powerpc/pseries: Read common partition via pstore
[deliverable/linux.git] / arch / powerpc / platforms / pseries / nvram.c
1 /*
2 * c 2001 PPC 64 Team, IBM Corp
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * /dev/nvram driver for PPC64
10 *
11 * This perhaps should live in drivers/char
12 */
13
14
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <linux/pstore.h>
22 #include <linux/ctype.h>
23 #include <linux/zlib.h>
24 #include <asm/uaccess.h>
25 #include <asm/nvram.h>
26 #include <asm/rtas.h>
27 #include <asm/prom.h>
28 #include <asm/machdep.h>
29
30 /* Max bytes to read/write in one go */
31 #define NVRW_CNT 0x20
32
33 /*
34 * Set oops header version to distingush between old and new format header.
35 * lnx,oops-log partition max size is 4000, header version > 4000 will
36 * help in identifying new header.
37 */
38 #define OOPS_HDR_VERSION 5000
39
40 static unsigned int nvram_size;
41 static int nvram_fetch, nvram_store;
42 static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
43 static DEFINE_SPINLOCK(nvram_lock);
44
45 struct err_log_info {
46 int error_type;
47 unsigned int seq_num;
48 };
49
50 struct nvram_os_partition {
51 const char *name;
52 int req_size; /* desired size, in bytes */
53 int min_size; /* minimum acceptable size (0 means req_size) */
54 long size; /* size of data portion (excluding err_log_info) */
55 long index; /* offset of data portion of partition */
56 bool os_partition; /* partition initialized by OS, not FW */
57 };
58
59 static struct nvram_os_partition rtas_log_partition = {
60 .name = "ibm,rtas-log",
61 .req_size = 2079,
62 .min_size = 1055,
63 .index = -1,
64 .os_partition = true
65 };
66
67 static struct nvram_os_partition oops_log_partition = {
68 .name = "lnx,oops-log",
69 .req_size = 4000,
70 .min_size = 2000,
71 .index = -1,
72 .os_partition = true
73 };
74
75 static const char *pseries_nvram_os_partitions[] = {
76 "ibm,rtas-log",
77 "lnx,oops-log",
78 NULL
79 };
80
81 struct oops_log_info {
82 u16 version;
83 u16 report_length;
84 u64 timestamp;
85 } __attribute__((packed));
86
87 static void oops_to_nvram(struct kmsg_dumper *dumper,
88 enum kmsg_dump_reason reason);
89
90 static struct kmsg_dumper nvram_kmsg_dumper = {
91 .dump = oops_to_nvram
92 };
93
94 /* See clobbering_unread_rtas_event() */
95 #define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
96 static unsigned long last_unread_rtas_event; /* timestamp */
97
98 /*
99 * For capturing and compressing an oops or panic report...
100
101 * big_oops_buf[] holds the uncompressed text we're capturing.
102 *
103 * oops_buf[] holds the compressed text, preceded by a oops header.
104 * oops header has u16 holding the version of oops header (to differentiate
105 * between old and new format header) followed by u16 holding the length of
106 * the compressed* text (*Or uncompressed, if compression fails.) and u64
107 * holding the timestamp. oops_buf[] gets written to NVRAM.
108 *
109 * oops_log_info points to the header. oops_data points to the compressed text.
