869 unsigned long index, unsigned long npages)
1870 {
1871 unsigned long start, end, inc;
1872
1873 /* We'll invalidate DMA address in PE scope */
1874 start = 0x2ull << 60;
1875 start |= (pe_number & 0xFF);
1876 end = start;
1877
1878 /* Figure out the start, end and step */
1879 start |= (index << shift);
1880 end |= ((index + npages - 1) << shift);
1881 inc = (0x1ull << shift);
1882 mb();
1883
1884 while (start <= end) {
1885 if (rm)
1886 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1887 else
1888 __raw_writeq(cpu_to_be64(start), invalidate);
1889 start += inc;
1890 }
1891 }
1892
1893 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1894 unsigned long index, unsigned long npages, bool rm)
1895 {
1896 struct iommu_table_group_link *tgl;
1897
1898 list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1899 struct pnv_ioda_pe *npe;
1900 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1901 struct pnv_ioda_pe, table_group);
1902 __be64 __iomem *invalidate = rm ?
1903 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1904 pe->phb->ioda.tce_inval_reg;
1905 int i;
1906
1907 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1908 invalidate, tbl->it_page_shift,
1909 index, npages);
1910
1911 if (pe->flags & PNV_IODA_PE_PEER)
1912 /* Invalidate PEs using the same TCE table */
1913 for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1914 npe = pe->peers[i];
1915 if (!npe || npe->phb->type != PNV_PHB_NPU)
1916 continue;
1917
1918 pnv_npu_tce_invalidate(npe, tbl, index,
1919 npages, rm);
1920 }
1921 }
1922 }
1923
1924 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1925 long npages, unsigned long uaddr,
1926 enum dma_data_direction direction,
1927 struct dma_attrs *attrs)
1928 {
1929 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1930 attrs);
1931
1932 if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1933 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1934
1935 return ret;
1936 }
1937
1938 #ifdef CONFIG_IOMMU_API
1939 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1940 unsigned long *hpa, enum dma_data_direction *direction)
1941 {
1942 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1943
1944 if (!ret && (tbl->it_type &
1945 (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1946 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1947
1948 return ret;
1949 }
1950 #endif
1951
1952 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1953 long npages)
1954 {
1955 pnv_tce_free(tbl, index, npages);
1956
1957 if (tbl->it_type & TCE_PCI_SWINV_FREE)
1958 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1959 }
1960
1961 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1962 {
1963 pnv_pci_ioda2_table_free_pages(tbl);
1964 iommu_free_table(tbl, "pnv");
1965 }
1966
1967 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1968 .set = pnv_ioda2_tce_build,
1969 #ifdef CONFIG_IOMMU_API
1970 .exchange = pnv_ioda2_tce_xchg,
1971 #endif
1972 .clear = pnv_ioda2_tce_free,
1973 .get = pnv_tce_get,
1974 .free = pnv_ioda2_table_free,
1975 };
1976
1977 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1978 {
1979 unsigned int *weight = (unsigned int *)data;
1980
1981 /* This is quite simplistic. The "base" weight of a device
1982 * is 10. 0 means no DMA is to be accounted for it.
1983 */
1984 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1985 return 0;
1986
1987 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1988 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1989 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1990 *weight += 3;
1991 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1992 *weight += 15;
1993 else
1994 *weight += 10;
1995
1996 return 0;
1997 }
1998
1999 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2000 {
2001 unsigned int weight = 0;
2002
2003 /* SRIOV VF has same DMA32 weight as its PF */
2004 #ifdef CONFIG_PCI_IOV
2005 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2006 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2007 return weight;
2008 }
2009 #endif
2010
2011 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2012 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2013 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2014 struct pci_dev *pdev;
2015
2016 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2017 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2018 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2019 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2020 }
2021
2022 return weight;
2023 }
2024
2025 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2026 struct pnv_ioda_pe *pe)
2027 {
2028
2029 struct page *tce_mem = NULL;
2030 struct iommu_table *tbl;
2031 unsigned int weight, total_weight = 0;
2032 unsigned int tce32_segsz, base, segs, avail, i;
2033 int64_t rc;
2034 void *addr;
2035
2036 /* XXX FIXME: Handle 64-bit only DMA devices */
2037 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2038 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2039 weight = pnv_pci_ioda_pe_dma_weight(pe);
2040 if (!weight)
2041 return;
2042
2043 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2044 &total_weight);
2045 segs = (weight * phb->ioda.dma32_count) / total_weight;
2046 if (!segs)
2047 segs = 1;
2048
2049 /*
2050 * Allocate contiguous DMA32 segments. We begin with the expected
2051 * number of segments. With one more attempt, the number of DMA32
2052 * segments to be allocated is decreased by one until one segment
2053 * is allocated successfully.
