/spare/repo/netdev-2.6 branch 'master'
[deliverable/linux.git] / arch / ppc64 / kernel / prom.c
1 /*
2 *
3 *
4 * Procedures for interfacing to Open Firmware.
5 *
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
8 *
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18 #undef DEBUG
19
20 #include <stdarg.h>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/version.h>
26 #include <linux/threads.h>
27 #include <linux/spinlock.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/stringify.h>
31 #include <linux/delay.h>
32 #include <linux/initrd.h>
33 #include <linux/bitops.h>
34 #include <linux/module.h>
35
36 #include <asm/prom.h>
37 #include <asm/rtas.h>
38 #include <asm/lmb.h>
39 #include <asm/abs_addr.h>
40 #include <asm/page.h>
41 #include <asm/processor.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/smp.h>
45 #include <asm/system.h>
46 #include <asm/mmu.h>
47 #include <asm/pgtable.h>
48 #include <asm/pci.h>
49 #include <asm/iommu.h>
50 #include <asm/bootinfo.h>
51 #include <asm/ppcdebug.h>
52 #include <asm/btext.h>
53 #include <asm/sections.h>
54 #include <asm/machdep.h>
55 #include <asm/pSeries_reconfig.h>
56
57 #ifdef DEBUG
58 #define DBG(fmt...) udbg_printf(fmt)
59 #else
60 #define DBG(fmt...)
61 #endif
62
63 struct pci_reg_property {
64 struct pci_address addr;
65 u32 size_hi;
66 u32 size_lo;
67 };
68
69 struct isa_reg_property {
70 u32 space;
71 u32 address;
72 u32 size;
73 };
74
75
76 typedef int interpret_func(struct device_node *, unsigned long *,
77 int, int, int);
78
79 extern struct rtas_t rtas;
80 extern struct lmb lmb;
81 extern unsigned long klimit;
82
83 static int __initdata dt_root_addr_cells;
84 static int __initdata dt_root_size_cells;
85 static int __initdata iommu_is_off;
86 int __initdata iommu_force_on;
87 typedef u32 cell_t;
88
89 #if 0
90 static struct boot_param_header *initial_boot_params __initdata;
91 #else
92 struct boot_param_header *initial_boot_params;
93 #endif
94
95 static struct device_node *allnodes = NULL;
96
97 /* use when traversing tree through the allnext, child, sibling,
98 * or parent members of struct device_node.
99 */
100 static DEFINE_RWLOCK(devtree_lock);
101
102 /* export that to outside world */
103 struct device_node *of_chosen;
104
105 /*
106 * Wrapper for allocating memory for various data that needs to be
107 * attached to device nodes as they are processed at boot or when
108 * added to the device tree later (e.g. DLPAR). At boot there is
109 * already a region reserved so we just increment *mem_start by size;
110 * otherwise we call kmalloc.
111 */
112 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
113 {
114 unsigned long tmp;
115
116 if (!mem_start)
117 return kmalloc(size, GFP_KERNEL);
118
119 tmp = *mem_start;
120 *mem_start += size;
121 return (void *)tmp;
122 }
123
124 /*
125 * Find the device_node with a given phandle.
126 */
127 static struct device_node * find_phandle(phandle ph)
128 {
129 struct device_node *np;
130
131 for (np = allnodes; np != 0; np = np->allnext)
132 if (np->linux_phandle == ph)
133 return np;
134 return NULL;
135 }
136
137 /*
138 * Find the interrupt parent of a node.
139 */
140 static struct device_node * __devinit intr_parent(struct device_node *p)
141 {
142 phandle *parp;
143
144 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
145 if (parp == NULL)
146 return p->parent;
147 return find_phandle(*parp);
148 }
149
150 /*
151 * Find out the size of each entry of the interrupts property
152 * for a node.
