[PATCH] ieee80211: Fix debug comments ipw->ieee80211
[deliverable/linux.git] / arch / ppc64 / kernel / process.c
1 /*
2 * linux/arch/ppc64/kernel/process.c
3 *
4 * Derived from "arch/i386/kernel/process.c"
5 * Copyright (C) 1995 Linus Torvalds
6 *
7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8 * Paul Mackerras (paulus@cs.anu.edu.au)
9 *
10 * PowerPC version
11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/smp.h>
26 #include <linux/smp_lock.h>
27 #include <linux/stddef.h>
28 #include <linux/unistd.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/init_task.h>
34 #include <linux/prctl.h>
35 #include <linux/ptrace.h>
36 #include <linux/kallsyms.h>
37 #include <linux/interrupt.h>
38 #include <linux/utsname.h>
39 #include <linux/kprobes.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/prom.h>
49 #include <asm/ppcdebug.h>
50 #include <asm/machdep.h>
51 #include <asm/iSeries/HvCallHpt.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/tlbflush.h>
55 #include <asm/time.h>
56
57 #ifndef CONFIG_SMP
58 struct task_struct *last_task_used_math = NULL;
59 struct task_struct *last_task_used_altivec = NULL;
60 #endif
61
62 /*
63 * Make sure the floating-point register state in the
64 * the thread_struct is up to date for task tsk.
65 */
66 void flush_fp_to_thread(struct task_struct *tsk)
67 {
68 if (tsk->thread.regs) {
69 /*
70 * We need to disable preemption here because if we didn't,
71 * another process could get scheduled after the regs->msr
72 * test but before we have finished saving the FP registers
73 * to the thread_struct. That process could take over the
74 * FPU, and then when we get scheduled again we would store
75 * bogus values for the remaining FP registers.
76 */
77 preempt_disable();
78 if (tsk->thread.regs->msr & MSR_FP) {
79 #ifdef CONFIG_SMP
80 /*
81 * This should only ever be called for current or
82 * for a stopped child process. Since we save away
83 * the FP register state on context switch on SMP,
84 * there is something wrong if a stopped child appears
85 * to still have its FP state in the CPU registers.
86 */
87 BUG_ON(tsk != current);
88 #endif
89 giveup_fpu(current);
90 }
91 preempt_enable();
92 }
93 }
94
95 void enable_kernel_fp(void)
96 {
97 WARN_ON(preemptible());
98
99 #ifdef CONFIG_SMP
100 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
101 giveup_fpu(current);
102 else
103 giveup_fpu(NULL); /* just enables FP for kernel */
104 #else
105 giveup_fpu(last_task_used_math);
106 #endif /* CONFIG_SMP */
107 }
108 EXPORT_SYMBOL(enable_kernel_fp);
109
110 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
111 {
112 if (!tsk->thread.regs)
113 return 0;
114 flush_fp_to_thread(current);
115
116 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
117
118 return 1;
119 }
120
121 #ifdef CONFIG_ALTIVEC
122
123 void enable_kernel_altivec(void)
124 {
125 WARN_ON(preemptible());
126
127 #ifdef CONFIG_SMP
128 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
129 giveup_altivec(current);
130 else
131 giveup_altivec(NULL); /* just enables FP for kernel */
132 #else
133 giveup_altivec(last_task_used_altivec);
134 #endif /* CONFIG_SMP */
135 }
136 EXPORT_SYMBOL(enable_kernel_altivec);
137
138 /*
139 * Make sure the VMX/Altivec register state in the
140 * the thread_struct is up to date for task tsk.
141 */
142 void flush_altivec_to_thread(struct task_struct *tsk)
143 {
144 if (tsk->thread.regs) {
145 preempt_disable();
146 if (tsk->thread.regs->msr & MSR_VEC) {
147 #ifdef CONFIG_SMP
148 BUG_ON(tsk != current);
149 #endif
150 giveup_altivec(current);
151 }
152 preempt_enable();
153 }
154 }
155
156 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
157 {
158 flush_altivec_to_thread(current);
159 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
160 return 1;
161 }
162
163 #endif /* CONFIG_ALTIVEC */
164
165 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
166
167 struct task_struct *__switch_to(struct task_struct *prev,
168 struct task_struct *new)
169 {
170 struct thread_struct *new_thread, *old_thread;
171 unsigned long flags;
172 struct task_struct *last;
173
174 #ifdef CONFIG_SMP
175 /* avoid complexity of lazy save/restore of fpu
176 * by just saving it every time we switch out if
177 * this task used the fpu during the last quantum.