2054 */
2055 do {
2056 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2057 for (avail = 0, i = base; i < base + segs; i++) {
2058 if (phb->ioda.dma32_segmap[i] ==
2059 IODA_INVALID_PE)
2060 avail++;
2061 }
2062
2063 if (avail == segs)
2064 goto found;
2065 }
2066 } while (--segs);
2067
2068 if (!segs) {
2069 pe_warn(pe, "No available DMA32 segments\n");
2070 return;
2071 }
2072
2073 found:
2074 tbl = pnv_pci_table_alloc(phb->hose->node);
2075 iommu_register_group(&pe->table_group, phb->hose->global_number,
2076 pe->pe_number);
2077 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2078
2079 /* Grab a 32-bit TCE table */
2080 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2081 weight, total_weight, base, segs);
2082 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2083 base * PNV_IODA1_DMA32_SEGSIZE,
2084 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2085
2086 /* XXX Currently, we allocate one big contiguous table for the
2087 * TCEs. We only really need one chunk per 256M of TCE space
2088 * (ie per segment) but that's an optimization for later, it
2089 * requires some added smarts with our get/put_tce implementation
2090 *
2091 * Each TCE page is 4KB in size and each TCE entry occupies 8
2092 * bytes
2093 */
2094 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2095 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2096 get_order(tce32_segsz * segs));
2097 if (!tce_mem) {
2098 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2099 goto fail;
2100 }
2101 addr = page_address(tce_mem);
2102 memset(addr, 0, tce32_segsz * segs);
2103
2104 /* Configure HW */
2105 for (i = 0; i < segs; i++) {
2106 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2107 pe->pe_number,
2108 base + i, 1,
2109 __pa(addr) + tce32_segsz * i,
2110 tce32_segsz, IOMMU_PAGE_SIZE_4K);
2111 if (rc) {
2112 pe_err(pe, " Failed to configure 32-bit TCE table,"
2113 " err %ld\n", rc);
2114 goto fail;
2115 }
2116 }
2117
2118 /* Setup DMA32 segment mapping */
2119 for (i = base; i < base + segs; i++)
2120 phb->ioda.dma32_segmap[i] = pe->pe_number;
2121
2122 /* Setup linux iommu table */
2123 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2124 base * PNV_IODA1_DMA32_SEGSIZE,
2125 IOMMU_PAGE_SHIFT_4K);
2126
2127 /* OPAL variant of P7IOC SW invalidated TCEs */
2128 if (phb->ioda.tce_inval_reg)
2129 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2130 TCE_PCI_SWINV_FREE |
2131 TCE_PCI_SWINV_PAIR);
2132
2133 tbl->it_ops = &pnv_ioda1_iommu_ops;
2134 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2135 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2136 iommu_init_table(tbl, phb->hose->node);
2137
2138 if (pe->flags & PNV_IODA_PE_DEV) {
2139 /*
2140 * Setting table base here only for carrying iommu_group
2141 * further down to let iommu_add_device() do the job.
2142 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2143 */
2144 set_iommu_table_base(&pe->pdev->dev, tbl);
2145 iommu_add_device(&pe->pdev->dev);
2146 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2147 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2148
2149 return;
2150 fail:
2151 /* XXX Failure: Try to fallback to 64-bit only ? */
2152 if (tce_mem)
2153 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2154 if (tbl) {
2155 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2156 iommu_free_table(tbl, "pnv");
2157 }
2158 }
2159
2160 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2161 int num, struct iommu_table *tbl)
2162 {
2163 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2164 table_group);
2165 struct pnv_phb *phb = pe->phb;
2166 int64_t rc;
2167 const unsigned long size = tbl->it_indirect_levels ?
2168 tbl->it_level_size : tbl->it_size;
2169 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2170 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2171
2172 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2173 start_addr, start_addr + win_size - 1,
2174 IOMMU_PAGE_SIZE(tbl));
2175
2176 /*
2177 * Map TCE table through TVT. The TVE index is the PE number
2178 * shifted by 1 bit for 32-bits DMA space.
2179 */
2180 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2181 pe->pe_number,
2182 (pe->pe_number << 1) + num,
2183 tbl->it_indirect_levels + 1,
2184 __pa(tbl->it_base),
2185 size << 3,
2186 IOMMU_PAGE_SIZE(tbl));
2187 if (rc) {
2188 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2189 return rc;
2190 }
2191
2192 pnv_pci_link_table_and_group(phb->hose->node, num,
2193 tbl, &pe->table_group);
2194 pnv_pci_ioda2_tce_invalidate_entire(pe);
2195
2196 return 0;
2197 }
2198
2199 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2200 {
2201 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2202 int64_t rc;
2203
2204 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2205 if (enable) {
2206 phys_addr_t top = memblock_end_of_DRAM();
2207
2208 top = roundup_pow_of_two(top);
2209 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2210 pe->pe_number,
2211 window_id,
2212 pe->tce_bypass_base,
2213 top);
2214 } else {
2215 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2216 pe->pe_number,
2217 window_id,
2218 pe->tce_bypass_base,
2219 0);
2220 }
2221 if (rc)
2222 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2223 else
2224 pe->tce_bypass_enabled = enable;
2225 }
2226
2227 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2228 __u32 page_shift, __u64 window_size, __u32 levels,
2229 struct iommu_table *tbl);
2230
2231 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2232 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2233 struct iommu_table **ptbl)
2234 {
2235 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2236 table_group);
2237 int nid = pe->phb->hose->node;
2238 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2239 long ret;
2240 struct iommu_table *tbl;
2241
2242 tbl = pnv_pci_table_alloc(nid);
2243 if (!tbl)
2244 return -ENOMEM;
2245
2246 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2247 bus_offset, page_shift, window_size,
2248 levels, tbl);
2249 if (ret) {
2250 iommu_free_table(tbl, "pnv");
2251 return ret;
2252 }
2253
2254 tbl->it_ops = &pnv_ioda2_iommu_ops;
2255 if (pe->phb->ioda.tce_inval_reg)
2256 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2257
2258 *ptbl = tbl;
2259
2260 return 0;
2261 }
2262
2263 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2264 {
2265 struct iommu_table *tbl = NULL;
2266 long rc;
2267
2268 /*
2269 * crashkernel= specifies the kdump kernel's maximum memory at
2270 * some offset and there is no guaranteed the result is a power
2271 * of 2, which will cause errors later.
2272 */
2273 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2274
2275 /*
2276 * In memory constrained environments, e.g. kdump kernel, the
2277 * DMA window can be larger than available memory, which will
2278 * cause errors later.
2279 */
2280 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2281
2282 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2283 IOMMU_PAGE_SHIFT_4K,
2284 window_size,
2285 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2286 if (rc) {
2287 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2288 rc);
2289 return rc;
2290 }
2291
2292 iommu_init_table(tbl, pe->phb->hose->node);
2293
2294 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2295 if (rc) {
2296 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2297 rc);
2298 pnv_ioda2_table_free(tbl);
2299 return rc;
2300 }
2301
2302 if (!pnv_iommu_bypass_disabled)
2303 pnv_pci_ioda2_set_bypass(pe, true);
2304
2305 /* OPAL variant of PHB3 invalidated TCEs */
2306 if (pe->phb->ioda.tce_inval_reg)
2307 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2308
2309 /*
2310 * Setting table base here only for carrying iommu_group
2311 * further down to let iommu_add_device() do the job.