153 */
154 int __devinit prom_n_intr_cells(struct device_node *np)
155 {
156 struct device_node *p;
157 unsigned int *icp;
158
159 for (p = np; (p = intr_parent(p)) != NULL; ) {
160 icp = (unsigned int *)
161 get_property(p, "#interrupt-cells", NULL);
162 if (icp != NULL)
163 return *icp;
164 if (get_property(p, "interrupt-controller", NULL) != NULL
165 || get_property(p, "interrupt-map", NULL) != NULL) {
166 printk("oops, node %s doesn't have #interrupt-cells\n",
167 p->full_name);
168 return 1;
169 }
170 }
171 #ifdef DEBUG_IRQ
172 printk("prom_n_intr_cells failed for %s\n", np->full_name);
173 #endif
174 return 1;
175 }
176
177 /*
178 * Map an interrupt from a device up to the platform interrupt
179 * descriptor.
180 */
181 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
182 struct device_node *np, unsigned int *ints,
183 int nintrc)
184 {
185 struct device_node *p, *ipar;
186 unsigned int *imap, *imask, *ip;
187 int i, imaplen, match;
188 int newintrc = 0, newaddrc = 0;
189 unsigned int *reg;
190 int naddrc;
191
192 reg = (unsigned int *) get_property(np, "reg", NULL);
193 naddrc = prom_n_addr_cells(np);
194 p = intr_parent(np);
195 while (p != NULL) {
196 if (get_property(p, "interrupt-controller", NULL) != NULL)
197 /* this node is an interrupt controller, stop here */
198 break;
199 imap = (unsigned int *)
200 get_property(p, "interrupt-map", &imaplen);
201 if (imap == NULL) {
202 p = intr_parent(p);
203 continue;
204 }
205 imask = (unsigned int *)
206 get_property(p, "interrupt-map-mask", NULL);
207 if (imask == NULL) {
208 printk("oops, %s has interrupt-map but no mask\n",
209 p->full_name);
210 return 0;
211 }
212 imaplen /= sizeof(unsigned int);
213 match = 0;
214 ipar = NULL;
215 while (imaplen > 0 && !match) {
216 /* check the child-interrupt field */
217 match = 1;
218 for (i = 0; i < naddrc && match; ++i)
219 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
220 for (; i < naddrc + nintrc && match; ++i)
221 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
222 imap += naddrc + nintrc;
223 imaplen -= naddrc + nintrc;
224 /* grab the interrupt parent */
225 ipar = find_phandle((phandle) *imap++);
226 --imaplen;
227 if (ipar == NULL) {
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
230 return 0;
231 }
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
235 if (ip == NULL) {
236 printk("oops, no #interrupt-cells on %s\n",
237 ipar->full_name);
238 return 0;
239 }
240 newintrc = *ip;
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
246 }
247 if (imaplen < 0) {
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
250 return 0;
251 }
252 if (!match) {
253 #ifdef DEBUG_IRQ
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
256 #endif
257 return 0;
258 }
259 p = ipar;
260 naddrc = newaddrc;
261 nintrc = newintrc;
262 ints = imap - nintrc;
263 reg = ints - naddrc;
264 }
265 if (p == NULL) {
266 #ifdef DEBUG_IRQ
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
268 np->full_name);
269 #endif
270 return 0;
271 }
272 *irq = ints;
273 *ictrler = p;
274 return nintrc;
275 }
276
277 static int __devinit finish_node_interrupts(struct device_node *np,
278 unsigned long *mem_start,
279 int measure_only)
280 {
281 unsigned int *ints;
282 int intlen, intrcells, intrcount;
283 int i, j, n;
284 unsigned int *irq, virq;
285 struct device_node *ic;
286
287 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
288 if (ints == NULL)
289 return 0;
290 intrcells = prom_n_intr_cells(np);
291 intlen /= intrcells * sizeof(unsigned int);
292
293 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
294 if (!np->intrs)
295 return -ENOMEM;
296
297 if (measure_only)
298 return 0;
299
300 intrcount = 0;
301 for (i = 0; i < intlen; ++i, ints += intrcells) {
302 n = map_interrupt(&irq, &ic, np, ints, intrcells);
303 if (n <= 0)
304 continue;