110 *
111 * +- oops_buf
112 * | +- oops_data
113 * v v
114 * +-----------+-----------+-----------+------------------------+
115 * | version | length | timestamp | text |
116 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) |
117 * +-----------+-----------+-----------+------------------------+
118 * ^
119 * +- oops_log_info
120 *
121 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
122 */
123 static size_t big_oops_buf_sz;
124 static char *big_oops_buf, *oops_buf;
125 static char *oops_data;
126 static size_t oops_data_sz;
127
128 /* Compression parameters */
129 #define COMPR_LEVEL 6
130 #define WINDOW_BITS 12
131 #define MEM_LEVEL 4
132 static struct z_stream_s stream;
133
134 #ifdef CONFIG_PSTORE
135 static struct nvram_os_partition of_config_partition = {
136 .name = "of-config",
137 .index = -1,
138 .os_partition = false
139 };
140
141 static struct nvram_os_partition common_partition = {
142 .name = "common",
143 .index = -1,
144 .os_partition = false
145 };
146
147 static enum pstore_type_id nvram_type_ids[] = {
148 PSTORE_TYPE_DMESG,
149 PSTORE_TYPE_PPC_RTAS,
150 PSTORE_TYPE_PPC_OF,
151 PSTORE_TYPE_PPC_COMMON,
152 -1
153 };
154 static int read_type;
155 static unsigned long last_rtas_event;
156 #endif
157
158 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
159 {
160 unsigned int i;
161 unsigned long len;
162 int done;
163 unsigned long flags;
164 char *p = buf;
165
166
167 if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
168 return -ENODEV;
169
170 if (*index >= nvram_size)
171 return 0;
172
173 i = *index;
174 if (i + count > nvram_size)
175 count = nvram_size - i;
176
177 spin_lock_irqsave(&nvram_lock, flags);
178
179 for (; count != 0; count -= len) {
180 len = count;
181 if (len > NVRW_CNT)
182 len = NVRW_CNT;
183
184 if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
185 len) != 0) || len != done) {
186 spin_unlock_irqrestore(&nvram_lock, flags);
187 return -EIO;
188 }
189
190 memcpy(p, nvram_buf, len);
191
192 p += len;
193 i += len;
194 }
195
196 spin_unlock_irqrestore(&nvram_lock, flags);
197
198 *index = i;
199 return p - buf;
200 }
201
202 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
203 {
204 unsigned int i;
205 unsigned long len;
206 int done;
207 unsigned long flags;
208 const char *p = buf;
209
210 if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
211 return -ENODEV;
212
213 if (*index >= nvram_size)
214 return 0;
215
216 i = *index;
217 if (i + count > nvram_size)
218 count = nvram_size - i;
219
220 spin_lock_irqsave(&nvram_lock, flags);
221
222 for (; count != 0; count -= len) {
223 len = count;
224 if (len > NVRW_CNT)
225 len = NVRW_CNT;
226
227 memcpy(nvram_buf, p, len);
228
229 if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
230 len) != 0) || len != done) {
231 spin_unlock_irqrestore(&nvram_lock, flags);
232 return -EIO;
233 }
234
235 p += len;
236 i += len;
237 }
238 spin_unlock_irqrestore(&nvram_lock, flags);
239
240 *index = i;
241 return p - buf;
242 }
243
244 static ssize_t pSeries_nvram_get_size(void)
245 {
246 return nvram_size ? nvram_size : -ENODEV;
247 }
248
249
250 /* nvram_write_os_partition, nvram_write_error_log
251 *
252 * We need to buffer the error logs into nvram to ensure that we have
253 * the failure information to decode. If we have a severe error there
254 * is no way to guarantee that the OS or the machine is in a state to
255 * get back to user land and write the error to disk. For example if
256 * the SCSI device driver causes a Machine Check by writing to a bad
257 * IO address, there is no way of guaranteeing that the device driver
258 * is in any state that is would also be able to write the error data
259 * captured to disk, thus we buffer it in NVRAM for analysis on the
260 * next boot.
261 *
262 * In NVRAM the partition containing the error log buffer will looks like:
263 * Header (in bytes):
264 * +-----------+----------+--------+------------+------------------+
265 * | signature | checksum | length | name | data |
266 * |0 |1 |2 3|4 15|16 length-1|
267 * +-----------+----------+--------+------------+------------------+
268 *
269 * The 'data' section would look like (in bytes):
270 * +--------------+------------+-----------------------------------+
271 * | event_logged | sequence # | error log |
272 * |0 3|4 7|8 error_log_size-1|
273 * +--------------+------------+-----------------------------------+
274 *
275 * event_logged: 0 if event has not been logged to syslog, 1 if it has
276 * sequence #: The unique sequence # for each event. (until it wraps)
277 * error log: The error log from event_scan
278 */
279 int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
280 int length, unsigned int err_type, unsigned int error_log_cnt)
281 {
282 int rc;
283 loff_t tmp_index;
284 struct err_log_info info;
285
286 if (part->index == -1) {
287 return -ESPIPE;
288 }
289
290 if (length > part->size) {
291 length = part->size;