2312 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2313 */
2314 if (pe->flags & PNV_IODA_PE_DEV)
2315 set_iommu_table_base(&pe->pdev->dev, tbl);
2316
2317 return 0;
2318 }
2319
2320 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2321 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2322 int num)
2323 {
2324 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2325 table_group);
2326 struct pnv_phb *phb = pe->phb;
2327 long ret;
2328
2329 pe_info(pe, "Removing DMA window #%d\n", num);
2330
2331 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2332 (pe->pe_number << 1) + num,
2333 0/* levels */, 0/* table address */,
2334 0/* table size */, 0/* page size */);
2335 if (ret)
2336 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2337 else
2338 pnv_pci_ioda2_tce_invalidate_entire(pe);
2339
2340 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2341
2342 return ret;
2343 }
2344 #endif
2345
2346 #ifdef CONFIG_IOMMU_API
2347 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2348 __u64 window_size, __u32 levels)
2349 {
2350 unsigned long bytes = 0;
2351 const unsigned window_shift = ilog2(window_size);
2352 unsigned entries_shift = window_shift - page_shift;
2353 unsigned table_shift = entries_shift + 3;
2354 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2355 unsigned long direct_table_size;
2356
2357 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2358 (window_size > memory_hotplug_max()) ||
2359 !is_power_of_2(window_size))
2360 return 0;
2361
2362 /* Calculate a direct table size from window_size and levels */
2363 entries_shift = (entries_shift + levels - 1) / levels;
2364 table_shift = entries_shift + 3;
2365 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2366 direct_table_size = 1UL << table_shift;
2367
2368 for ( ; levels; --levels) {
2369 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2370
2371 tce_table_size /= direct_table_size;
2372 tce_table_size <<= 3;
2373 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2374 }
2375
2376 return bytes;
2377 }
2378
2379 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2380 {
2381 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2382 table_group);
2383 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2384 struct iommu_table *tbl = pe->table_group.tables[0];
2385
2386 pnv_pci_ioda2_set_bypass(pe, false);
2387 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2388 pnv_ioda2_table_free(tbl);
2389 }
2390
2391 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2392 {
2393 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2394 table_group);
2395
2396 pnv_pci_ioda2_setup_default_config(pe);
2397 }
2398
2399 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2400 .get_table_size = pnv_pci_ioda2_get_table_size,
2401 .create_table = pnv_pci_ioda2_create_table,
2402 .set_window = pnv_pci_ioda2_set_window,
2403 .unset_window = pnv_pci_ioda2_unset_window,
2404 .take_ownership = pnv_ioda2_take_ownership,
2405 .release_ownership = pnv_ioda2_release_ownership,
2406 };
2407 #endif
2408
2409 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2410 {
2411 const __be64 *swinvp;
2412
2413 /* OPAL variant of PHB3 invalidated TCEs */
2414 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2415 if (!swinvp)
2416 return;
2417
2418 phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2419 phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2420 }
2421
2422 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2423 unsigned levels, unsigned long limit,
2424 unsigned long *current_offset, unsigned long *total_allocated)
2425 {
2426 struct page *tce_mem = NULL;
2427 __be64 *addr, *tmp;
2428 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2429 unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2430 unsigned entries = 1UL << (shift - 3);
2431 long i;
2432
2433 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2434 if (!tce_mem) {
2435 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2436 return NULL;
2437 }
2438 addr = page_address(tce_mem);
2439 memset(addr, 0, allocated);
2440 *total_allocated += allocated;
2441
2442 --levels;
2443 if (!levels) {
2444 *current_offset += allocated;
2445 return addr;
2446 }
2447
2448 for (i = 0; i < entries; ++i) {
2449 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2450 levels, limit, current_offset, total_allocated);
2451 if (!tmp)
2452 break;
2453
2454 addr[i] = cpu_to_be64(__pa(tmp) |
2455 TCE_PCI_READ | TCE_PCI_WRITE);
2456
2457 if (*current_offset >= limit)
2458 break;
2459 }
2460
2461 return addr;
2462 }
2463
2464 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2465 unsigned long size, unsigned level);
2466
2467 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2468 __u32 page_shift, __u64 window_size, __u32 levels,
2469 struct iommu_table *tbl)
2470 {
2471 void *addr;
2472 unsigned long offset = 0, level_shift, total_allocated = 0;
2473 const unsigned window_shift = ilog2(window_size);
2474 unsigned entries_shift = window_shift - page_shift;
2475 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2476 const unsigned long tce_table_size = 1UL << table_shift;
2477
2478 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2479 return -EINVAL;
2480
2481 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2482 return -EINVAL;
2483
2484 /* Adjust direct table size from window_size and levels */
2485 entries_shift = (entries_shift + levels - 1) / levels;
2486 level_shift = entries_shift + 3;
2487 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2488
2489 /* Allocate TCE table */
2490 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2491 levels, tce_table_size, &offset, &total_allocated);
2492
2493 /* addr==NULL means that the first level allocation failed */
2494 if (!addr)
2495 return -ENOMEM;
2496
2497 /*
2498 * First level was allocated but some lower level failed as
2499 * we did not allocate as much as we wanted,
2500 * release partially allocated table.
2501 */
2502 if (offset < tce_table_size) {
2503 pnv_pci_ioda2_table_do_free_pages(addr,
2504 1ULL << (level_shift - 3), levels - 1);
2505 return -ENOMEM;
2506 }
2507
2508 /* Setup linux iommu table */
2509 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2510 page_shift);
2511 tbl->it_level_size = 1ULL << (level_shift - 3);
2512 tbl->it_indirect_levels = levels - 1;
2513 tbl->it_allocated_size = total_allocated;
2514
2515 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2516 window_size, tce_table_size, bus_offset);
2517
2518 return 0;
2519 }
2520
2521 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2522 unsigned long size, unsigned level)
2523 {
2524 const unsigned long addr_ul = (unsigned long) addr &
2525 ~(TCE_PCI_READ | TCE_PCI_WRITE);
2526
2527 if (level) {
2528 long i;
2529 u64 *tmp = (u64 *) addr_ul;
2530
2531 for (i = 0; i < size; ++i) {
2532 unsigned long hpa = be64_to_cpu(tmp[i]);
2533
2534 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2535 continue;
2536
2537 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2538 level - 1);
2539 }
2540 }
2541
2542 free_pages(addr_ul, get_order(size << 3));
2543 }
2544
2545 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2546 {
2547 const unsigned long size = tbl->it_indirect_levels ?
