74e48d94f27ced66c0ed03fad91644a5cdb26222
[deliverable/linux.git] / arch / powerpc / sysdev / qe_lib / qe_ic.c
1 /*
2 * arch/powerpc/sysdev/qe_lib/qe_ic.c
3 *
4 * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
5 *
6 * Author: Li Yang <leoli@freescale.com>
7 * Based on code from Shlomi Gridish <gridish@freescale.com>
8 *
9 * QUICC ENGINE Interrupt Controller
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/reboot.h>
21 #include <linux/slab.h>
22 #include <linux/stddef.h>
23 #include <linux/sched.h>
24 #include <linux/signal.h>
25 #include <linux/sysdev.h>
26 #include <linux/device.h>
27 #include <linux/bootmem.h>
28 #include <linux/spinlock.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/qe_ic.h>
33
34 #include "qe_ic.h"
35
36 static DEFINE_SPINLOCK(qe_ic_lock);
37
38 static struct qe_ic_info qe_ic_info[] = {
39 [1] = {
40 .mask = 0x00008000,
41 .mask_reg = QEIC_CIMR,
42 .pri_code = 0,
43 .pri_reg = QEIC_CIPWCC,
44 },
45 [2] = {
46 .mask = 0x00004000,
47 .mask_reg = QEIC_CIMR,
48 .pri_code = 1,
49 .pri_reg = QEIC_CIPWCC,
50 },
51 [3] = {
52 .mask = 0x00002000,
53 .mask_reg = QEIC_CIMR,
54 .pri_code = 2,
55 .pri_reg = QEIC_CIPWCC,
56 },
57 [10] = {
58 .mask = 0x00000040,
59 .mask_reg = QEIC_CIMR,
60 .pri_code = 1,
61 .pri_reg = QEIC_CIPZCC,
62 },
63 [11] = {
64 .mask = 0x00000020,
65 .mask_reg = QEIC_CIMR,
66 .pri_code = 2,
67 .pri_reg = QEIC_CIPZCC,
68 },
69 [12] = {
70 .mask = 0x00000010,
71 .mask_reg = QEIC_CIMR,
72 .pri_code = 3,
73 .pri_reg = QEIC_CIPZCC,
74 },
75 [13] = {
76 .mask = 0x00000008,
77 .mask_reg = QEIC_CIMR,
78 .pri_code = 4,
79 .pri_reg = QEIC_CIPZCC,
80 },
81 [14] = {
82 .mask = 0x00000004,
83 .mask_reg = QEIC_CIMR,
84 .pri_code = 5,
85 .pri_reg = QEIC_CIPZCC,
86 },
87 [15] = {
88 .mask = 0x00000002,
89 .mask_reg = QEIC_CIMR,
90 .pri_code = 6,
91 .pri_reg = QEIC_CIPZCC,
92 },
93 [20] = {
94 .mask = 0x10000000,
95 .mask_reg = QEIC_CRIMR,
96 .pri_code = 3,
97 .pri_reg = QEIC_CIPRTA,
98 },
99 [25] = {
100 .mask = 0x00800000,
101 .mask_reg = QEIC_CRIMR,
102 .pri_code = 0,
103 .pri_reg = QEIC_CIPRTB,
104 },
105 [26] = {
106 .mask = 0x00400000,
107 .mask_reg = QEIC_CRIMR,
108 .pri_code = 1,
109 .pri_reg = QEIC_CIPRTB,
110 },
111 [27] = {
112 .mask = 0x00200000,
113 .mask_reg = QEIC_CRIMR,
114 .pri_code = 2,
115 .pri_reg = QEIC_CIPRTB,
116 },
117 [28] = {
118 .mask = 0x00100000,
119 .mask_reg = QEIC_CRIMR,
120 .pri_code = 3,
121 .pri_reg = QEIC_CIPRTB,
122 },
123 [32] = {
124 .mask = 0x80000000,
125 .mask_reg = QEIC_CIMR,
126 .pri_code = 0,
127 .pri_reg = QEIC_CIPXCC,
128 },
129 [33] = {
130 .mask = 0x40000000,
131 .mask_reg = QEIC_CIMR,
132 .pri_code = 1,
133 .pri_reg = QEIC_CIPXCC,
134 },
135 [34] = {
136 .mask = 0x20000000,
137 .mask_reg = QEIC_CIMR,
138 .pri_code = 2,
139 .pri_reg = QEIC_CIPXCC,
140 },
141 [35] = {
142 .mask = 0x10000000,
143 .mask_reg = QEIC_CIMR,
144 .pri_code = 3,
145 .pri_reg = QEIC_CIPXCC,
146 },
147 [36] = {
148 .mask = 0x08000000,
149 .mask_reg = QEIC_CIMR,
150 .pri_code = 4,
151 .pri_reg = QEIC_CIPXCC,
152 },
153 [40] = {
154 .mask = 0x00800000,
155 .mask_reg = QEIC_CIMR,
156 .pri_code = 0,
157 .pri_reg = QEIC_CIPYCC,
158 },
159 [41] = {
160 .mask = 0x00400000,
161 .mask_reg = QEIC_CIMR,
162 .pri_code = 1,
163 .pri_reg = QEIC_CIPYCC,
164 },
165 [42] = {
166 .mask = 0x00200000,
167 .mask_reg = QEIC_CIMR,
168 .pri_code = 2,