292 }
293
294 info.error_type = err_type;
295 info.seq_num = error_log_cnt;
296
297 tmp_index = part->index;
298
299 rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
300 if (rc <= 0) {
301 pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
302 return rc;
303 }
304
305 rc = ppc_md.nvram_write(buff, length, &tmp_index);
306 if (rc <= 0) {
307 pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
308 return rc;
309 }
310
311 return 0;
312 }
313
314 int nvram_write_error_log(char * buff, int length,
315 unsigned int err_type, unsigned int error_log_cnt)
316 {
317 int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
318 err_type, error_log_cnt);
319 if (!rc) {
320 last_unread_rtas_event = get_seconds();
321 #ifdef CONFIG_PSTORE
322 last_rtas_event = get_seconds();
323 #endif
324 }
325
326 return rc;
327 }
328
329 /* nvram_read_partition
330 *
331 * Reads nvram partition for at most 'length'
332 */
333 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
334 int length, unsigned int *err_type,
335 unsigned int *error_log_cnt)
336 {
337 int rc;
338 loff_t tmp_index;
339 struct err_log_info info;
340
341 if (part->index == -1)
342 return -1;
343
344 if (length > part->size)
345 length = part->size;
346
347 tmp_index = part->index;
348
349 if (part->os_partition) {
350 rc = ppc_md.nvram_read((char *)&info,
351 sizeof(struct err_log_info),
352 &tmp_index);
353 if (rc <= 0) {
354 pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__,
355 rc);
356 return rc;
357 }
358 }
359
360 rc = ppc_md.nvram_read(buff, length, &tmp_index);
361 if (rc <= 0) {
362 pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__, rc);
363 return rc;
364 }
365
366 if (part->os_partition) {
367 *error_log_cnt = info.seq_num;
368 *err_type = info.error_type;
369 }
370
371 return 0;
372 }
373
374 /* nvram_read_error_log
375 *
376 * Reads nvram for error log for at most 'length'
377 */
378 int nvram_read_error_log(char *buff, int length,
379 unsigned int *err_type, unsigned int *error_log_cnt)
380 {
381 return nvram_read_partition(&rtas_log_partition, buff, length,
382 err_type, error_log_cnt);
383 }
384
385 /* This doesn't actually zero anything, but it sets the event_logged
386 * word to tell that this event is safely in syslog.
387 */
388 int nvram_clear_error_log(void)
389 {
390 loff_t tmp_index;
391 int clear_word = ERR_FLAG_ALREADY_LOGGED;
392 int rc;
393
394 if (rtas_log_partition.index == -1)
395 return -1;
396
397 tmp_index = rtas_log_partition.index;
398
399 rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
400 if (rc <= 0) {
401 printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
402 return rc;
403 }
404 last_unread_rtas_event = 0;
405
406 return 0;
407 }
408
409 /* pseries_nvram_init_os_partition
410 *
411 * This sets up a partition with an "OS" signature.
412 *
413 * The general strategy is the following:
414 * 1.) If a partition with the indicated name already exists...
415 * - If it's large enough, use it.
416 * - Otherwise, recycle it and keep going.
417 * 2.) Search for a free partition that is large enough.
418 * 3.) If there's not a free partition large enough, recycle any obsolete
419 * OS partitions and try again.
420 * 4.) Will first try getting a chunk that will satisfy the requested size.
421 * 5.) If a chunk of the requested size cannot be allocated, then try finding
422 * a chunk that will satisfy the minum needed.
423 *
424 * Returns 0 on success, else -1.
425 */
426 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
427 *part)
428 {
429 loff_t p;
430 int size;
431
432 /* Scan nvram for partitions */
433 nvram_scan_partitions();
434
435 /* Look for ours */
436 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
437
438 /* Found one but too small, remove it */
439 if (p && size < part->min_size) {
440 pr_info("nvram: Found too small %s partition,"
441 " removing it...\n", part->name);
442 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
443 p = 0;
444 }
445
446 /* Create one if we didn't find */
447 if (!p) {
448 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
449 part->req_size, part->min_size);
450 if (p == -ENOSPC) {
451 pr_info("nvram: No room to create %s partition, "
452 "deleting any obsolete OS partitions...\n",
453 part->name);
454 nvram_remove_partition(NULL, NVRAM_SIG_OS,
455 pseries_nvram_os_partitions);
456 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
457 part->req_size, part->min_size);
458 }
459 }
460
461 if (p <= 0) {
462 pr_err("nvram: Failed to find or create %s"
463 " partition, err %d\n", part->name, (int)p);
464 return -1;
465 }
466
467 part->index = p;
468 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
469
470 return 0;
471 }
472
473 /*
474 * Are we using the ibm,rtas-log for oops/panic reports? And if so,
475 * would logging this oops/panic overwrite an RTAS event that rtas_errd
476 * hasn't had a chance to read and process? Return 1 if so, else 0.
