[POWERPC] cpm: Describe multi-user ram in its own device node.
[deliverable/linux.git] / arch / powerpc / sysdev / cpm2_common.c
1 /*
2 * General Purpose functions for the global management of the
3 * 8260 Communication Processor Module.
4 * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
5 * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
6 * 2.3.99 Updates
7 *
8 * 2006 (c) MontaVista Software, Inc.
9 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
11 *
12 * This file is licensed under the terms of the GNU General Public License
13 * version 2. This program is licensed "as is" without any warranty of any
14 * kind, whether express or implied.
15 */
16
17 /*
18 *
19 * In addition to the individual control of the communication
20 * channels, there are a few functions that globally affect the
21 * communication processor.
22 *
23 * Buffer descriptors must be allocated from the dual ported memory
24 * space. The allocator for that is here. When the communication
25 * process is reset, we reclaim the memory available. There is
26 * currently no deallocator for this memory.
27 */
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/param.h>
32 #include <linux/string.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/module.h>
36 #include <linux/of.h>
37
38 #include <asm/io.h>
39 #include <asm/irq.h>
40 #include <asm/mpc8260.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/cpm2.h>
44 #include <asm/rheap.h>
45 #include <asm/fs_pd.h>
46
47 #include <sysdev/fsl_soc.h>
48
49 #ifndef CONFIG_PPC_CPM_NEW_BINDING
50 static void cpm2_dpinit(void);
51 #endif
52
53 cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
54
55 /* We allocate this here because it is used almost exclusively for
56 * the communication processor devices.
57 */
58 cpm2_map_t __iomem *cpm2_immr;
59
60 #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount
61 of space for CPM as it is larger
62 than on PQ2 */
63
64 void
65 cpm2_reset(void)
66 {
67 #ifdef CONFIG_PPC_85xx
68 cpm2_immr = ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE);
69 #else
70 cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
71 #endif
72
73 /* Reclaim the DP memory for our use.
74 */
75 #ifdef CONFIG_PPC_CPM_NEW_BINDING
76 cpm_muram_init();
77 #else
78 cpm2_dpinit();
79 #endif
80
81 /* Tell everyone where the comm processor resides.
82 */
83 cpmp = &cpm2_immr->im_cpm;
84 }
85
86 /* Set a baud rate generator. This needs lots of work. There are
87 * eight BRGs, which can be connected to the CPM channels or output
88 * as clocks. The BRGs are in two different block of internal
89 * memory mapped space.
90 * The baud rate clock is the system clock divided by something.
91 * It was set up long ago during the initial boot phase and is
92 * is given to us.
93 * Baud rate clocks are zero-based in the driver code (as that maps
94 * to port numbers). Documentation uses 1-based numbering.
95 */
96 #define BRG_INT_CLK (get_brgfreq())
97 #define BRG_UART_CLK (BRG_INT_CLK/16)
98
99 /* This function is used by UARTS, or anything else that uses a 16x
100 * oversampled clock.
101 */
102 void
103 cpm_setbrg(uint brg, uint rate)
104 {
105 u32 __iomem *bp;
106
107 /* This is good enough to get SMCs running.....
108 */
109 if (brg < 4) {
110 bp = cpm2_map_size(im_brgc1, 16);
111 } else {
112 bp = cpm2_map_size(im_brgc5, 16);
113 brg -= 4;
114 }
115 bp += brg;
116 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
117
118 cpm2_unmap(bp);
119 }
120
121 /* This function is used to set high speed synchronous baud rate
122 * clocks.