169 .pri_reg = QEIC_CIPYCC,
170 },
171 [43] = {
172 .mask = 0x00100000,
173 .mask_reg = QEIC_CIMR,
174 .pri_code = 3,
175 .pri_reg = QEIC_CIPYCC,
176 },
177 };
178
179 static inline u32 qe_ic_read(volatile __be32 __iomem * base, unsigned int reg)
180 {
181 return in_be32(base + (reg >> 2));
182 }
183
184 static inline void qe_ic_write(volatile __be32 __iomem * base, unsigned int reg,
185 u32 value)
186 {
187 out_be32(base + (reg >> 2), value);
188 }
189
190 static inline struct qe_ic *qe_ic_from_irq(unsigned int virq)
191 {
192 return irq_desc[virq].chip_data;
193 }
194
195 #define virq_to_hw(virq) ((unsigned int)irq_map[virq].hwirq)
196
197 static void qe_ic_unmask_irq(unsigned int virq)
198 {
199 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
200 unsigned int src = virq_to_hw(virq);
201 unsigned long flags;
202 u32 temp;
203
204 spin_lock_irqsave(&qe_ic_lock, flags);
205
206 temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
207 qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
208 temp | qe_ic_info[src].mask);
209
210 spin_unlock_irqrestore(&qe_ic_lock, flags);
211 }
212
213 static void qe_ic_mask_irq(unsigned int virq)
214 {
215 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
216 unsigned int src = virq_to_hw(virq);
217 unsigned long flags;
218 u32 temp;
219
220 spin_lock_irqsave(&qe_ic_lock, flags);
221
222 temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
223 qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
224 temp & ~qe_ic_info[src].mask);
225
226 /* Flush the above write before enabling interrupts; otherwise,
227 * spurious interrupts will sometimes happen. To be 100% sure
228 * that the write has reached the device before interrupts are
229 * enabled, the mask register would have to be read back; however,
230 * this is not required for correctness, only to avoid wasting
231 * time on a large number of spurious interrupts. In testing,
232 * a sync reduced the observed spurious interrupts to zero.
233 */
234 mb();
235
236 spin_unlock_irqrestore(&qe_ic_lock, flags);
237 }
238
239 static struct irq_chip qe_ic_irq_chip = {
240 .typename = " QEIC ",
241 .unmask = qe_ic_unmask_irq,
242 .mask = qe_ic_mask_irq,
243 .mask_ack = qe_ic_mask_irq,
244 };
245
246 static int qe_ic_host_match(struct irq_host *h, struct device_node *node)
247 {
248 struct qe_ic *qe_ic = h->host_data;
249
250 /* Exact match, unless qe_ic node is NULL */
251 return qe_ic->of_node == NULL || qe_ic->of_node == node;
252 }
253
254 static int qe_ic_host_map(struct irq_host *h, unsigned int virq,
255 irq_hw_number_t hw)
256 {
257 struct qe_ic *qe_ic = h->host_data;
258 struct irq_chip *chip;
259
260 if (qe_ic_info[hw].mask == 0) {
261 printk(KERN_ERR "Can't map reserved IRQ \n");
262 return -EINVAL;
263 }
264 /* Default chip */
265 chip = &qe_ic->hc_irq;
266
267 set_irq_chip_data(virq, qe_ic);
268 get_irq_desc(virq)->status |= IRQ_LEVEL;
269
270 set_irq_chip_and_handler(virq, chip, handle_level_irq);
271
272 return 0;
273 }
274
275 static int qe_ic_host_xlate(struct irq_host *h, struct device_node *ct,
276 u32 * intspec, unsigned int intsize,
277 irq_hw_number_t * out_hwirq,
278 unsigned int *out_flags)
279 {
280 *out_hwirq = intspec[0];
281 if (intsize > 1)
282 *out_flags = intspec[1];
283 else
284 *out_flags = IRQ_TYPE_NONE;
285 return 0;
286 }
287
288 static struct irq_host_ops qe_ic_host_ops = {