477 *
478 * We assume that if rtas_errd hasn't read the RTAS event in
479 * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
480 */
481 static int clobbering_unread_rtas_event(void)
482 {
483 return (oops_log_partition.index == rtas_log_partition.index
484 && last_unread_rtas_event
485 && get_seconds() - last_unread_rtas_event <=
486 NVRAM_RTAS_READ_TIMEOUT);
487 }
488
489 #ifdef CONFIG_PSTORE
490 static int nvram_pstore_open(struct pstore_info *psi)
491 {
492 /* Reset the iterator to start reading partitions again */
493 read_type = -1;
494 return 0;
495 }
496
497 /**
498 * nvram_pstore_write - pstore write callback for nvram
499 * @type: Type of message logged
500 * @reason: reason behind dump (oops/panic)
501 * @id: identifier to indicate the write performed
502 * @part: pstore writes data to registered buffer in parts,
503 * part number will indicate the same.
504 * @count: Indicates oops count
505 * @size: number of bytes written to the registered buffer
506 * @psi: registered pstore_info structure
507 *
508 * Called by pstore_dump() when an oops or panic report is logged in the
509 * printk buffer.
510 * Returns 0 on successful write.
511 */
512 static int nvram_pstore_write(enum pstore_type_id type,
513 enum kmsg_dump_reason reason,
514 u64 *id, unsigned int part, int count,
515 size_t size, struct pstore_info *psi)
516 {
517 int rc;
518 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
519
520 /* part 1 has the recent messages from printk buffer */
521 if (part > 1 || type != PSTORE_TYPE_DMESG ||
522 clobbering_unread_rtas_event())
523 return -1;
524
525 oops_hdr->version = OOPS_HDR_VERSION;
526 oops_hdr->report_length = (u16) size;
527 oops_hdr->timestamp = get_seconds();
528 rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
529 (int) (sizeof(*oops_hdr) + size), ERR_TYPE_KERNEL_PANIC,
530 count);
531
532 if (rc != 0)
533 return rc;
534
535 *id = part;
536 return 0;
537 }
538
539 /*
540 * Reads the oops/panic report, rtas, of-config and common partition.
541 * Returns the length of the data we read from each partition.
542 * Returns 0 if we've been called before.
543 */
544 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
545 int *count, struct timespec *time, char **buf,
546 struct pstore_info *psi)
547 {
548 struct oops_log_info *oops_hdr;
549 unsigned int err_type, id_no, size = 0;
550 struct nvram_os_partition *part = NULL;
551 char *buff = NULL;
552 int sig = 0;
553 loff_t p;
554
555 read_type++;
556
557 switch (nvram_type_ids[read_type]) {
558 case PSTORE_TYPE_DMESG:
559 part = &oops_log_partition;
560 *type = PSTORE_TYPE_DMESG;
561 break;
562 case PSTORE_TYPE_PPC_RTAS:
563 part = &rtas_log_partition;
564 *type = PSTORE_TYPE_PPC_RTAS;
565 time->tv_sec = last_rtas_event;
566 time->tv_nsec = 0;
567 break;
568 case PSTORE_TYPE_PPC_OF:
569 sig = NVRAM_SIG_OF;
570 part = &of_config_partition;
571 *type = PSTORE_TYPE_PPC_OF;
572 *id = PSTORE_TYPE_PPC_OF;
573 time->tv_sec = 0;
574 time->tv_nsec = 0;
575 break;
576 case PSTORE_TYPE_PPC_COMMON:
577 sig = NVRAM_SIG_SYS;
578 part = &common_partition;
579 *type = PSTORE_TYPE_PPC_COMMON;
580 *id = PSTORE_TYPE_PPC_COMMON;
581 time->tv_sec = 0;
582 time->tv_nsec = 0;
583 break;
584 default:
585 return 0;
586 }
587
588 if (!part->os_partition) {
589 p = nvram_find_partition(part->name, sig, &size);
590 if (p <= 0) {
591 pr_err("nvram: Failed to find partition %s, "
592 "err %d\n", part->name, (int)p);
593 return 0;
594 }
595 part->index = p;
596 part->size = size;
597 }
598
599 buff = kmalloc(part->size, GFP_KERNEL);
600
601 if (!buff)
602 return -ENOMEM;
603
604 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
605 kfree(buff);
606 return 0;
607 }
608
609 *count = 0;
610
611 if (part->os_partition)
