memory-hotplug: introduce new arch_remove_memory() for removing page table
[deliverable/linux.git] / arch / powerpc / sysdev / cpm1.c
1 /*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
5 *
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
9 *
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space. The allocator for that is here. When the communication
12 * process is reset, we reclaim the memory available. There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent. On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose. Current, the first 512 bytes and the last 256 bytes of
18 * memory are used. Right now I am conservative and only use the
19 * memory that can never be used for microcode. If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
22 */
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/slab.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/8xx_immap.h>
38 #include <asm/cpm1.h>
39 #include <asm/io.h>
40 #include <asm/tlbflush.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44
45 #include <asm/fs_pd.h>
46
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50
51 #define CPM_MAP_SIZE (0x4000)
52
53 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
56
57 static struct irq_domain *cpm_pic_host;
58
59 static void cpm_mask_irq(struct irq_data *d)
60 {
61 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62
63 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65
66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69
70 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72
73 static void cpm_end_irq(struct irq_data *d)
74 {
75 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76
77 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79
80 static struct irq_chip cpm_pic = {
81 .name = "CPM PIC",
82 .irq_mask = cpm_mask_irq,
83 .irq_unmask = cpm_unmask_irq,
84 .irq_eoi = cpm_end_irq,
85 };
86
87 int cpm_get_irq(void)
88 {
89 int cpm_vec;
90
91 /* Get the vector by setting the ACK bit and then reading
92 * the register.
93 */
94 out_be16(&cpic_reg->cpic_civr, 1);
95 cpm_vec = in_be16(&cpic_reg->cpic_civr);
96 cpm_vec >>= 11;
97
98 return irq_linear_revmap(cpm_pic_host, cpm_vec);
99 }
100
101 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
102 irq_hw_number_t hw)
103 {
104 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105
106 irq_set_status_flags(virq, IRQ_LEVEL);
107 irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108 return 0;
109 }
110
111 /* The CPM can generate the error interrupt when there is a race condition
112 * between generating and masking interrupts. All we have to do is ACK it
113 * and return. This is a no-op function so we don't need any special
114 * tests in the interrupt handler.
115 */
116 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117 {
118 return IRQ_HANDLED;
119 }
120
121 static struct irqaction cpm_error_irqaction = {
122 .handler = cpm_error_interrupt,
123 .name = "error",
124 };
125
126 static const struct irq_domain_ops cpm_pic_host_ops = {
127 .map = cpm_pic_host_map,
128 };
129
130 unsigned int cpm_pic_init(void)
131 {
132 struct device_node *np = NULL;
133 struct resource res;
134 unsigned int sirq = NO_IRQ, hwirq, eirq;
135 int ret;
136
137 pr_debug("cpm_pic_init\n");
138
139 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
140 if (np == NULL)
141 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
142 if (np == NULL) {
143 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
144 return sirq;
145 }
146
147 ret = of_address_to_resource(np, 0, &res);
148 if (ret)
149 goto end;
150
151 cpic_reg = ioremap(res.start, resource_size(&res));
152 if (cpic_reg == NULL)
153 goto end;
154
155 sirq = irq_of_parse_and_map(np, 0);
156 if (sirq == NO_IRQ)
157 goto end;
158
159 /* Initialize the CPM interrupt controller. */
160 hwirq = (unsigned int)virq_to_hw(sirq);
161 out_be32(&cpic_reg->cpic_cicr,
162 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
163 ((hwirq/2) << 13) | CICR_HP_MASK);
164
165 out_be32(&cpic_reg->cpic_cimr, 0);
166
167 cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
168 if (cpm_pic_host == NULL) {
169 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
170 sirq = NO_IRQ;
171 goto end;
172 }
173
174 /* Install our own error handler. */
175 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
176 if (np == NULL)
177 np = of_find_node_by_type(NULL, "cpm");
178 if (np == NULL) {
179 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
180 goto end;
181 }
182
183 eirq = irq_of_parse_and_map(np, 0);
184 if (eirq == NO_IRQ)
185 goto end;
186
187 if (setup_irq(eirq, &cpm_error_irqaction))
188 printk(KERN_ERR "Could not allocate CPM error IRQ!");
189
190 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
191
192 end:
193 of_node_put(np);
194 return sirq;
195 }
196
197 void __init cpm_reset(void)
198 {
199 sysconf8xx_t __iomem *siu_conf;
200
201 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
202 if (!mpc8xx_immr) {
203 printk(KERN_CRIT "Could not map IMMR\n");
204 return;
205 }
206
207 cpmp = &mpc8xx_immr->im_cpm;
208
209 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
210 /* Perform a reset.