289 .match = qe_ic_host_match,
290 .map = qe_ic_host_map,
291 .xlate = qe_ic_host_xlate,
292 };
293
294 /* Return an interrupt vector or NO_IRQ if no interrupt is pending. */
295 unsigned int qe_ic_get_low_irq(struct qe_ic *qe_ic)
296 {
297 int irq;
298
299 BUG_ON(qe_ic == NULL);
300
301 /* get the interrupt source vector. */
302 irq = qe_ic_read(qe_ic->regs, QEIC_CIVEC) >> 26;
303
304 if (irq == 0)
305 return NO_IRQ;
306
307 return irq_linear_revmap(qe_ic->irqhost, irq);
308 }
309
310 /* Return an interrupt vector or NO_IRQ if no interrupt is pending. */
311 unsigned int qe_ic_get_high_irq(struct qe_ic *qe_ic)
312 {
313 int irq;
314
315 BUG_ON(qe_ic == NULL);
316
317 /* get the interrupt source vector. */
318 irq = qe_ic_read(qe_ic->regs, QEIC_CHIVEC) >> 26;
319
320 if (irq == 0)
321 return NO_IRQ;
322
323 return irq_linear_revmap(qe_ic->irqhost, irq);
324 }
325
326 void fastcall qe_ic_cascade_low(unsigned int irq, struct irq_desc *desc)
327 {
328 struct qe_ic *qe_ic = desc->handler_data;
329 unsigned int cascade_irq = qe_ic_get_low_irq(qe_ic);
330
331 if (cascade_irq != NO_IRQ)
332 generic_handle_irq(cascade_irq);
333 }
334
335 void fastcall qe_ic_cascade_high(unsigned int irq, struct irq_desc *desc)
336 {
337 struct qe_ic *qe_ic = desc->handler_data;
338 unsigned int cascade_irq = qe_ic_get_high_irq(qe_ic);
339
340 if (cascade_irq != NO_IRQ)
341 generic_handle_irq(cascade_irq);
342 }
343
344 void __init qe_ic_init(struct device_node *node, unsigned int flags)
345 {
346 struct qe_ic *qe_ic;
347 struct resource res;
348 u32 temp = 0, ret, high_active = 0;
349
350 qe_ic = alloc_bootmem(sizeof(struct qe_ic));
351 if (qe_ic == NULL)
352 return;
353
354 memset(qe_ic, 0, sizeof(struct qe_ic));
355 qe_ic->of_node = node ? of_node_get(node) : NULL;
356
357 qe_ic->irqhost = irq_alloc_host(IRQ_HOST_MAP_LINEAR,
358 NR_QE_IC_INTS, &qe_ic_host_ops, 0);
359 if (qe_ic->irqhost == NULL) {
360 of_node_put(node);
361 return;
362 }
363
364 ret = of_address_to_resource(node, 0, &res);
365 if (ret)
366 return;
367
368 qe_ic->regs = ioremap(res.start, res.end - res.start + 1);
369
370 qe_ic->irqhost->host_data = qe_ic;
371 qe_ic->hc_irq = qe_ic_irq_chip;
372
373 qe_ic->virq_high = irq_of_parse_and_map(node, 0);
374 qe_ic->virq_low = irq_of_parse_and_map(node, 1);
375
376 if (qe_ic->virq_low == NO_IRQ) {
377 printk(KERN_ERR "Failed to map QE_IC low IRQ\n");
378 return;
379 }
380
381 /* default priority scheme is grouped. If spread mode is */
382 /* required, configure cicr accordingly. */
383 if (flags & QE_IC_SPREADMODE_GRP_W)
384 temp |= CICR_GWCC;
385 if (flags & QE_IC_SPREADMODE_GRP_X)
386 temp |= CICR_GXCC;
387 if (flags & QE_IC_SPREADMODE_GRP_Y)
388 temp |= CICR_GYCC;
389 if (flags & QE_IC_SPREADMODE_GRP_Z)
390 temp |= CICR_GZCC;
391 if (flags & QE_IC_SPREADMODE_GRP_RISCA)
392 temp |= CICR_GRTA;
393 if (flags & QE_IC_SPREADMODE_GRP_RISCB)
394 temp |= CICR_GRTB;
395
396 /* choose destination signal for highest priority interrupt */
397 if (flags & QE_IC_HIGH_SIGNAL) {
398 temp |= (SIGNAL_HIGH << CICR_HPIT_SHIFT);
399 high_active = 1;
400 }
401
402 qe_ic_write(qe_ic->regs, QEIC_CICR, temp);
403
404 set_irq_data(qe_ic->virq_low, qe_ic);
405 set_irq_chained_handler(qe_ic->virq_low, qe_ic_cascade_low);
406
407 if (qe_ic->virq_high != NO_IRQ) {
408 set_irq_data(qe_ic->virq_high, qe_ic);