2548 tbl->it_level_size : tbl->it_size;
2549
2550 if (!tbl->it_size)
2551 return;
2552
2553 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2554 tbl->it_indirect_levels);
2555 }
2556
2557 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2558 struct pnv_ioda_pe *pe)
2559 {
2560 int64_t rc;
2561
2562 /* TVE #1 is selected by PCI address bit 59 */
2563 pe->tce_bypass_base = 1ull << 59;
2564
2565 iommu_register_group(&pe->table_group, phb->hose->global_number,
2566 pe->pe_number);
2567
2568 /* The PE will reserve all possible 32-bits space */
2569 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2570 phb->ioda.m32_pci_base);
2571
2572 /* Setup linux iommu table */
2573 pe->table_group.tce32_start = 0;
2574 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2575 pe->table_group.max_dynamic_windows_supported =
2576 IOMMU_TABLE_GROUP_MAX_TABLES;
2577 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2578 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2579 #ifdef CONFIG_IOMMU_API
2580 pe->table_group.ops = &pnv_pci_ioda2_ops;
2581 #endif
2582
2583 rc = pnv_pci_ioda2_setup_default_config(pe);
2584 if (rc)
2585 return;
2586
2587 if (pe->flags & PNV_IODA_PE_DEV)
2588 iommu_add_device(&pe->pdev->dev);
2589 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2590 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2591 }
2592
2593 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2594 {
2595 struct pci_controller *hose = phb->hose;
2596 struct pnv_ioda_pe *pe;
2597 unsigned int weight;
2598
2599 /* If we have more PE# than segments available, hand out one
2600 * per PE until we run out and let the rest fail. If not,
2601 * then we assign at least one segment per PE, plus more based
2602 * on the amount of devices under that PE
2603 */
2604 pr_info("PCI: Domain %04x has %d available 32-bit DMA segments\n",
2605 hose->global_number, phb->ioda.dma32_count);
2606
2607 pnv_pci_ioda_setup_opal_tce_kill(phb);
2608
2609 /* Walk our PE list and configure their DMA segments */
2610 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2611 weight = pnv_pci_ioda_pe_dma_weight(pe);
2612 if (!weight)
2613 continue;
2614
2615 /*
2616 * For IODA2 compliant PHB3, we needn't care about the weight.
2617 * The all available 32-bits DMA space will be assigned to
2618 * the specific PE.
2619 */
2620 if (phb->type == PNV_PHB_IODA1) {
2621 pnv_pci_ioda1_setup_dma_pe(phb, pe);
2622 } else if (phb->type == PNV_PHB_IODA2) {
2623 pe_info(pe, "Assign DMA32 space\n");
2624 pnv_pci_ioda2_setup_dma_pe(phb, pe);
2625 } else if (phb->type == PNV_PHB_NPU) {
2626 /*
2627 * We initialise the DMA space for an NPU PHB
2628 * after setup of the PHB is complete as we
2629 * point the NPU TVT to the the same location
2630 * as the PHB3 TVT.
2631 */
2632 }
2633 }
2634 }
2635
2636 #ifdef CONFIG_PCI_MSI
2637 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2638 {
2639 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2640 struct irq_chip *chip = irq_data_get_irq_chip(d);
2641 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2642 ioda.irq_chip);
2643 int64_t rc;
2644
2645 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2646 WARN_ON_ONCE(rc);
2647
2648 icp_native_eoi(d);
2649 }
2650
2651
2652 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2653 {
2654 struct irq_data *idata;
2655 struct irq_chip *ichip;
2656
2657 if (phb->type != PNV_PHB_IODA2)
2658 return;
2659
2660 if (!phb->ioda.irq_chip_init) {
2661 /*
2662 * First time we setup an MSI IRQ, we need to setup the
2663 * corresponding IRQ chip to route correctly.
2664 */
2665 idata = irq_get_irq_data(virq);
2666 ichip = irq_data_get_irq_chip(idata);
2667 phb->ioda.irq_chip_init = 1;
2668 phb->ioda.irq_chip = *ichip;
2669 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2670 }
2671 irq_set_chip(virq, &phb->ioda.irq_chip);
2672 }
2673
2674 #ifdef CONFIG_CXL_BASE
2675
2676 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2677 {
2678 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2679
2680 return of_node_get(hose->dn);
2681 }
2682 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2683
2684 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2685 {
2686 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2687 struct pnv_phb *phb = hose->private_data;
2688 struct pnv_ioda_pe *pe;
2689 int rc;
2690
2691 pe = pnv_ioda_get_pe(dev);
2692 if (!pe)
2693 return -ENODEV;
2694
2695 pe_info(pe, "Switching PHB to CXL\n");
2696
2697 rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2698 if (rc)
2699 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2700
2701 return rc;
2702 }
2703 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2704
2705 /* Find PHB for cxl dev and allocate MSI hwirqs?