123 */
124 void
125 cpm2_fastbrg(uint brg, uint rate, int div16)
126 {
127 u32 __iomem *bp;
128 u32 val;
129
130 if (brg < 4) {
131 bp = cpm2_map_size(im_brgc1, 16);
132 }
133 else {
134 bp = cpm2_map_size(im_brgc5, 16);
135 brg -= 4;
136 }
137 bp += brg;
138 val = ((BRG_INT_CLK / rate) << 1) | CPM_BRG_EN;
139 if (div16)
140 val |= CPM_BRG_DIV16;
141
142 out_be32(bp, val);
143 cpm2_unmap(bp);
144 }
145
146 int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
147 {
148 int ret = 0;
149 int shift;
150 int i, bits = 0;
151 cpmux_t __iomem *im_cpmux;
152 u32 __iomem *reg;
153 u32 mask = 7;
154
155 u8 clk_map[][3] = {
156 {CPM_CLK_FCC1, CPM_BRG5, 0},
157 {CPM_CLK_FCC1, CPM_BRG6, 1},
158 {CPM_CLK_FCC1, CPM_BRG7, 2},
159 {CPM_CLK_FCC1, CPM_BRG8, 3},
160 {CPM_CLK_FCC1, CPM_CLK9, 4},
161 {CPM_CLK_FCC1, CPM_CLK10, 5},
162 {CPM_CLK_FCC1, CPM_CLK11, 6},
163 {CPM_CLK_FCC1, CPM_CLK12, 7},
164 {CPM_CLK_FCC2, CPM_BRG5, 0},
165 {CPM_CLK_FCC2, CPM_BRG6, 1},
166 {CPM_CLK_FCC2, CPM_BRG7, 2},
167 {CPM_CLK_FCC2, CPM_BRG8, 3},
168 {CPM_CLK_FCC2, CPM_CLK13, 4},
169 {CPM_CLK_FCC2, CPM_CLK14, 5},
170 {CPM_CLK_FCC2, CPM_CLK15, 6},
171 {CPM_CLK_FCC2, CPM_CLK16, 7},
172 {CPM_CLK_FCC3, CPM_BRG5, 0},
173 {CPM_CLK_FCC3, CPM_BRG6, 1},
174 {CPM_CLK_FCC3, CPM_BRG7, 2},
175 {CPM_CLK_FCC3, CPM_BRG8, 3},
176 {CPM_CLK_FCC3, CPM_CLK13, 4},
177 {CPM_CLK_FCC3, CPM_CLK14, 5},
178 {CPM_CLK_FCC3, CPM_CLK15, 6},
179 {CPM_CLK_FCC3, CPM_CLK16, 7},
180 {CPM_CLK_SCC1, CPM_BRG1, 0},
181 {CPM_CLK_SCC1, CPM_BRG2, 1},
182 {CPM_CLK_SCC1, CPM_BRG3, 2},
183 {CPM_CLK_SCC1, CPM_BRG4, 3},
184 {CPM_CLK_SCC1, CPM_CLK11, 4},
185 {CPM_CLK_SCC1, CPM_CLK12, 5},
186 {CPM_CLK_SCC1, CPM_CLK3, 6},
187 {CPM_CLK_SCC1, CPM_CLK4, 7},
188 {CPM_CLK_SCC2, CPM_BRG1, 0},
189 {CPM_CLK_SCC2, CPM_BRG2, 1},
190 {CPM_CLK_SCC2, CPM_BRG3, 2},
191 {CPM_CLK_SCC2, CPM_BRG4, 3},
192 {CPM_CLK_SCC2, CPM_CLK11, 4},
193 {CPM_CLK_SCC2, CPM_CLK12, 5},
194 {CPM_CLK_SCC2, CPM_CLK3, 6},
195 {CPM_CLK_SCC2, CPM_CLK4, 7},
196 {CPM_CLK_SCC3, CPM_BRG1, 0},
197 {CPM_CLK_SCC3, CPM_BRG2, 1},
198 {CPM_CLK_SCC3, CPM_BRG3, 2},
199 {CPM_CLK_SCC3, CPM_BRG4, 3},
200 {CPM_CLK_SCC3, CPM_CLK5, 4},
201 {CPM_CLK_SCC3, CPM_CLK6, 5},
202 {CPM_CLK_SCC3, CPM_CLK7, 6},
203 {CPM_CLK_SCC3, CPM_CLK8, 7},
204 {CPM_CLK_SCC4, CPM_BRG1, 0},
205 {CPM_CLK_SCC4, CPM_BRG2, 1},
206 {CPM_CLK_SCC4, CPM_BRG3, 2},
207 {CPM_CLK_SCC4, CPM_BRG4, 3},
208 {CPM_CLK_SCC4, CPM_CLK5, 4},
209 {CPM_CLK_SCC4, CPM_CLK6, 5},
210 {CPM_CLK_SCC4, CPM_CLK7, 6},