211 */
212 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
213
214 /* Wait for it.
215 */
216 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
217 #endif
218
219 #ifdef CONFIG_UCODE_PATCH
220 cpm_load_patch(cpmp);
221 #endif
222
223 /* Set SDMA Bus Request priority 5.
224 * On 860T, this also enables FEC priority 6. I am not sure
225 * this is what we really want for some applications, but the
226 * manual recommends it.
227 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
228 */
229 siu_conf = immr_map(im_siu_conf);
230 out_be32(&siu_conf->sc_sdcr, 1);
231 immr_unmap(siu_conf);
232
233 cpm_muram_init();
234 }
235
236 static DEFINE_SPINLOCK(cmd_lock);
237
238 #define MAX_CR_CMD_LOOPS 10000
239
240 int cpm_command(u32 command, u8 opcode)
241 {
242 int i, ret;
243 unsigned long flags;
244
245 if (command & 0xffffff0f)
246 return -EINVAL;
247
248 spin_lock_irqsave(&cmd_lock, flags);
249
250 ret = 0;
251 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
252 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
253 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
254 goto out;
255
256 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
257 ret = -EIO;
258 out:
259 spin_unlock_irqrestore(&cmd_lock, flags);
260 return ret;
261 }
262 EXPORT_SYMBOL(cpm_command);
263
264 /* Set a baud rate generator. This needs lots of work. There are
265 * four BRGs, any of which can be wired to any channel.
266 * The internal baud rate clock is the system clock divided by 16.
267 * This assumes the baudrate is 16x oversampled by the uart.
268 */
269 #define BRG_INT_CLK (get_brgfreq())
270 #define BRG_UART_CLK (BRG_INT_CLK/16)
271 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
272
273 void
274 cpm_setbrg(uint brg, uint rate)
275 {
276 u32 __iomem *bp;
277
278 /* This is good enough to get SMCs running.....
279 */
280 bp = &cpmp->cp_brgc1;
281 bp += brg;
282 /* The BRG has a 12-bit counter. For really slow baud rates (or
283 * really fast processors), we may have to further divide by 16.
284 */
285 if (((BRG_UART_CLK / rate) - 1) < 4096)
286 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
287 else
288 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
289 CPM_BRG_EN | CPM_BRG_DIV16);
290 }
291
292 struct cpm_ioport16 {
293 __be16 dir, par, odr_sor, dat, intr;
294 __be16 res[3];
295 };
296
297 struct cpm_ioport32b {
298 __be32 dir, par, odr, dat;
299 };
300
301 struct cpm_ioport32e {
302 __be32 dir, par, sor, odr, dat;
303 };
304
305 static void cpm1_set_pin32(int port, int pin, int flags)
306 {
307 struct cpm_ioport32e __iomem *iop;
308 pin = 1 << (31 - pin);
309
310 if (port == CPM_PORTB)
311 iop = (struct cpm_ioport32e __iomem *)
312 &mpc8xx_immr->im_cpm.cp_pbdir;
313 else
314 iop = (struct cpm_ioport32e __iomem *)
315 &mpc8xx_immr->im_cpm.cp_pedir;
316
317 if (flags & CPM_PIN_OUTPUT)
318 setbits32(&iop->dir, pin);
319 else
320 clrbits32(&iop->dir, pin);
321
322 if (!(flags & CPM_PIN_GPIO))
323 setbits32(&iop->par, pin);
324 else
325 clrbits32(&iop->par, pin);
326
327 if (port == CPM_PORTB) {
328 if (flags & CPM_PIN_OPENDRAIN)
329 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
330 else
331 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
332 }
333
334 if (port == CPM_PORTE) {
335 if (flags & CPM_PIN_SECONDARY)
336 setbits32(&iop->sor, pin);
337 else
338 clrbits32(&iop->sor, pin);
339
340 if (flags & CPM_PIN_OPENDRAIN)
341 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
342 else
343 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
344 }
345 }
346
347 static void cpm1_set_pin16(int port, int pin, int flags)
348 {
349 struct cpm_ioport16 __iomem *iop =
350 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
351
352 pin = 1 << (15 - pin);
353