2706 * Returns the absolute hardware IRQ number
2707 */
2708 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2709 {
2710 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2711 struct pnv_phb *phb = hose->private_data;
2712 int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2713
2714 if (hwirq < 0) {
2715 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2716 return -ENOSPC;
2717 }
2718
2719 return phb->msi_base + hwirq;
2720 }
2721 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2722
2723 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2724 {
2725 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2726 struct pnv_phb *phb = hose->private_data;
2727
2728 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2729 }
2730 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2731
2732 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2733 struct pci_dev *dev)
2734 {
2735 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2736 struct pnv_phb *phb = hose->private_data;
2737 int i, hwirq;
2738
2739 for (i = 1; i < CXL_IRQ_RANGES; i++) {
2740 if (!irqs->range[i])
2741 continue;
2742 pr_devel("cxl release irq range 0x%x: offset: 0x%lx limit: %ld\n",
2743 i, irqs->offset[i],
2744 irqs->range[i]);
2745 hwirq = irqs->offset[i] - phb->msi_base;
2746 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2747 irqs->range[i]);
2748 }
2749 }
2750 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2751
2752 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2753 struct pci_dev *dev, int num)
2754 {
2755 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2756 struct pnv_phb *phb = hose->private_data;
2757 int i, hwirq, try;
2758
2759 memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2760
2761 /* 0 is reserved for the multiplexed PSL DSI interrupt */
2762 for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2763 try = num;
2764 while (try) {
2765 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2766 if (hwirq >= 0)
2767 break;
2768 try /= 2;
2769 }
2770 if (!try)
2771 goto fail;
2772
2773 irqs->offset[i] = phb->msi_base + hwirq;
2774 irqs->range[i] = try;
2775 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx limit: %li\n",
2776 i, irqs->offset[i], irqs->range[i]);
2777 num -= try;
2778 }
2779 if (num)
2780 goto fail;
2781
2782 return 0;
2783 fail:
2784 pnv_cxl_release_hwirq_ranges(irqs, dev);
2785 return -ENOSPC;
2786 }
2787 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2788
2789 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2790 {
2791 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2792 struct pnv_phb *phb = hose->private_data;
2793
2794 return phb->msi_bmp.irq_count;
2795 }
2796 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2797
2798 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2799 unsigned int virq)
2800 {
2801 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2802 struct pnv_phb *phb = hose->private_data;
2803 unsigned int xive_num = hwirq - phb->msi_base;
2804 struct pnv_ioda_pe *pe;
2805 int rc;
2806
2807 if (!(pe = pnv_ioda_get_pe(dev)))
2808 return -ENODEV;
2809
2810 /* Assign XIVE to PE */
2811 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2812 if (rc) {
2813 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2814 "hwirq 0x%x XIVE 0x%x PE\n",
2815 pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2816 return -EIO;
2817 }
2818 set_msi_irq_chip(phb, virq);
2819
2820 return 0;
2821 }
2822 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2823 #endif
2824
2825 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2826 unsigned int hwirq, unsigned int virq,
2827 unsigned int is_64, struct msi_msg *msg)
2828 {
2829 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2830 unsigned int xive_num = hwirq - phb->msi_base;
2831 __be32 data;
2832 int rc;
2833
2834 /* No PE assigned ? bail out ... no MSI for you ! */
2835 if (pe == NULL)
2836 return -ENXIO;
2837
2838 /* Check if we have an MVE */
2839 if (pe->mve_number < 0)
2840 return -ENXIO;
2841
2842 /* Force 32-bit MSI on some broken devices */
2843 if (dev->no_64bit_msi)
2844 is_64 = 0;
2845
2846 /* Assign XIVE to PE */
2847 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2848 if (rc) {
2849 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2850 pci_name(dev), rc, xive_num);
2851 return -EIO;
2852 }
2853
2854 if (is_64) {
2855 __be64 addr64;
2856
2857 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2858 &addr64, &data);
2859 if (rc) {
2860 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2861 pci_name(dev), rc);
2862 return -EIO;
2863 }
2864 msg->address_hi = be64_to_cpu(addr64) >> 32;
2865 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2866 } else {
2867 __be32 addr32;
2868
2869 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2870 &addr32, &data);
2871 if (rc) {
2872 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2873 pci_name(dev), rc);
2874 return -EIO;
2875 }
2876 msg->address_hi = 0;
2877 msg->address_lo = be32_to_cpu(addr32);
2878 }
2879 msg->data = be32_to_cpu(data);
2880
2881 set_msi_irq_chip(phb, virq);
2882
2883 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2884 " address=%x_%08x data=%x PE# %d\n",
2885 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2886 msg->address_hi, msg->address_lo, data, pe->pe_number);
2887
2888 return 0;
2889 }
2890
2891 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2892 {
2893 unsigned int count;
2894 const __be32 *prop = of_get_property(phb->hose->dn,
2895 "ibm,opal-msi-ranges", NULL);
2896 if (!prop) {
2897 /* BML Fallback */
2898 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2899 }
2900 if (!prop)
2901 return;
2902
2903 phb->msi_base = be32_to_cpup(prop);
2904 count = be32_to_cpup(prop + 1);
2905 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2906 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2907 phb->hose->global_number);
2908 return;
2909 }
2910
2911 phb->msi_setup = pnv_pci_ioda_msi_setup;
2912 phb->msi32_support = 1;
2913 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2914 count, phb->msi_base);
2915 }
2916 #else
2917 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2918 #endif /* CONFIG_PCI_MSI */
2919
2920 #ifdef CONFIG_PCI_IOV
2921 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2922 {
2923 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2924 struct pnv_phb *phb = hose->private_data;
2925 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2926 struct resource *res;
2927 int i;
2928 resource_size_t size, total_vf_bar_sz;
2929 struct pci_dn *pdn;
2930 int mul, total_vfs;
2931
2932 if (!pdev->is_physfn || pdev->is_added)
2933 return;
2934
2935 pdn = pci_get_pdn(pdev);
2936 pdn->vfs_expanded = 0;
2937 pdn->m64_single_mode = false;
2938
2939 total_vfs = pci_sriov_get_totalvfs(pdev);
2940 mul = phb->ioda.total_pe_num;
2941 total_vf_bar_sz = 0;
2942
2943 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2944 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2945 if (!res->flags || res->parent)
2946 continue;
2947 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2948 dev_warn(&pdev->dev, "Don't support SR-IOV with"
2949 " non M64 VF BAR%d: %pR. \n",
2950 i, res);
2951 goto truncate_iov;
2952 }
2953
2954 total_vf_bar_sz += pci_iov_resource_size(pdev,
2955 i + PCI_IOV_RESOURCES);
2956
2957 /*
2958 * If bigger than quarter of M64 segment size, just round up
2959 * power of two.
2960 *
2961 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2962 * with other devices, IOV BAR size is expanded to be
2963 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
2964 * segment size , the expanded size would equal to half of the
2965 * whole M64 space size, which will exhaust the M64 Space and
2966 * limit the system flexibility. This is a design decision to
2967 * set the boundary to quarter of the M64 segment size.