305
306 /* don't map IRQ numbers under a cascaded 8259 controller */
307 if (ic && device_is_compatible(ic, "chrp,iic")) {
308 np->intrs[intrcount].line = irq[0];
309 } else {
310 virq = virt_irq_create_mapping(irq[0]);
311 if (virq == NO_IRQ) {
312 printk(KERN_CRIT "Could not allocate interrupt"
313 " number for %s\n", np->full_name);
314 continue;
315 }
316 np->intrs[intrcount].line = irq_offset_up(virq);
317 }
318
319 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
320 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
321 char *name = get_property(ic->parent, "name", NULL);
322 if (name && !strcmp(name, "u3"))
323 np->intrs[intrcount].line += 128;
324 else if (!(name && !strcmp(name, "mac-io")))
325 /* ignore other cascaded controllers, such as
326 the k2-sata-root */
327 break;
328 }
329 np->intrs[intrcount].sense = 1;
330 if (n > 1)
331 np->intrs[intrcount].sense = irq[1];
332 if (n > 2) {
333 printk("hmmm, got %d intr cells for %s:", n,
334 np->full_name);
335 for (j = 0; j < n; ++j)
336 printk(" %d", irq[j]);
337 printk("\n");
338 }
339 ++intrcount;
340 }
341 np->n_intrs = intrcount;
342
343 return 0;
344 }
345
346 static int __devinit interpret_pci_props(struct device_node *np,
347 unsigned long *mem_start,
348 int naddrc, int nsizec,
349 int measure_only)
350 {
351 struct address_range *adr;
352 struct pci_reg_property *pci_addrs;
353 int i, l, n_addrs;
354
355 pci_addrs = (struct pci_reg_property *)
356 get_property(np, "assigned-addresses", &l);
357 if (!pci_addrs)
358 return 0;
359
360 n_addrs = l / sizeof(*pci_addrs);
361
362 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
363 if (!adr)
364 return -ENOMEM;
365
366 if (measure_only)
367 return 0;
368
369 np->addrs = adr;
370 np->n_addrs = n_addrs;
371
372 for (i = 0; i < n_addrs; i++) {
373 adr[i].space = pci_addrs[i].addr.a_hi;
374 adr[i].address = pci_addrs[i].addr.a_lo |
375 ((u64)pci_addrs[i].addr.a_mid << 32);
376 adr[i].size = pci_addrs[i].size_lo;
377 }
378
379 return 0;
380 }
381
382 static int __init interpret_dbdma_props(struct device_node *np,
383 unsigned long *mem_start,
384 int naddrc, int nsizec,
385 int measure_only)
386 {
387 struct reg_property32 *rp;
388 struct address_range *adr;
389 unsigned long base_address;
390 int i, l;
391 struct device_node *db;
392
393 base_address = 0;
394 if (!measure_only) {
395 for (db = np->parent; db != NULL; db = db->parent) {
396 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
397 base_address = db->addrs[0].address;
398 break;
399 }
400 }
401 }
402
403 rp = (struct reg_property32 *) get_property(np, "reg", &l);
404 if (rp != 0 && l >= sizeof(struct reg_property32)) {
405 i = 0;
406 adr = (struct address_range *) (*mem_start);
407 while ((l -= sizeof(struct reg_property32)) >= 0) {
408 if (!measure_only) {
409 adr[i].space = 2;
410 adr[i].address = rp[i].address + base_address;
411 adr[i].size = rp[i].size;
412 }
413 ++i;
414 }
415 np->addrs = adr;
416 np->n_addrs = i;
417 (*mem_start) += i * sizeof(struct address_range);
418 }
419
420 return 0;
421 }
422
423 static int __init interpret_macio_props(struct device_node *np,
424 unsigned long *mem_start,
425 int naddrc, int nsizec,
426 int measure_only)
427 {
428 struct reg_property32 *rp;
429 struct address_range *adr;
430 unsigned long base_address;
431 int i, l;
432 struct device_node *db;
433
434 base_address = 0;
435 if (!measure_only) {
436 for (db = np->parent; db != NULL; db = db->parent) {
437 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
438 base_address = db->addrs[0].address;
439 break;
440 }
441 }
442 }
443
444 rp = (struct reg_property32 *) get_property(np, "reg", &l);
445 if (rp != 0 && l >= sizeof(struct reg_property32)) {
446 i = 0;
447 adr = (struct address_range *) (*mem_start);
448 while ((l -= sizeof(struct reg_property32)) >= 0) {