354 if (port != 0)
355 iop += port - 1;
356
357 if (flags & CPM_PIN_OUTPUT)
358 setbits16(&iop->dir, pin);
359 else
360 clrbits16(&iop->dir, pin);
361
362 if (!(flags & CPM_PIN_GPIO))
363 setbits16(&iop->par, pin);
364 else
365 clrbits16(&iop->par, pin);
366
367 if (port == CPM_PORTA) {
368 if (flags & CPM_PIN_OPENDRAIN)
369 setbits16(&iop->odr_sor, pin);
370 else
371 clrbits16(&iop->odr_sor, pin);
372 }
373 if (port == CPM_PORTC) {
374 if (flags & CPM_PIN_SECONDARY)
375 setbits16(&iop->odr_sor, pin);
376 else
377 clrbits16(&iop->odr_sor, pin);
378 }
379 }
380
381 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
382 {
383 if (port == CPM_PORTB || port == CPM_PORTE)
384 cpm1_set_pin32(port, pin, flags);
385 else
386 cpm1_set_pin16(port, pin, flags);
387 }
388
389 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
390 {
391 int shift;
392 int i, bits = 0;
393 u32 __iomem *reg;
394 u32 mask = 7;
395
396 u8 clk_map[][3] = {
397 {CPM_CLK_SCC1, CPM_BRG1, 0},
398 {CPM_CLK_SCC1, CPM_BRG2, 1},
399 {CPM_CLK_SCC1, CPM_BRG3, 2},
400 {CPM_CLK_SCC1, CPM_BRG4, 3},
401 {CPM_CLK_SCC1, CPM_CLK1, 4},
402 {CPM_CLK_SCC1, CPM_CLK2, 5},
403 {CPM_CLK_SCC1, CPM_CLK3, 6},
404 {CPM_CLK_SCC1, CPM_CLK4, 7},
405
406 {CPM_CLK_SCC2, CPM_BRG1, 0},
407 {CPM_CLK_SCC2, CPM_BRG2, 1},
408 {CPM_CLK_SCC2, CPM_BRG3, 2},
409 {CPM_CLK_SCC2, CPM_BRG4, 3},
410 {CPM_CLK_SCC2, CPM_CLK1, 4},
411 {CPM_CLK_SCC2, CPM_CLK2, 5},
412 {CPM_CLK_SCC2, CPM_CLK3, 6},
413 {CPM_CLK_SCC2, CPM_CLK4, 7},
414
415 {CPM_CLK_SCC3, CPM_BRG1, 0},
416 {CPM_CLK_SCC3, CPM_BRG2, 1},
417 {CPM_CLK_SCC3, CPM_BRG3, 2},
418 {CPM_CLK_SCC3, CPM_BRG4, 3},
419 {CPM_CLK_SCC3, CPM_CLK5, 4},
420 {CPM_CLK_SCC3, CPM_CLK6, 5},
421 {CPM_CLK_SCC3, CPM_CLK7, 6},
422 {CPM_CLK_SCC3, CPM_CLK8, 7},
423
424 {CPM_CLK_SCC4, CPM_BRG1, 0},
425 {CPM_CLK_SCC4, CPM_BRG2, 1},
426 {CPM_CLK_SCC4, CPM_BRG3, 2},
427 {CPM_CLK_SCC4, CPM_BRG4, 3},
428 {CPM_CLK_SCC4, CPM_CLK5, 4},
429 {CPM_CLK_SCC4, CPM_CLK6, 5},
430 {CPM_CLK_SCC4, CPM_CLK7, 6},
431 {CPM_CLK_SCC4, CPM_CLK8, 7},
432
433 {CPM_CLK_SMC1, CPM_BRG1, 0},
434 {CPM_CLK_SMC1, CPM_BRG2, 1},
435 {CPM_CLK_SMC1, CPM_BRG3, 2},
436 {CPM_CLK_SMC1, CPM_BRG4, 3},
437 {CPM_CLK_SMC1, CPM_CLK1, 4},
438 {CPM_CLK_SMC1, CPM_CLK2, 5},
439 {CPM_CLK_SMC1, CPM_CLK3, 6},
440 {CPM_CLK_SMC1, CPM_CLK4, 7},
441
442 {CPM_CLK_SMC2, CPM_BRG1, 0},
443 {CPM_CLK_SMC2, CPM_BRG2, 1},
444 {CPM_CLK_SMC2, CPM_BRG3, 2},
445 {CPM_CLK_SMC2, CPM_BRG4, 3},
446 {CPM_CLK_SMC2, CPM_CLK5, 4},
447 {CPM_CLK_SMC2, CPM_CLK6, 5},
448 {CPM_CLK_SMC2, CPM_CLK7, 6},
449 {CPM_CLK_SMC2, CPM_CLK8, 7},
450 };
451
452 switch (target) {
453 case CPM_CLK_SCC1:
454 reg = &mpc8xx_immr->im_cpm.cp_sicr;
455 shift = 0;
456 break;
457
458 case CPM_CLK_SCC2:
459 reg = &mpc8xx_immr->im_cpm.cp_sicr;
460 shift = 8;
461 break;
462
463 case CPM_CLK_SCC3:
464 reg = &mpc8xx_immr->im_cpm.cp_sicr;
465 shift = 16;
466 break;
467
468 case CPM_CLK_SCC4:
469 reg = &mpc8xx_immr->im_cpm.cp_sicr;
470 shift = 24;
471 break;
472
473 case CPM_CLK_SMC1:
474 reg = &mpc8xx_immr->im_cpm.cp_simode;
475 shift = 12;
476 break;
477
478 case CPM_CLK_SMC2:
479 reg = &mpc8xx_immr->im_cpm.cp_simode;
480 shift = 28;
481 break;
482
483 default:
484 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
485 return -EINVAL;
486 }
487
488 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
489 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
490 bits = clk_map[i][2];
491 break;
492 }
493 }
494
495 if (i == ARRAY_SIZE(clk_map)) {
496 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
497 return -EINVAL;
498 }
499
500 bits <<= shift;
501 mask <<= shift;
502
503 if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
504 if (mode == CPM_CLK_RTX) {
505 bits |= bits << 3;
506 mask |= mask << 3;
507 } else if (mode == CPM_CLK_RX) {