2968 */
2969 if (total_vf_bar_sz > gate) {
2970 mul = roundup_pow_of_two(total_vfs);
2971 dev_info(&pdev->dev,
2972 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2973 total_vf_bar_sz, gate, mul);
2974 pdn->m64_single_mode = true;
2975 break;
2976 }
2977 }
2978
2979 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2980 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2981 if (!res->flags || res->parent)
2982 continue;
2983
2984 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2985 /*
2986 * On PHB3, the minimum size alignment of M64 BAR in single
2987 * mode is 32MB.
2988 */
2989 if (pdn->m64_single_mode && (size < SZ_32M))
2990 goto truncate_iov;
2991 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2992 res->end = res->start + size * mul - 1;
2993 dev_dbg(&pdev->dev, " %pR\n", res);
2994 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2995 i, res, mul);
2996 }
2997 pdn->vfs_expanded = mul;
2998
2999 return;
3000
3001 truncate_iov:
3002 /* To save MMIO space, IOV BAR is truncated. */
3003 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3004 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3005 res->flags = 0;
3006 res->end = res->start - 1;
3007 }
3008 }
3009 #endif /* CONFIG_PCI_IOV */
3010
3011 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3012 struct resource *res)
3013 {
3014 struct pnv_phb *phb = pe->phb;
3015 struct pci_bus_region region;
3016 int index;
3017 int64_t rc;
3018
3019 if (!res || !res->flags || res->start > res->end)
3020 return;
3021
3022 if (res->flags & IORESOURCE_IO) {
3023 region.start = res->start - phb->ioda.io_pci_base;
3024 region.end = res->end - phb->ioda.io_pci_base;
3025 index = region.start / phb->ioda.io_segsize;
3026
3027 while (index < phb->ioda.total_pe_num &&
3028 region.start <= region.end) {
3029 phb->ioda.io_segmap[index] = pe->pe_number;
3030 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3031 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3032 if (rc != OPAL_SUCCESS) {
3033 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
3034 __func__, rc, index, pe->pe_number);
3035 break;
3036 }
3037
3038 region.start += phb->ioda.io_segsize;
3039 index++;
3040 }
3041 } else if ((res->flags & IORESOURCE_MEM) &&
3042 !pnv_pci_is_mem_pref_64(res->flags)) {
3043 region.start = res->start -
3044 phb->hose->mem_offset[0] -
3045 phb->ioda.m32_pci_base;
3046 region.end = res->end -
3047 phb->hose->mem_offset[0] -
3048 phb->ioda.m32_pci_base;
3049 index = region.start / phb->ioda.m32_segsize;
3050
3051 while (index < phb->ioda.total_pe_num &&
3052 region.start <= region.end) {
3053 phb->ioda.m32_segmap[index] = pe->pe_number;
3054 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3055 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3056 if (rc != OPAL_SUCCESS) {
3057 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
3058 __func__, rc, index, pe->pe_number);
3059 break;
3060 }
3061
3062 region.start += phb->ioda.m32_segsize;
3063 index++;
3064 }
3065 }
3066 }
3067
3068 /*
3069 * This function is supposed to be called on basis of PE from top
3070 * to bottom style. So the the I/O or MMIO segment assigned to
3071 * parent PE could be overrided by its child PEs if necessary.
3072 */
3073 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3074 {
3075 struct pci_dev *pdev;
3076 int i;
3077
3078 /*
3079 * NOTE: We only care PCI bus based PE for now. For PCI
3080 * device based PE, for example SRIOV sensitive VF should
3081 * be figured out later.
3082 */
3083 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3084
3085 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3086 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3087 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3088
3089 /*
3090 * If the PE contains all subordinate PCI buses, the
3091 * windows of the child bridges should be mapped to
3092 * the PE as well.
3093 */
3094 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3095 continue;
3096 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3097 pnv_ioda_setup_pe_res(pe,
3098 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3099 }
3100 }
3101
3102 static void pnv_pci_ioda_setup_seg(void)
3103 {
3104 struct pci_controller *tmp, *hose;
3105 struct pnv_phb *phb;
3106 struct pnv_ioda_pe *pe;
3107
3108 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3109 phb = hose->private_data;
3110
3111 /* NPU PHB does not support IO or MMIO segmentation */
3112 if (phb->type == PNV_PHB_NPU)
3113 continue;
3114
3115 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3116 pnv_ioda_setup_pe_seg(pe);
3117 }
3118 }
3119 }
3120
3121 static void pnv_pci_ioda_setup_DMA(void)
3122 {
3123 struct pci_controller *hose, *tmp;
3124 struct pnv_phb *phb;
3125
3126 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3127 pnv_ioda_setup_dma(hose->private_data);
3128
3129 /* Mark the PHB initialization done */
3130 phb = hose->private_data;
3131 phb->initialized = 1;
3132 }
3133 }
3134
3135 static void pnv_pci_ioda_create_dbgfs(void)
3136 {
3137 #ifdef CONFIG_DEBUG_FS
3138 struct pci_controller *hose, *tmp;
3139 struct pnv_phb *phb;
3140 char name[16];
3141
3142 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3143 phb = hose->private_data;
3144
3145 sprintf(name, "PCI%04x", hose->global_number);
3146 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3147 if (!phb->dbgfs)
3148 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3149 __func__, hose->global_number);
3150 }
3151 #endif /* CONFIG_DEBUG_FS */
3152 }
3153
3154 static void pnv_npu_ioda_fixup(void)
3155 {
3156 bool enable_bypass;
3157 struct pci_controller *hose, *tmp;
3158 struct pnv_phb *phb;
3159 struct pnv_ioda_pe *pe;
3160 unsigned int weight;
3161
3162 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3163 phb = hose->private_data;
3164 if (phb->type != PNV_PHB_NPU)
3165 continue;
3166
3167 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3168 weight = pnv_pci_ioda_pe_dma_weight(pe);
3169 if (WARN_ON(!weight))
3170 continue;
3171
3172 enable_bypass = dma_get_mask(&pe->pdev->dev) ==
3173 DMA_BIT_MASK(64);
3174 pnv_npu_init_dma_pe(pe);
3175 pnv_npu_dma_set_bypass(pe, enable_bypass);
3176 }
3177 }
3178 }
3179
3180 static void pnv_pci_ioda_fixup(void)
3181 {
3182 pnv_pci_ioda_setup_PEs();
3183 pnv_pci_ioda_setup_seg();
3184 pnv_pci_ioda_setup_DMA();
3185
3186 pnv_pci_ioda_create_dbgfs();
3187
3188 #ifdef CONFIG_EEH
3189 eeh_init();
3190 eeh_addr_cache_build();
3191 #endif
3192
3193 /* Link NPU IODA tables to their PCI devices. */
3194 pnv_npu_ioda_fixup();
3195 }
3196
3197 /*
3198 * Returns the alignment for I/O or memory windows for P2P
3199 * bridges. That actually depends on how PEs are segmented.