178 *
179 * If it tries to use the fpu again, it'll trap and
180 * reload its fp regs. So we don't have to do a restore
181 * every switch, just a save.
182 * -- Cort
183 */
184 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
185 giveup_fpu(prev);
186 #ifdef CONFIG_ALTIVEC
187 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
188 giveup_altivec(prev);
189 #endif /* CONFIG_ALTIVEC */
190 #endif /* CONFIG_SMP */
191
192 #if defined(CONFIG_ALTIVEC) && !defined(CONFIG_SMP)
193 /* Avoid the trap. On smp this this never happens since
194 * we don't set last_task_used_altivec -- Cort
195 */
196 if (new->thread.regs && last_task_used_altivec == new)
197 new->thread.regs->msr |= MSR_VEC;
198 #endif /* CONFIG_ALTIVEC */
199
200 flush_tlb_pending();
201
202 new_thread = &new->thread;
203 old_thread = &current->thread;
204
205 /* Collect purr utilization data per process and per processor wise */
206 /* purr is nothing but processor time base */
207
208 #if defined(CONFIG_PPC_PSERIES)
209 if (cur_cpu_spec->firmware_features & FW_FEATURE_SPLPAR) {
210 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
211 long unsigned start_tb, current_tb;
212 start_tb = old_thread->start_tb;
213 cu->current_tb = current_tb = mfspr(SPRN_PURR);
214 old_thread->accum_tb += (current_tb - start_tb);
215 new_thread->start_tb = current_tb;
216 }
217 #endif
218
219
220 local_irq_save(flags);
221 last = _switch(old_thread, new_thread);
222
223 local_irq_restore(flags);
224
225 return last;
226 }
227
228 static int instructions_to_print = 16;
229
230 static void show_instructions(struct pt_regs *regs)
231 {
232 int i;
233 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
234 sizeof(int));
235
236 printk("Instruction dump:");
237
238 for (i = 0; i < instructions_to_print; i++) {
239 int instr;
240
241 if (!(i % 8))
242 printk("\n");
243
244 if (((REGION_ID(pc) != KERNEL_REGION_ID) &&
245 (REGION_ID(pc) != VMALLOC_REGION_ID)) ||
246 __get_user(instr, (unsigned int *)pc)) {
247 printk("XXXXXXXX ");
248 } else {
249 if (regs->nip == pc)
250 printk("<%08x> ", instr);
251 else
252 printk("%08x ", instr);
253 }
254
255 pc += sizeof(int);
256 }
257
258 printk("\n");
259 }
260
261 void show_regs(struct pt_regs * regs)
262 {
263 int i;
264 unsigned long trap;
265
266 printk("NIP: %016lX XER: %08X LR: %016lX CTR: %016lX\n",
267 regs->nip, (unsigned int)regs->xer, regs->link, regs->ctr);
268 printk("REGS: %p TRAP: %04lx %s (%s)\n",
269 regs, regs->trap, print_tainted(), system_utsname.release);
270 printk("MSR: %016lx EE: %01x PR: %01x FP: %01x ME: %01x "
271 "IR/DR: %01x%01x CR: %08X\n",
272 regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0,
273 regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0,
274 regs->msr&MSR_IR ? 1 : 0,
275 regs->msr&MSR_DR ? 1 : 0,
276 (unsigned int)regs->ccr);
277 trap = TRAP(regs);
278 printk("DAR: %016lx DSISR: %016lx\n", regs->dar, regs->dsisr);
279 printk("TASK: %p[%d] '%s' THREAD: %p",
280 current, current->pid, current->comm, current->thread_info);
281
282 #ifdef CONFIG_SMP
283 printk(" CPU: %d", smp_processor_id());
284 #endif /* CONFIG_SMP */
285
286 for (i = 0; i < 32; i++) {
287 if ((i % 4) == 0) {
288 printk("\n" KERN_INFO "GPR%02d: ", i);
289 }
290
291 printk("%016lX ", regs->gpr[i]);
292 if (i == 13 && !FULL_REGS(regs))
293 break;
294 }
295 printk("\n");
296 /*
297 * Lookup NIP late so we have the best change of getting the
298 * above info out without failing
299 */