449 if (!measure_only) {
450 adr[i].space = 2;
451 adr[i].address = rp[i].address + base_address;
452 adr[i].size = rp[i].size;
453 }
454 ++i;
455 }
456 np->addrs = adr;
457 np->n_addrs = i;
458 (*mem_start) += i * sizeof(struct address_range);
459 }
460
461 return 0;
462 }
463
464 static int __init interpret_isa_props(struct device_node *np,
465 unsigned long *mem_start,
466 int naddrc, int nsizec,
467 int measure_only)
468 {
469 struct isa_reg_property *rp;
470 struct address_range *adr;
471 int i, l;
472
473 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
474 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
475 i = 0;
476 adr = (struct address_range *) (*mem_start);
477 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
478 if (!measure_only) {
479 adr[i].space = rp[i].space;
480 adr[i].address = rp[i].address;
481 adr[i].size = rp[i].size;
482 }
483 ++i;
484 }
485 np->addrs = adr;
486 np->n_addrs = i;
487 (*mem_start) += i * sizeof(struct address_range);
488 }
489
490 return 0;
491 }
492
493 static int __init interpret_root_props(struct device_node *np,
494 unsigned long *mem_start,
495 int naddrc, int nsizec,
496 int measure_only)
497 {
498 struct address_range *adr;
499 int i, l;
500 unsigned int *rp;
501 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
502
503 rp = (unsigned int *) get_property(np, "reg", &l);
504 if (rp != 0 && l >= rpsize) {
505 i = 0;
506 adr = (struct address_range *) (*mem_start);
507 while ((l -= rpsize) >= 0) {
508 if (!measure_only) {
509 adr[i].space = 0;
510 adr[i].address = rp[naddrc - 1];
511 adr[i].size = rp[naddrc + nsizec - 1];
512 }
513 ++i;
514 rp += naddrc + nsizec;
515 }
516 np->addrs = adr;
517 np->n_addrs = i;
518 (*mem_start) += i * sizeof(struct address_range);
519 }
520
521 return 0;
522 }
523
524 static int __devinit finish_node(struct device_node *np,
525 unsigned long *mem_start,
526 interpret_func *ifunc,
527 int naddrc, int nsizec,
528 int measure_only)
529 {
530 struct device_node *child;
531 int *ip, rc = 0;
532
533 /* get the device addresses and interrupts */
534 if (ifunc != NULL)
535 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
536 if (rc)
537 goto out;
538
539 rc = finish_node_interrupts(np, mem_start, measure_only);
540 if (rc)
541 goto out;
542
543 /* Look for #address-cells and #size-cells properties. */
544 ip = (int *) get_property(np, "#address-cells", NULL);
545 if (ip != NULL)
546 naddrc = *ip;
547 ip = (int *) get_property(np, "#size-cells", NULL);
548 if (ip != NULL)
549 nsizec = *ip;
550
551 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
552 ifunc = interpret_root_props;
553 else if (np->type == 0)
554 ifunc = NULL;
555 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
556 ifunc = interpret_pci_props;
557 else if (!strcmp(np->type, "dbdma"))
558 ifunc = interpret_dbdma_props;
559 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
560 ifunc = interpret_macio_props;
561 else if (!strcmp(np->type, "isa"))
562 ifunc = interpret_isa_props;
563 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
564 ifunc = interpret_root_props;
565 else if (!((ifunc == interpret_dbdma_props
566 || ifunc == interpret_macio_props)
567 && (!strcmp(np->type, "escc")
568 || !strcmp(np->type, "media-bay"))))
569 ifunc = NULL;
570
571 for (child = np->child; child != NULL; child = child->sibling) {
572 rc = finish_node(child, mem_start, ifunc,
573 naddrc, nsizec, measure_only);
574 if (rc)
575 goto out;
576 }
577 out:
578 return rc;
579 }
580
581 /**
582 * finish_device_tree is called once things are running normally
583 * (i.e. with text and data mapped to the address they were linked at).
584 * It traverses the device tree and fills in some of the additional,
585 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
586 * mapping is also initialized at this point.