3200 * For now, we return I/O or M32 segment size for PE sensitive
3201 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3202 * 1MiB for memory) will be returned.
3203 *
3204 * The current PCI bus might be put into one PE, which was
3205 * create against the parent PCI bridge. For that case, we
3206 * needn't enlarge the alignment so that we can save some
3207 * resources.
3208 */
3209 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3210 unsigned long type)
3211 {
3212 struct pci_dev *bridge;
3213 struct pci_controller *hose = pci_bus_to_host(bus);
3214 struct pnv_phb *phb = hose->private_data;
3215 int num_pci_bridges = 0;
3216
3217 bridge = bus->self;
3218 while (bridge) {
3219 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3220 num_pci_bridges++;
3221 if (num_pci_bridges >= 2)
3222 return 1;
3223 }
3224
3225 bridge = bridge->bus->self;
3226 }
3227
3228 /* We fail back to M32 if M64 isn't supported */
3229 if (phb->ioda.m64_segsize &&
3230 pnv_pci_is_mem_pref_64(type))
3231 return phb->ioda.m64_segsize;
3232 if (type & IORESOURCE_MEM)
3233 return phb->ioda.m32_segsize;
3234
3235 return phb->ioda.io_segsize;
3236 }
3237
3238 #ifdef CONFIG_PCI_IOV
3239 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3240 int resno)
3241 {
3242 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3243 struct pnv_phb *phb = hose->private_data;
3244 struct pci_dn *pdn = pci_get_pdn(pdev);
3245 resource_size_t align;
3246
3247 /*
3248 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3249 * SR-IOV. While from hardware perspective, the range mapped by M64
3250 * BAR should be size aligned.
3251 *
3252 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3253 * powernv-specific hardware restriction is gone. But if just use the
3254 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3255 * in one segment of M64 #15, which introduces the PE conflict between
3256 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3257 * m64_segsize.
3258 *
3259 * This function returns the total IOV BAR size if M64 BAR is in
3260 * Shared PE mode or just VF BAR size if not.
3261 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3262 * M64 segment size if IOV BAR size is less.
3263 */
3264 align = pci_iov_resource_size(pdev, resno);
3265 if (!pdn->vfs_expanded)
3266 return align;
3267 if (pdn->m64_single_mode)
3268 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3269
3270 return pdn->vfs_expanded * align;
3271 }
3272 #endif /* CONFIG_PCI_IOV */
3273
3274 /* Prevent enabling devices for which we couldn't properly
3275 * assign a PE
3276 */
3277 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3278 {
3279 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3280 struct pnv_phb *phb = hose->private_data;
3281 struct pci_dn *pdn;
3282
3283 /* The function is probably called while the PEs have
3284 * not be created yet. For example, resource reassignment
3285 * during PCI probe period. We just skip the check if
3286 * PEs isn't ready.
3287 */
3288 if (!phb->initialized)
3289 return true;
3290
3291 pdn = pci_get_pdn(dev);
3292 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3293 return false;
3294
3295 return true;
3296 }
3297
3298 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3299 {
3300 struct pnv_phb *phb = hose->private_data;
3301
3302 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3303 OPAL_ASSERT_RESET);
3304 }
3305
3306 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3307 .dma_dev_setup = pnv_pci_dma_dev_setup,
3308 .dma_bus_setup = pnv_pci_dma_bus_setup,
3309 #ifdef CONFIG_PCI_MSI
3310 .setup_msi_irqs = pnv_setup_msi_irqs,
3311 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3312 #endif
3313 .enable_device_hook = pnv_pci_enable_device_hook,
3314 .window_alignment = pnv_pci_window_alignment,
3315 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3316 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3317 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3318 .shutdown = pnv_pci_ioda_shutdown,
3319 };
3320
3321 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3322 .dma_dev_setup = pnv_pci_dma_dev_setup,
3323 #ifdef CONFIG_PCI_MSI
3324 .setup_msi_irqs = pnv_setup_msi_irqs,
3325 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3326 #endif
3327 .enable_device_hook = pnv_pci_enable_device_hook,
3328 .window_alignment = pnv_pci_window_alignment,
3329 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3330 .dma_set_mask = pnv_npu_dma_set_mask,
3331 .shutdown = pnv_pci_ioda_shutdown,
3332 };
3333
3334 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3335 u64 hub_id, int ioda_type)
3336 {
3337 struct pci_controller *hose;
3338 struct pnv_phb *phb;
3339 unsigned long size, m64map_off, m32map_off, pemap_off;
3340 unsigned long iomap_off = 0, dma32map_off = 0;
3341 const __be64 *prop64;
3342 const __be32 *prop32;
3343 int len;
3344 unsigned int segno;
3345 u64 phb_id;
3346 void *aux;
3347 long rc;
3348
3349 pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3350
3351 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3352 if (!prop64) {
3353 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3354 return;
3355 }
3356 phb_id = be64_to_cpup(prop64);
3357 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3358
3359 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3360
3361 /* Allocate PCI controller */
3362 phb->hose = hose = pcibios_alloc_controller(np);
3363 if (!phb->hose) {
3364 pr_err(" Can't allocate PCI controller for %s\n",
3365 np->full_name);
3366 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3367 return;
3368 }
3369
3370 spin_lock_init(&phb->lock);
3371 prop32 = of_get_property(np, "bus-range", &len);
3372 if (prop32 && len == 8) {
3373 hose->first_busno = be32_to_cpu(prop32[0]);
3374 hose->last_busno = be32_to_cpu(prop32[1]);
3375 } else {
3376 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
3377 hose->first_busno = 0;
3378 hose->last_busno = 0xff;
3379 }
3380 hose->private_data = phb;
3381 phb->hub_id = hub_id;
3382 phb->opal_id = phb_id;
3383 phb->type = ioda_type;
3384 mutex_init(&phb->ioda.pe_alloc_mutex);
3385
3386 /* Detect specific models for error handling */
3387 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3388 phb->model = PNV_PHB_MODEL_P7IOC;
3389 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3390 phb->model = PNV_PHB_MODEL_PHB3;
3391 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3392 phb->model = PNV_PHB_MODEL_NPU;
3393 else
3394 phb->model = PNV_PHB_MODEL_UNKNOWN;
3395