300 printk("NIP [%016lx] ", regs->nip);
301 print_symbol("%s\n", regs->nip);
302 printk("LR [%016lx] ", regs->link);
303 print_symbol("%s\n", regs->link);
304 show_stack(current, (unsigned long *)regs->gpr[1]);
305 if (!user_mode(regs))
306 show_instructions(regs);
307 }
308
309 void exit_thread(void)
310 {
311 kprobe_flush_task(current);
312
313 #ifndef CONFIG_SMP
314 if (last_task_used_math == current)
315 last_task_used_math = NULL;
316 #ifdef CONFIG_ALTIVEC
317 if (last_task_used_altivec == current)
318 last_task_used_altivec = NULL;
319 #endif /* CONFIG_ALTIVEC */
320 #endif /* CONFIG_SMP */
321 }
322
323 void flush_thread(void)
324 {
325 struct thread_info *t = current_thread_info();
326
327 kprobe_flush_task(current);
328 if (t->flags & _TIF_ABI_PENDING)
329 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
330
331 #ifndef CONFIG_SMP
332 if (last_task_used_math == current)
333 last_task_used_math = NULL;
334 #ifdef CONFIG_ALTIVEC
335 if (last_task_used_altivec == current)
336 last_task_used_altivec = NULL;
337 #endif /* CONFIG_ALTIVEC */
338 #endif /* CONFIG_SMP */
339 }
340
341 void
342 release_thread(struct task_struct *t)
343 {
344 }
345
346
347 /*
348 * This gets called before we allocate a new thread and copy
349 * the current task into it.
350 */
351 void prepare_to_copy(struct task_struct *tsk)
352 {
353 flush_fp_to_thread(current);
354 flush_altivec_to_thread(current);
355 }
356
357 /*
358 * Copy a thread..
359 */
360 int
361 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
362 unsigned long unused, struct task_struct *p, struct pt_regs *regs)
363 {
364 struct pt_regs *childregs, *kregs;
365 extern void ret_from_fork(void);
366 unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
367
368 /* Copy registers */
369 sp -= sizeof(struct pt_regs);
370 childregs = (struct pt_regs *) sp;
371 *childregs = *regs;
372 if ((childregs->msr & MSR_PR) == 0) {
373 /* for kernel thread, set stackptr in new task */
374 childregs->gpr[1] = sp + sizeof(struct pt_regs);
375 p->thread.regs = NULL; /* no user register state */
376 clear_ti_thread_flag(p->thread_info, TIF_32BIT);
377 } else {
378 childregs->gpr[1] = usp;
379 p->thread.regs = childregs;
380 if (clone_flags & CLONE_SETTLS) {
381 if (test_thread_flag(TIF_32BIT))
382 childregs->gpr[2] = childregs->gpr[6];
383 else
384 childregs->gpr[13] = childregs->gpr[6];
385 }
386 }
387 childregs->gpr[3] = 0; /* Result from fork() */
388 sp -= STACK_FRAME_OVERHEAD;
389
390 /*
391 * The way this works is that at some point in the future
392 * some task will call _switch to switch to the new task.
393 * That will pop off the stack frame created below and start
394 * the new task running at ret_from_fork. The new task will
395 * do some house keeping and then return from the fork or clone
396 * system call, using the stack frame created above.
397 */
398 sp -= sizeof(struct pt_regs);
399 kregs = (struct pt_regs *) sp;
400 sp -= STACK_FRAME_OVERHEAD;
401 p->thread.ksp = sp;
402 if (cpu_has_feature(CPU_FTR_SLB)) {
403 unsigned long sp_vsid = get_kernel_vsid(sp);
404
405 sp_vsid <<= SLB_VSID_SHIFT;
406 sp_vsid |= SLB_VSID_KERNEL;
407 if (cpu_has_feature(CPU_FTR_16M_PAGE))
408 sp_vsid |= SLB_VSID_L;
409
410 p->thread.ksp_vsid = sp_vsid;
411 }
412
413 /*
414 * The PPC64 ABI makes use of a TOC to contain function
415 * pointers. The function (ret_from_except) is actually a pointer
416 * to the TOC entry. The first entry is a pointer to the actual
417 * function.