612 *id = id_no;
613
614 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
615 oops_hdr = (struct oops_log_info *)buff;
616 *buf = buff + sizeof(*oops_hdr);
617 time->tv_sec = oops_hdr->timestamp;
618 time->tv_nsec = 0;
619 return oops_hdr->report_length;
620 }
621
622 *buf = buff;
623 return part->size;
624 }
625
626 static struct pstore_info nvram_pstore_info = {
627 .owner = THIS_MODULE,
628 .name = "nvram",
629 .open = nvram_pstore_open,
630 .read = nvram_pstore_read,
631 .write = nvram_pstore_write,
632 };
633
634 static int nvram_pstore_init(void)
635 {
636 int rc = 0;
637
638 nvram_pstore_info.buf = oops_data;
639 nvram_pstore_info.bufsize = oops_data_sz;
640
641 rc = pstore_register(&nvram_pstore_info);
642 if (rc != 0)
643 pr_err("nvram: pstore_register() failed, defaults to "
644 "kmsg_dump; returned %d\n", rc);
645 else
646 /*TODO: Support compression when pstore is configured */
647 pr_info("nvram: Compression of oops text supported only when "
648 "pstore is not configured");
649
650 return rc;
651 }
652 #else
653 static int nvram_pstore_init(void)
654 {
655 return -1;
656 }
657 #endif
658
659 static void __init nvram_init_oops_partition(int rtas_partition_exists)
660 {
661 int rc;
662
663 rc = pseries_nvram_init_os_partition(&oops_log_partition);
664 if (rc != 0) {
665 if (!rtas_partition_exists)
666 return;
667 pr_notice("nvram: Using %s partition to log both"
668 " RTAS errors and oops/panic reports\n",
669 rtas_log_partition.name);
670 memcpy(&oops_log_partition, &rtas_log_partition,
671 sizeof(rtas_log_partition));
672 }
673 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
674 if (!oops_buf) {
675 pr_err("nvram: No memory for %s partition\n",
676 oops_log_partition.name);
677 return;
678 }
679 oops_data = oops_buf + sizeof(struct oops_log_info);
680 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
681
682 rc = nvram_pstore_init();
683
684 if (!rc)
685 return;
686
687 /*
688 * Figure compression (preceded by elimination of each line's <n>
689 * severity prefix) will reduce the oops/panic report to at most
690 * 45% of its original size.
691 */
692 big_oops_buf_sz = (oops_data_sz * 100) / 45;
693 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
694 if (big_oops_buf) {
695 stream.workspace = kmalloc(zlib_deflate_workspacesize(
696 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
697 if (!stream.workspace) {
698 pr_err("nvram: No memory for compression workspace; "
699 "skipping compression of %s partition data\n",
700 oops_log_partition.name);
701 kfree(big_oops_buf);
702 big_oops_buf = NULL;
703 }
704 } else {
705 pr_err("No memory for uncompressed %s data; "
706 "skipping compression\n", oops_log_partition.name);
707 stream.workspace = NULL;
708 }
709
710 rc = kmsg_dump_register(&nvram_kmsg_dumper);
711 if (rc != 0) {
712 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
713 kfree(oops_buf);
714 kfree(big_oops_buf);
715 kfree(stream.workspace);
716 }
717 }
718
719 static int __init pseries_nvram_init_log_partitions(void)
720 {
721 int rc;
722
723 rc = pseries_nvram_init_os_partition(&rtas_log_partition);
724 nvram_init_oops_partition(rc == 0);
725 return 0;
726 }
727 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
728
729 int __init pSeries_nvram_init(void)
730 {
731 struct device_node *nvram;
732 const unsigned int *nbytes_p;
733 unsigned int proplen;
734
735 nvram = of_find_node_by_type(NULL, "nvram");
736 if (nvram == NULL)
737 return -ENODEV;
738
739 nbytes_p = of_get_property(nvram, "#bytes", &proplen);
740 if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
741 of_node_put(nvram);
742 return -EIO;
743 }
744
745 nvram_size = *nbytes_p;
746
747 nvram_fetch = rtas_token("nvram-fetch");
748 nvram_store = rtas_token("nvram-store");