3396 /* Parse 32-bit and IO ranges (if any) */
3397 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3398
3399 /* Get registers */
3400 phb->regs = of_iomap(np, 0);
3401 if (phb->regs == NULL)
3402 pr_err(" Failed to map registers !\n");
3403
3404 /* Initialize more IODA stuff */
3405 phb->ioda.total_pe_num = 1;
3406 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3407 if (prop32)
3408 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3409 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3410 if (prop32)
3411 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3412
3413 /* Parse 64-bit MMIO range */
3414 pnv_ioda_parse_m64_window(phb);
3415
3416 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3417 /* FW Has already off top 64k of M32 space (MSI space) */
3418 phb->ioda.m32_size += 0x10000;
3419
3420 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3421 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3422 phb->ioda.io_size = hose->pci_io_size;
3423 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3424 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3425
3426 /* Calculate how many 32-bit TCE segments we have */
3427 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3428 PNV_IODA1_DMA32_SEGSIZE;
3429
3430 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3431 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
3432 m64map_off = size;
3433 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3434 m32map_off = size;
3435 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3436 if (phb->type == PNV_PHB_IODA1) {
3437 iomap_off = size;
3438 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3439 dma32map_off = size;
3440 size += phb->ioda.dma32_count *
3441 sizeof(phb->ioda.dma32_segmap[0]);
3442 }
3443 pemap_off = size;
3444 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3445 aux = memblock_virt_alloc(size, 0);
3446 phb->ioda.pe_alloc = aux;
3447 phb->ioda.m64_segmap = aux + m64map_off;
3448 phb->ioda.m32_segmap = aux + m32map_off;
3449 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3450 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3451 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3452 }
3453 if (phb->type == PNV_PHB_IODA1) {
3454 phb->ioda.io_segmap = aux + iomap_off;
3455 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3456 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3457
3458 phb->ioda.dma32_segmap = aux + dma32map_off;
3459 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3460 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3461 }
3462 phb->ioda.pe_array = aux + pemap_off;
3463 set_bit(phb->ioda.reserved_pe_idx, phb->ioda.pe_alloc);
3464
3465 INIT_LIST_HEAD(&phb->ioda.pe_list);
3466 mutex_init(&phb->ioda.pe_list_mutex);
3467
3468 /* Calculate how many 32-bit TCE segments we have */
3469 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3470 PNV_IODA1_DMA32_SEGSIZE;
3471
3472 #if 0 /* We should really do that ... */
3473 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3474 window_type,
3475 window_num,
3476 starting_real_address,
3477 starting_pci_address,
3478 segment_size);
3479 #endif
3480
3481 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3482 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3483 phb->ioda.m32_size, phb->ioda.m32_segsize);
3484 if (phb->ioda.m64_size)
3485 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3486 phb->ioda.m64_size, phb->ioda.m64_segsize);
3487 if (phb->ioda.io_size)
3488 pr_info(" IO: 0x%x [segment=0x%x]\n",
3489 phb->ioda.io_size, phb->ioda.io_segsize);
3490
3491
3492 phb->hose->ops = &pnv_pci_ops;
3493 phb->get_pe_state = pnv_ioda_get_pe_state;
3494 phb->freeze_pe = pnv_ioda_freeze_pe;
3495 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3496
3497 /* Setup TCEs */
3498 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3499
3500 /* Setup MSI support */
3501 pnv_pci_init_ioda_msis(phb);
3502
3503 /*
3504 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3505 * to let the PCI core do resource assignment. It's supposed
3506 * that the PCI core will do correct I/O and MMIO alignment
3507 * for the P2P bridge bars so that each PCI bus (excluding
3508 * the child P2P bridges) can form individual PE.
3509 */
3510 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3511
3512 if (phb->type == PNV_PHB_NPU)
3513 hose->controller_ops = pnv_npu_ioda_controller_ops;
3514 else
3515 hose->controller_ops = pnv_pci_ioda_controller_ops;
3516
3517 #ifdef CONFIG_PCI_IOV
3518 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3519 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3520 #endif
3521
3522 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3523
3524 /* Reset IODA tables to a clean state */
3525 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3526 if (rc)
3527 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
3528
3529 /* If we're running in kdump kerenl, the previous kerenl never
3530 * shutdown PCI devices correctly. We already got IODA table
3531 * cleaned out. So we have to issue PHB reset to stop all PCI
3532 * transactions from previous kerenl.
3533 */
3534 if (is_kdump_kernel()) {
3535 pr_info(" Issue PHB reset ...\n");
3536 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3537 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3538 }
3539
3540 /* Remove M64 resource if we can't configure it successfully */
3541 if (!phb->init_m64 || phb->init_m64(phb))
3542 hose->mem_resources[1].flags = 0;
3543 }
3544
3545 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3546 {
3547 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3548 }
3549
3550 void __init pnv_pci_init_npu_phb(struct device_node *np)
3551 {
3552 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3553 }
3554
3555 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3556 {
3557 struct device_node *phbn;
3558 const __be64 *prop64;
3559 u64 hub_id;
3560
3561 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3562
3563 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3564 if (!prop64) {
3565 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3566 return;
3567 }
3568 hub_id = be64_to_cpup(prop64);
3569 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3570
3571 /* Count child PHBs */
3572 for_each_child_of_node(np, phbn) {
3573 /* Look for IODA1 PHBs */
3574 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3575 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3576 }
3577 }
This page took 0.102053 seconds and 6 git commands to generate.