418 */
419 kregs->nip = *((unsigned long *)ret_from_fork);
420
421 return 0;
422 }
423
424 /*
425 * Set up a thread for executing a new program
426 */
427 void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp)
428 {
429 unsigned long entry, toc, load_addr = regs->gpr[2];
430
431 /* fdptr is a relocated pointer to the function descriptor for
432 * the elf _start routine. The first entry in the function
433 * descriptor is the entry address of _start and the second
434 * entry is the TOC value we need to use.
435 */
436 set_fs(USER_DS);
437 __get_user(entry, (unsigned long __user *)fdptr);
438 __get_user(toc, (unsigned long __user *)fdptr+1);
439
440 /* Check whether the e_entry function descriptor entries
441 * need to be relocated before we can use them.
442 */
443 if (load_addr != 0) {
444 entry += load_addr;
445 toc += load_addr;
446 }
447
448 /*
449 * If we exec out of a kernel thread then thread.regs will not be
450 * set. Do it now.
451 */
452 if (!current->thread.regs) {
453 unsigned long childregs = (unsigned long)current->thread_info +
454 THREAD_SIZE;
455 childregs -= sizeof(struct pt_regs);
456 current->thread.regs = (struct pt_regs *)childregs;
457 }
458
459 regs->nip = entry;
460 regs->gpr[1] = sp;
461 regs->gpr[2] = toc;
462 regs->msr = MSR_USER64;
463 #ifndef CONFIG_SMP
464 if (last_task_used_math == current)
465 last_task_used_math = 0;
466 #endif /* CONFIG_SMP */
467 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
468 current->thread.fpscr = 0;
469 #ifdef CONFIG_ALTIVEC
470 #ifndef CONFIG_SMP
471 if (last_task_used_altivec == current)
472 last_task_used_altivec = 0;
473 #endif /* CONFIG_SMP */
474 memset(current->thread.vr, 0, sizeof(current->thread.vr));
475 current->thread.vscr.u[0] = 0;
476 current->thread.vscr.u[1] = 0;
477 current->thread.vscr.u[2] = 0;
478 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
479 current->thread.vrsave = 0;
480 current->thread.used_vr = 0;
481 #endif /* CONFIG_ALTIVEC */
482 }
483 EXPORT_SYMBOL(start_thread);
484
485 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
486 {
487 struct pt_regs *regs = tsk->thread.regs;
488
489 if (val > PR_FP_EXC_PRECISE)
490 return -EINVAL;
491 tsk->thread.fpexc_mode = __pack_fe01(val);
492 if (regs != NULL && (regs->msr & MSR_FP) != 0)
493 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
494 | tsk->thread.fpexc_mode;
495 return 0;
496 }
497
498 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
499 {
500 unsigned int val;
501
502 val = __unpack_fe01(tsk->thread.fpexc_mode);
503 return put_user(val, (unsigned int __user *) adr);
504 }
505
506 int sys_clone(unsigned long clone_flags, unsigned long p2, unsigned long p3,
507 unsigned long p4, unsigned long p5, unsigned long p6,
508 struct pt_regs *regs)
509 {
510 unsigned long parent_tidptr = 0;
511 unsigned long child_tidptr = 0;
512
513 if (p2 == 0)
514 p2 = regs->gpr[1]; /* stack pointer for child */
515
516 if (clone_flags & (CLONE_PARENT_SETTID | CLONE_CHILD_SETTID |
517 CLONE_CHILD_CLEARTID)) {
518 parent_tidptr = p3;
519 child_tidptr = p5;
520 if (test_thread_flag(TIF_32BIT)) {
521 parent_tidptr &= 0xffffffff;
522 child_tidptr &= 0xffffffff;
523 }
524 }
525
526 return do_fork(clone_flags, p2, regs, 0,
527 (int __user *)parent_tidptr, (int __user *)child_tidptr);
528 }
529
530 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
531 unsigned long p4, unsigned long p5, unsigned long p6,
532 struct pt_regs *regs)
533 {
534 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
535 }
536
537 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