409 set_irq_chained_handler(qe_ic->virq_high, qe_ic_cascade_high);
410 }
411
412 printk("QEIC (%d IRQ sources) at %p\n", NR_QE_IC_INTS, qe_ic->regs);
413 }
414
415 void qe_ic_set_highest_priority(unsigned int virq, int high)
416 {
417 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
418 unsigned int src = virq_to_hw(virq);
419 u32 temp = 0;
420
421 temp = qe_ic_read(qe_ic->regs, QEIC_CICR);
422
423 temp &= ~CICR_HP_MASK;
424 temp |= src << CICR_HP_SHIFT;
425
426 temp &= ~CICR_HPIT_MASK;
427 temp |= (high ? SIGNAL_HIGH : SIGNAL_LOW) << CICR_HPIT_SHIFT;
428
429 qe_ic_write(qe_ic->regs, QEIC_CICR, temp);
430 }
431
432 /* Set Priority level within its group, from 1 to 8 */
433 int qe_ic_set_priority(unsigned int virq, unsigned int priority)
434 {
435 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
436 unsigned int src = virq_to_hw(virq);
437 u32 temp;
438
439 if (priority > 8 || priority == 0)
440 return -EINVAL;
441 if (src > 127)
442 return -EINVAL;
443 if (qe_ic_info[src].pri_reg == 0)
444 return -EINVAL;
445
446 temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].pri_reg);
447
448 if (priority < 4) {
449 temp &= ~(0x7 << (32 - priority * 3));
450 temp |= qe_ic_info[src].pri_code << (32 - priority * 3);
451 } else {
452 temp &= ~(0x7 << (24 - priority * 3));
453 temp |= qe_ic_info[src].pri_code << (24 - priority * 3);
454 }
455
456 qe_ic_write(qe_ic->regs, qe_ic_info[src].pri_reg, temp);
457
458 return 0;
459 }
460
461 /* Set a QE priority to use high irq, only priority 1~2 can use high irq */
462 int qe_ic_set_high_priority(unsigned int virq, unsigned int priority, int high)
463 {
464 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
465 unsigned int src = virq_to_hw(virq);
466 u32 temp, control_reg = QEIC_CICNR, shift = 0;
467
468 if (priority > 2 || priority == 0)
469 return -EINVAL;
470
471 switch (qe_ic_info[src].pri_reg) {
472 case QEIC_CIPZCC:
473 shift = CICNR_ZCC1T_SHIFT;
474 break;
475 case QEIC_CIPWCC:
476 shift = CICNR_WCC1T_SHIFT;
477 break;
478 case QEIC_CIPYCC:
479 shift = CICNR_YCC1T_SHIFT;
480 break;
481 case QEIC_CIPXCC:
482 shift = CICNR_XCC1T_SHIFT;
483 break;
484 case QEIC_CIPRTA:
485 shift = CRICR_RTA1T_SHIFT;
486 control_reg = QEIC_CRICR;
487 break;
488 case QEIC_CIPRTB:
489 shift = CRICR_RTB1T_SHIFT;
490 control_reg = QEIC_CRICR;
491 break;
492 default:
493 return -EINVAL;
494 }
495
496 shift += (2 - priority) * 2;
497 temp = qe_ic_read(qe_ic->regs, control_reg);
498 temp &= ~(SIGNAL_MASK << shift);
499 temp |= (high ? SIGNAL_HIGH : SIGNAL_LOW) << shift;
500 qe_ic_write(qe_ic->regs, control_reg, temp);
501
502 return 0;
503 }
504
505 static struct sysdev_class qe_ic_sysclass = {
506 set_kset_name("qe_ic"),
507 };
508
509 static struct sys_device device_qe_ic = {
510 .id = 0,
511 .cls = &qe_ic_sysclass,
512 };
513
514 static int __init init_qe_ic_sysfs(void)
515 {
516 int rc;
517
518 printk(KERN_DEBUG "Registering qe_ic with sysfs...\n");
519
520 rc = sysdev_class_register(&qe_ic_sysclass);
521 if (rc) {
522 printk(KERN_ERR "Failed registering qe_ic sys class\n");
523 return -ENODEV;
524 }
525 rc = sysdev_register(&device_qe_ic);
526 if (rc) {
527 printk(KERN_ERR "Failed registering qe_ic sys device\n");
528 return -ENODEV;
529 }
530 return 0;
531 }
532
533 subsys_initcall(init_qe_ic_sysfs);
This page took 0.043709 seconds and 4 git commands to generate.