587 */
588 void __init finish_device_tree(void)
589 {
590 unsigned long start, end, size = 0;
591
592 DBG(" -> finish_device_tree\n");
593
594 if (ppc64_interrupt_controller == IC_INVALID) {
595 DBG("failed to configure interrupt controller type\n");
596 panic("failed to configure interrupt controller type\n");
597 }
598
599 /* Initialize virtual IRQ map */
600 virt_irq_init();
601
602 /*
603 * Finish device-tree (pre-parsing some properties etc...)
604 * We do this in 2 passes. One with "measure_only" set, which
605 * will only measure the amount of memory needed, then we can
606 * allocate that memory, and call finish_node again. However,
607 * we must be careful as most routines will fail nowadays when
608 * prom_alloc() returns 0, so we must make sure our first pass
609 * doesn't start at 0. We pre-initialize size to 16 for that
610 * reason and then remove those additional 16 bytes
611 */
612 size = 16;
613 finish_node(allnodes, &size, NULL, 0, 0, 1);
614 size -= 16;
615 end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128));
616 finish_node(allnodes, &end, NULL, 0, 0, 0);
617 BUG_ON(end != start + size);
618
619 DBG(" <- finish_device_tree\n");
620 }
621
622 #ifdef DEBUG
623 #define printk udbg_printf
624 #endif
625
626 static inline char *find_flat_dt_string(u32 offset)
627 {
628 return ((char *)initial_boot_params) +
629 initial_boot_params->off_dt_strings + offset;
630 }
631
632 /**
633 * This function is used to scan the flattened device-tree, it is
634 * used to extract the memory informations at boot before we can
635 * unflatten the tree
636 */
637 static int __init scan_flat_dt(int (*it)(unsigned long node,
638 const char *uname, int depth,
639 void *data),
640 void *data)
641 {
642 unsigned long p = ((unsigned long)initial_boot_params) +
643 initial_boot_params->off_dt_struct;
644 int rc = 0;
645 int depth = -1;
646
647 do {
648 u32 tag = *((u32 *)p);
649 char *pathp;
650
651 p += 4;
652 if (tag == OF_DT_END_NODE) {
653 depth --;
654 continue;
655 }
656 if (tag == OF_DT_NOP)
657 continue;
658 if (tag == OF_DT_END)
659 break;
660 if (tag == OF_DT_PROP) {
661 u32 sz = *((u32 *)p);
662 p += 8;
663 if (initial_boot_params->version < 0x10)
664 p = _ALIGN(p, sz >= 8 ? 8 : 4);
665 p += sz;
666 p = _ALIGN(p, 4);
667 continue;
668 }
669 if (tag != OF_DT_BEGIN_NODE) {
670 printk(KERN_WARNING "Invalid tag %x scanning flattened"
671 " device tree !\n", tag);
672 return -EINVAL;
673 }
674 depth++;
675 pathp = (char *)p;
676 p = _ALIGN(p + strlen(pathp) + 1, 4);
677 if ((*pathp) == '/') {
678 char *lp, *np;
679 for (lp = NULL, np = pathp; *np; np++)
680 if ((*np) == '/')
681 lp = np+1;
682 if (lp != NULL)
683 pathp = lp;
684 }
685 rc = it(p, pathp, depth, data);
686 if (rc != 0)
687 break;
688 } while(1);
689
690 return rc;
691 }
692
693 /**
694 * This function can be used within scan_flattened_dt callback to get
695 * access to properties
696 */
697 static void* __init get_flat_dt_prop(unsigned long node, const char *name,
698 unsigned long *size)
699 {
700 unsigned long p = node;
701
702 do {
703 u32 tag = *((u32 *)p);
704 u32 sz, noff;
705 const char *nstr;
706
707 p += 4;
708 if (tag == OF_DT_NOP)
709 continue;
710 if (tag != OF_DT_PROP)
711 return NULL;
712
713 sz = *((u32 *)p);
714 noff = *((u32 *)(p + 4));
715 p += 8;
716 if (initial_boot_params->version < 0x10)
717 p = _ALIGN(p, sz >= 8 ? 8 : 4);
718
719 nstr = find_flat_dt_string(noff);
720 if (nstr == NULL) {
721 printk(KERN_WARNING "Can't find property index"
722 " name !\n");