749 printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
750 of_node_put(nvram);
751
752 ppc_md.nvram_read = pSeries_nvram_read;
753 ppc_md.nvram_write = pSeries_nvram_write;
754 ppc_md.nvram_size = pSeries_nvram_get_size;
755
756 return 0;
757 }
758
759
760 /* Derived from logfs_compress() */
761 static int nvram_compress(const void *in, void *out, size_t inlen,
762 size_t outlen)
763 {
764 int err, ret;
765
766 ret = -EIO;
767 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
768 MEM_LEVEL, Z_DEFAULT_STRATEGY);
769 if (err != Z_OK)
770 goto error;
771
772 stream.next_in = in;
773 stream.avail_in = inlen;
774 stream.total_in = 0;
775 stream.next_out = out;
776 stream.avail_out = outlen;
777 stream.total_out = 0;
778
779 err = zlib_deflate(&stream, Z_FINISH);
780 if (err != Z_STREAM_END)
781 goto error;
782
783 err = zlib_deflateEnd(&stream);
784 if (err != Z_OK)
785 goto error;
786
787 if (stream.total_out >= stream.total_in)
788 goto error;
789
790 ret = stream.total_out;
791 error:
792 return ret;
793 }
794
795 /* Compress the text from big_oops_buf into oops_buf. */
796 static int zip_oops(size_t text_len)
797 {
798 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
799 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
800 oops_data_sz);
801 if (zipped_len < 0) {
802 pr_err("nvram: compression failed; returned %d\n", zipped_len);
803 pr_err("nvram: logging uncompressed oops/panic report\n");
804 return -1;
805 }
806 oops_hdr->version = OOPS_HDR_VERSION;
807 oops_hdr->report_length = (u16) zipped_len;
808 oops_hdr->timestamp = get_seconds();
809 return 0;
810 }
811
812 /*
813 * This is our kmsg_dump callback, called after an oops or panic report
814 * has been written to the printk buffer. We want to capture as much
815 * of the printk buffer as possible. First, capture as much as we can
816 * that we think will compress sufficiently to fit in the lnx,oops-log
817 * partition. If that's too much, go back and capture uncompressed text.
818 */
819 static void oops_to_nvram(struct kmsg_dumper *dumper,
820 enum kmsg_dump_reason reason)
821 {
822 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
823 static unsigned int oops_count = 0;
824 static bool panicking = false;
825 static DEFINE_SPINLOCK(lock);
826 unsigned long flags;
827 size_t text_len;
828 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
829 int rc = -1;
830
831 switch (reason) {
832 case KMSG_DUMP_RESTART:
833 case KMSG_DUMP_HALT:
834 case KMSG_DUMP_POWEROFF:
835 /* These are almost always orderly shutdowns. */
836 return;
837 case KMSG_DUMP_OOPS:
838 break;
839 case KMSG_DUMP_PANIC:
840 panicking = true;
841 break;
842 case KMSG_DUMP_EMERG:
843 if (panicking)
844 /* Panic report already captured. */
845 return;
846 break;
847 default:
848 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
849 __FUNCTION__, (int) reason);
850 return;
851 }
852
853 if (clobbering_unread_rtas_event())
854 return;
855
856 if (!spin_trylock_irqsave(&lock, flags))
857 return;
858
859 if (big_oops_buf) {
860 kmsg_dump_get_buffer(dumper, false,
861 big_oops_buf, big_oops_buf_sz, &text_len);
862 rc = zip_oops(text_len);
863 }
864 if (rc != 0) {
865 kmsg_dump_rewind(dumper);
866 kmsg_dump_get_buffer(dumper, false,
867 oops_data, oops_data_sz, &text_len);
868 err_type = ERR_TYPE_KERNEL_PANIC;
869 oops_hdr->version = OOPS_HDR_VERSION;
870 oops_hdr->report_length = (u16) text_len;
871 oops_hdr->timestamp = get_seconds();
872 }
873
874 (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
875 (int) (sizeof(*oops_hdr) + oops_hdr->report_length), err_type,
876 ++oops_count);
877
878 spin_unlock_irqrestore(&lock, flags);
879 }
This page took 0.076445 seconds and 5 git commands to generate.