508 bits <<= 3;
509 mask <<= 3;
510 }
511 }
512
513 out_be32(reg, (in_be32(reg) & ~mask) | bits);
514
515 return 0;
516 }
517
518 /*
519 * GPIO LIB API implementation
520 */
521 #ifdef CONFIG_8xx_GPIO
522
523 struct cpm1_gpio16_chip {
524 struct of_mm_gpio_chip mm_gc;
525 spinlock_t lock;
526
527 /* shadowed data register to clear/set bits safely */
528 u16 cpdata;
529 };
530
531 static inline struct cpm1_gpio16_chip *
532 to_cpm1_gpio16_chip(struct of_mm_gpio_chip *mm_gc)
533 {
534 return container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
535 }
536
537 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
538 {
539 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
540 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
541
542 cpm1_gc->cpdata = in_be16(&iop->dat);
543 }
544
545 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
546 {
547 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
548 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
549 u16 pin_mask;
550
551 pin_mask = 1 << (15 - gpio);
552
553 return !!(in_be16(&iop->dat) & pin_mask);
554 }
555
556 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
557 int value)
558 {
559 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
560 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
561
562 if (value)
563 cpm1_gc->cpdata |= pin_mask;
564 else
565 cpm1_gc->cpdata &= ~pin_mask;
566
567 out_be16(&iop->dat, cpm1_gc->cpdata);
568 }
569
570 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
571 {
572 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
573 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
574 unsigned long flags;
575 u16 pin_mask = 1 << (15 - gpio);
576
577 spin_lock_irqsave(&cpm1_gc->lock, flags);
578
579 __cpm1_gpio16_set(mm_gc, pin_mask, value);
580
581 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
582 }
583
584 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
585 {
586 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
587 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
588 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
589 unsigned long flags;
590 u16 pin_mask = 1 << (15 - gpio);
591
592 spin_lock_irqsave(&cpm1_gc->lock, flags);
593
594 setbits16(&iop->dir, pin_mask);
595 __cpm1_gpio16_set(mm_gc, pin_mask, val);
596
597 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
598
599 return 0;
600 }
601
602 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
603 {
604 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
605 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
606 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
607 unsigned long flags;
608 u16 pin_mask = 1 << (15 - gpio);
609
610 spin_lock_irqsave(&cpm1_gc->lock, flags);
611
612 clrbits16(&iop->dir, pin_mask);
613
614 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
615
616 return 0;
617 }
618
619 int cpm1_gpiochip_add16(struct device_node *np)
620 {
621 struct cpm1_gpio16_chip *cpm1_gc;
622 struct of_mm_gpio_chip *mm_gc;
623 struct gpio_chip *gc;
624
625 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
626 if (!cpm1_gc)
627 return -ENOMEM;
628
629 spin_lock_init(&cpm1_gc->lock);
630
631 mm_gc = &cpm1_gc->mm_gc;
632 gc = &mm_gc->gc;
633
634 mm_gc->save_regs = cpm1_gpio16_save_regs;
635 gc->ngpio = 16;
636 gc->direction_input = cpm1_gpio16_dir_in;
637 gc->direction_output = cpm1_gpio16_dir_out;
638 gc->get = cpm1_gpio16_get;
639 gc->set = cpm1_gpio16_set;
640
641 return of_mm_gpiochip_add(np, mm_gc);
642 }
643
644 struct cpm1_gpio32_chip {
645 struct of_mm_gpio_chip mm_gc;
646 spinlock_t lock;
647
648 /* shadowed data register to clear/set bits safely */
649 u32 cpdata;
650 };
651
652 static inline struct cpm1_gpio32_chip *
653 to_cpm1_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