723 return NULL;
724 }
725 if (strcmp(name, nstr) == 0) {
726 if (size)
727 *size = sz;
728 return (void *)p;
729 }
730 p += sz;
731 p = _ALIGN(p, 4);
732 } while(1);
733 }
734
735 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
736 unsigned long align)
737 {
738 void *res;
739
740 *mem = _ALIGN(*mem, align);
741 res = (void *)*mem;
742 *mem += size;
743
744 return res;
745 }
746
747 static unsigned long __init unflatten_dt_node(unsigned long mem,
748 unsigned long *p,
749 struct device_node *dad,
750 struct device_node ***allnextpp,
751 unsigned long fpsize)
752 {
753 struct device_node *np;
754 struct property *pp, **prev_pp = NULL;
755 char *pathp;
756 u32 tag;
757 unsigned int l, allocl;
758 int has_name = 0;
759 int new_format = 0;
760
761 tag = *((u32 *)(*p));
762 if (tag != OF_DT_BEGIN_NODE) {
763 printk("Weird tag at start of node: %x\n", tag);
764 return mem;
765 }
766 *p += 4;
767 pathp = (char *)*p;
768 l = allocl = strlen(pathp) + 1;
769 *p = _ALIGN(*p + l, 4);
770
771 /* version 0x10 has a more compact unit name here instead of the full
772 * path. we accumulate the full path size using "fpsize", we'll rebuild
773 * it later. We detect this because the first character of the name is
774 * not '/'.
775 */
776 if ((*pathp) != '/') {
777 new_format = 1;
778 if (fpsize == 0) {
779 /* root node: special case. fpsize accounts for path
780 * plus terminating zero. root node only has '/', so
781 * fpsize should be 2, but we want to avoid the first
782 * level nodes to have two '/' so we use fpsize 1 here
783 */
784 fpsize = 1;
785 allocl = 2;
786 } else {
787 /* account for '/' and path size minus terminal 0
788 * already in 'l'
789 */
790 fpsize += l;
791 allocl = fpsize;
792 }
793 }
794
795
796 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
797 __alignof__(struct device_node));
798 if (allnextpp) {
799 memset(np, 0, sizeof(*np));
800 np->full_name = ((char*)np) + sizeof(struct device_node);
801 if (new_format) {
802 char *p = np->full_name;
803 /* rebuild full path for new format */
804 if (dad && dad->parent) {
805 strcpy(p, dad->full_name);
806 #ifdef DEBUG
807 if ((strlen(p) + l + 1) != allocl) {
808 DBG("%s: p: %d, l: %d, a: %d\n",
809 pathp, strlen(p), l, allocl);
810 }
811 #endif
812 p += strlen(p);
813 }
814 *(p++) = '/';
815 memcpy(p, pathp, l);
816 } else
817 memcpy(np->full_name, pathp, l);
818 prev_pp = &np->properties;
819 **allnextpp = np;
820 *allnextpp = &np->allnext;
821 if (dad != NULL) {
822 np->parent = dad;
823 /* we temporarily use the next field as `last_child'*/
824 if (dad->next == 0)
825 dad->child = np;
826 else
827 dad->next->sibling = np;
828 dad->next = np;
829 }
830 kref_init(&np->kref);
831 }
832 while(1) {
833 u32 sz, noff;
834 char *pname;
835
836 tag = *((u32 *)(*p));
837 if (tag == OF_DT_NOP) {
838 *p += 4;
839 continue;
840 }
841 if (tag != OF_DT_PROP)
842 break;
843 *p += 4;
844 sz = *((u32 *)(*p));
845 noff = *((u32 *)((*p) + 4));
846 *p += 8;
847 if (initial_boot_params->version < 0x10)
848 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
849
850 pname = find_flat_dt_string(noff);
851 if (pname == NULL) {
852 printk("Can't find property name in list !\n");
853 break;
854 }
855 if (strcmp(pname, "name") == 0)
856 has_name = 1;
857 l = strlen(pname) + 1;
858 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
859 __alignof__(struct property));
860 if (allnextpp) {
861 if (strcmp(pname, "linux,phandle") == 0) {
862 np->node = *((u32 *)*p);
863 if (np->linux_phandle == 0)