211 {CPM_CLK_SCC4, CPM_CLK8, 7},
212 };
213
214 im_cpmux = cpm2_map(im_cpmux);
215
216 switch (target) {
217 case CPM_CLK_SCC1:
218 reg = &im_cpmux->cmx_scr;
219 shift = 24;
220 case CPM_CLK_SCC2:
221 reg = &im_cpmux->cmx_scr;
222 shift = 16;
223 break;
224 case CPM_CLK_SCC3:
225 reg = &im_cpmux->cmx_scr;
226 shift = 8;
227 break;
228 case CPM_CLK_SCC4:
229 reg = &im_cpmux->cmx_scr;
230 shift = 0;
231 break;
232 case CPM_CLK_FCC1:
233 reg = &im_cpmux->cmx_fcr;
234 shift = 24;
235 break;
236 case CPM_CLK_FCC2:
237 reg = &im_cpmux->cmx_fcr;
238 shift = 16;
239 break;
240 case CPM_CLK_FCC3:
241 reg = &im_cpmux->cmx_fcr;
242 shift = 8;
243 break;
244 default:
245 printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
246 return -EINVAL;
247 }
248
249 if (mode == CPM_CLK_RX)
250 shift += 3;
251
252 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
253 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
254 bits = clk_map[i][2];
255 break;
256 }
257 }
258 if (i == ARRAY_SIZE(clk_map))
259 ret = -EINVAL;
260
261 bits <<= shift;
262 mask <<= shift;
263
264 out_be32(reg, (in_be32(reg) & ~mask) | bits);
265
266 cpm2_unmap(im_cpmux);
267 return ret;
268 }
269
270 int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
271 {
272 int ret = 0;
273 int shift;
274 int i, bits = 0;
275 cpmux_t __iomem *im_cpmux;
276 u8 __iomem *reg;
277 u8 mask = 3;
278
279 u8 clk_map[][3] = {
280 {CPM_CLK_SMC1, CPM_BRG1, 0},
281 {CPM_CLK_SMC1, CPM_BRG7, 1},
282 {CPM_CLK_SMC1, CPM_CLK7, 2},
283 {CPM_CLK_SMC1, CPM_CLK9, 3},
284 {CPM_CLK_SMC2, CPM_BRG2, 0},
285 {CPM_CLK_SMC2, CPM_BRG8, 1},
286 {CPM_CLK_SMC2, CPM_CLK4, 2},
287 {CPM_CLK_SMC2, CPM_CLK15, 3},
288 };
289
290 im_cpmux = cpm2_map(im_cpmux);
291
292 switch (target) {
293 case CPM_CLK_SMC1:
294 reg = &im_cpmux->cmx_smr;
295 mask = 3;
296 shift = 4;
297 break;
298 case CPM_CLK_SMC2:
299 reg = &im_cpmux->cmx_smr;
300 mask = 3;
301 shift = 0;
302 break;
303 default:
304 printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
305 return -EINVAL;
306 }
307
308 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
309 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
310 bits = clk_map[i][2];
311 break;
312 }
313 }
314 if (i == ARRAY_SIZE(clk_map))
315 ret = -EINVAL;
316
317 bits <<= shift;
318 mask <<= shift;
319
320 out_8(reg, (in_8(reg) & ~mask) | bits);
321
322 cpm2_unmap(im_cpmux);
323 return ret;
324 }
325
326 #ifndef CONFIG_PPC_CPM_NEW_BINDING
327 /*
328 * dpalloc / dpfree bits.