538 unsigned long p4, unsigned long p5, unsigned long p6,
539 struct pt_regs *regs)
540 {
541 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0,
542 NULL, NULL);
543 }
544
545 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
546 unsigned long a3, unsigned long a4, unsigned long a5,
547 struct pt_regs *regs)
548 {
549 int error;
550 char * filename;
551
552 filename = getname((char __user *) a0);
553 error = PTR_ERR(filename);
554 if (IS_ERR(filename))
555 goto out;
556 flush_fp_to_thread(current);
557 flush_altivec_to_thread(current);
558 error = do_execve(filename, (char __user * __user *) a1,
559 (char __user * __user *) a2, regs);
560
561 if (error == 0) {
562 task_lock(current);
563 current->ptrace &= ~PT_DTRACE;
564 task_unlock(current);
565 }
566 putname(filename);
567
568 out:
569 return error;
570 }
571
572 static int kstack_depth_to_print = 64;
573
574 static int validate_sp(unsigned long sp, struct task_struct *p,
575 unsigned long nbytes)
576 {
577 unsigned long stack_page = (unsigned long)p->thread_info;
578
579 if (sp >= stack_page + sizeof(struct thread_struct)
580 && sp <= stack_page + THREAD_SIZE - nbytes)
581 return 1;
582
583 #ifdef CONFIG_IRQSTACKS
584 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
585 if (sp >= stack_page + sizeof(struct thread_struct)
586 && sp <= stack_page + THREAD_SIZE - nbytes)
587 return 1;
588
589 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
590 if (sp >= stack_page + sizeof(struct thread_struct)
591 && sp <= stack_page + THREAD_SIZE - nbytes)
592 return 1;
593 #endif
594
595 return 0;
596 }
597
598 unsigned long get_wchan(struct task_struct *p)
599 {
600 unsigned long ip, sp;
601 int count = 0;
602
603 if (!p || p == current || p->state == TASK_RUNNING)
604 return 0;
605
606 sp = p->thread.ksp;
607 if (!validate_sp(sp, p, 112))
608 return 0;
609
610 do {
611 sp = *(unsigned long *)sp;
612 if (!validate_sp(sp, p, 112))
613 return 0;
614 if (count > 0) {
615 ip = *(unsigned long *)(sp + 16);
616 if (!in_sched_functions(ip))
617 return ip;
618 }
619 } while (count++ < 16);
620 return 0;
621 }
622 EXPORT_SYMBOL(get_wchan);
623
624 void show_stack(struct task_struct *p, unsigned long *_sp)
625 {
626 unsigned long ip, newsp, lr;
627 int count = 0;
628 unsigned long sp = (unsigned long)_sp;
629 int firstframe = 1;
630
631 if (sp == 0) {
632 if (p) {
633 sp = p->thread.ksp;
634 } else {
635 sp = __get_SP();
636 p = current;
637 }
638 }
639
640 lr = 0;
641 printk("Call Trace:\n");
642 do {
643 if (!validate_sp(sp, p, 112))
644 return;
645
646 _sp = (unsigned long *) sp;
647 newsp = _sp[0];
648 ip = _sp[2];
649 if (!firstframe || ip != lr) {
650 printk("[%016lx] [%016lx] ", sp, ip);
651 print_symbol("%s", ip);
652 if (firstframe)
653 printk(" (unreliable)");
654 printk("\n");
655 }
656 firstframe = 0;
657
658 /*
659 * See if this is an exception frame.
660 * We look for the "regshere" marker in the current frame.
661 */
662 if (validate_sp(sp, p, sizeof(struct pt_regs) + 400)
663 && _sp[12] == 0x7265677368657265ul) {
664 struct pt_regs *regs = (struct pt_regs *)
665 (sp + STACK_FRAME_OVERHEAD);
666 printk("--- Exception: %lx", regs->trap);
667 print_symbol(" at %s\n", regs->nip);
668 lr = regs->link;
669 print_symbol(" LR = %s\n", lr);
670 firstframe = 1;
671 }
672
673 sp = newsp;
674 } while (count++ < kstack_depth_to_print);
675 }
676
677 void dump_stack(void)
678 {
679 show_stack(current, (unsigned long *)__get_SP());
680 }
681 EXPORT_SYMBOL(dump_stack);
This page took 0.048261 seconds and 5 git commands to generate.