654 {
655 return container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
656 }
657
658 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
659 {
660 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
661 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
662
663 cpm1_gc->cpdata = in_be32(&iop->dat);
664 }
665
666 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
667 {
668 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
669 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
670 u32 pin_mask;
671
672 pin_mask = 1 << (31 - gpio);
673
674 return !!(in_be32(&iop->dat) & pin_mask);
675 }
676
677 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
678 int value)
679 {
680 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
681 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
682
683 if (value)
684 cpm1_gc->cpdata |= pin_mask;
685 else
686 cpm1_gc->cpdata &= ~pin_mask;
687
688 out_be32(&iop->dat, cpm1_gc->cpdata);
689 }
690
691 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
692 {
693 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
694 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
695 unsigned long flags;
696 u32 pin_mask = 1 << (31 - gpio);
697
698 spin_lock_irqsave(&cpm1_gc->lock, flags);
699
700 __cpm1_gpio32_set(mm_gc, pin_mask, value);
701
702 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
703 }
704
705 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
706 {
707 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
708 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
709 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
710 unsigned long flags;
711 u32 pin_mask = 1 << (31 - gpio);
712
713 spin_lock_irqsave(&cpm1_gc->lock, flags);
714
715 setbits32(&iop->dir, pin_mask);
716 __cpm1_gpio32_set(mm_gc, pin_mask, val);
717
718 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
719
720 return 0;
721 }
722
723 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
724 {
725 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
726 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
727 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
728 unsigned long flags;
729 u32 pin_mask = 1 << (31 - gpio);
730
731 spin_lock_irqsave(&cpm1_gc->lock, flags);
732
733 clrbits32(&iop->dir, pin_mask);
734
735 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
736
737 return 0;
738 }
739
740 int cpm1_gpiochip_add32(struct device_node *np)
741 {
742 struct cpm1_gpio32_chip *cpm1_gc;
743 struct of_mm_gpio_chip *mm_gc;
744 struct gpio_chip *gc;
745
746 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
747 if (!cpm1_gc)
748 return -ENOMEM;
749
750 spin_lock_init(&cpm1_gc->lock);
751
752 mm_gc = &cpm1_gc->mm_gc;
753 gc = &mm_gc->gc;
754
755 mm_gc->save_regs = cpm1_gpio32_save_regs;
756 gc->ngpio = 32;
757 gc->direction_input = cpm1_gpio32_dir_in;
758 gc->direction_output = cpm1_gpio32_dir_out;
759 gc->get = cpm1_gpio32_get;
760 gc->set = cpm1_gpio32_set;
761
762 return of_mm_gpiochip_add(np, mm_gc);
763 }
764
765 static int cpm_init_par_io(void)
766 {
767 struct device_node *np;
768
769 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
770 cpm1_gpiochip_add16(np);
771
772 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
773 cpm1_gpiochip_add32(np);
774
775 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
776 cpm1_gpiochip_add16(np);
777
778 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
779 cpm1_gpiochip_add16(np);
780
781 /* Port E uses CPM2 layout */
782 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
783 cpm2_gpiochip_add32(np);
784 return 0;
785 }
786 arch_initcall(cpm_init_par_io);
787
788 #endif /* CONFIG_8xx_GPIO */
This page took 0.054424 seconds and 5 git commands to generate.