329 */
330 static spinlock_t cpm_dpmem_lock;
331 /* 16 blocks should be enough to satisfy all requests
332 * until the memory subsystem goes up... */
333 static rh_block_t cpm_boot_dpmem_rh_block[16];
334 static rh_info_t cpm_dpmem_info;
335 static u8 __iomem *im_dprambase;
336
337 static void cpm2_dpinit(void)
338 {
339 spin_lock_init(&cpm_dpmem_lock);
340
341 /* initialize the info header */
342 rh_init(&cpm_dpmem_info, 1,
343 sizeof(cpm_boot_dpmem_rh_block) /
344 sizeof(cpm_boot_dpmem_rh_block[0]),
345 cpm_boot_dpmem_rh_block);
346
347 im_dprambase = cpm2_immr;
348
349 /* Attach the usable dpmem area */
350 /* XXX: This is actually crap. CPM_DATAONLY_BASE and
351 * CPM_DATAONLY_SIZE is only a subset of the available dpram. It
352 * varies with the processor and the microcode patches activated.
353 * But the following should be at least safe.
354 */
355 rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
356 }
357
358 /* This function returns an index into the DPRAM area.
359 */
360 unsigned long cpm_dpalloc(uint size, uint align)
361 {
362 unsigned long start;
363 unsigned long flags;
364
365 spin_lock_irqsave(&cpm_dpmem_lock, flags);
366 cpm_dpmem_info.alignment = align;
367 start = rh_alloc(&cpm_dpmem_info, size, "commproc");
368 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
369
370 return (uint)start;
371 }
372 EXPORT_SYMBOL(cpm_dpalloc);
373
374 int cpm_dpfree(unsigned long offset)
375 {
376 int ret;
377 unsigned long flags;
378
379 spin_lock_irqsave(&cpm_dpmem_lock, flags);
380 ret = rh_free(&cpm_dpmem_info, offset);
381 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
382
383 return ret;
384 }
385 EXPORT_SYMBOL(cpm_dpfree);
386
387 /* not sure if this is ever needed */
388 unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
389 {
390 unsigned long start;
391 unsigned long flags;
392
393 spin_lock_irqsave(&cpm_dpmem_lock, flags);
394 cpm_dpmem_info.alignment = align;
395 start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
396 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
397
398 return start;
399 }
400 EXPORT_SYMBOL(cpm_dpalloc_fixed);
401
402 void cpm_dpdump(void)
403 {
404 rh_dump(&cpm_dpmem_info);
405 }
406 EXPORT_SYMBOL(cpm_dpdump);
407
408 void *cpm_dpram_addr(unsigned long offset)
409 {
410 return (void *)(im_dprambase + offset);
411 }
412 EXPORT_SYMBOL(cpm_dpram_addr);
413 #endif /* !CONFIG_PPC_CPM_NEW_BINDING */
414
415 struct cpm2_ioports {
416 u32 dir, par, sor, odr, dat;
417 u32 res[3];
418 };
419
420 void cpm2_set_pin(int port, int pin, int flags)
421 {
422 struct cpm2_ioports __iomem *iop =
423 (struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
424
425 pin = 1 << (31 - pin);
426
427 if (flags & CPM_PIN_OUTPUT)
428 setbits32(&iop[port].dir, pin);
429 else
430 clrbits32(&iop[port].dir, pin);
431
432 if (!(flags & CPM_PIN_GPIO))
433 setbits32(&iop[port].par, pin);
434 else
435 clrbits32(&iop[port].par, pin);
436
437 if (flags & CPM_PIN_SECONDARY)
438 setbits32(&iop[port].sor, pin);
439 else
440 clrbits32(&iop[port].sor, pin);
441
442 if (flags & CPM_PIN_OPENDRAIN)
443 setbits32(&iop[port].odr, pin);
444 else
445 clrbits32(&iop[port].odr, pin);
446 }
This page took 0.048845 seconds and 5 git commands to generate.