864 np->linux_phandle = np->node;
865 }
866 if (strcmp(pname, "ibm,phandle") == 0)
867 np->linux_phandle = *((u32 *)*p);
868 pp->name = pname;
869 pp->length = sz;
870 pp->value = (void *)*p;
871 *prev_pp = pp;
872 prev_pp = &pp->next;
873 }
874 *p = _ALIGN((*p) + sz, 4);
875 }
876 /* with version 0x10 we may not have the name property, recreate
877 * it here from the unit name if absent
878 */
879 if (!has_name) {
880 char *p = pathp, *ps = pathp, *pa = NULL;
881 int sz;
882
883 while (*p) {
884 if ((*p) == '@')
885 pa = p;
886 if ((*p) == '/')
887 ps = p + 1;
888 p++;
889 }
890 if (pa < ps)
891 pa = p;
892 sz = (pa - ps) + 1;
893 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
894 __alignof__(struct property));
895 if (allnextpp) {
896 pp->name = "name";
897 pp->length = sz;
898 pp->value = (unsigned char *)(pp + 1);
899 *prev_pp = pp;
900 prev_pp = &pp->next;
901 memcpy(pp->value, ps, sz - 1);
902 ((char *)pp->value)[sz - 1] = 0;
903 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
904 }
905 }
906 if (allnextpp) {
907 *prev_pp = NULL;
908 np->name = get_property(np, "name", NULL);
909 np->type = get_property(np, "device_type", NULL);
910
911 if (!np->name)
912 np->name = "<NULL>";
913 if (!np->type)
914 np->type = "<NULL>";
915 }
916 while (tag == OF_DT_BEGIN_NODE) {
917 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
918 tag = *((u32 *)(*p));
919 }
920 if (tag != OF_DT_END_NODE) {
921 printk("Weird tag at end of node: %x\n", tag);
922 return mem;
923 }
924 *p += 4;
925 return mem;
926 }
927
928
929 /**
930 * unflattens the device-tree passed by the firmware, creating the
931 * tree of struct device_node. It also fills the "name" and "type"
932 * pointers of the nodes so the normal device-tree walking functions
933 * can be used (this used to be done by finish_device_tree)
934 */
935 void __init unflatten_device_tree(void)
936 {
937 unsigned long start, mem, size;
938 struct device_node **allnextp = &allnodes;
939 char *p = NULL;
940 int l = 0;
941
942 DBG(" -> unflatten_device_tree()\n");
943
944 /* First pass, scan for size */
945 start = ((unsigned long)initial_boot_params) +
946 initial_boot_params->off_dt_struct;
947 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
948 size = (size | 3) + 1;
949
950 DBG(" size is %lx, allocating...\n", size);
951
952 /* Allocate memory for the expanded device tree */
953 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
954 if (!mem) {
955 DBG("Couldn't allocate memory with lmb_alloc()!\n");
956 panic("Couldn't allocate memory with lmb_alloc()!\n");
957 }
958 mem = (unsigned long)abs_to_virt(mem);
959
960 ((u32 *)mem)[size / 4] = 0xdeadbeef;
961
962 DBG(" unflattening...\n", mem);
963
964 /* Second pass, do actual unflattening */
965 start = ((unsigned long)initial_boot_params) +
966 initial_boot_params->off_dt_struct;
967 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
968 if (*((u32 *)start) != OF_DT_END)
969 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
970 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
971 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
972 ((u32 *)mem)[size / 4] );
973 *allnextp = NULL;
974
975 /* Get pointer to OF "/chosen" node for use everywhere */
976 of_chosen = of_find_node_by_path("/chosen");
977
978 /* Retreive command line */
979 if (of_chosen != NULL) {
980 p = (char *)get_property(of_chosen, "bootargs", &l);
981 if (p != NULL && l > 0)
982 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
983 }
984 #ifdef CONFIG_CMDLINE
985 if (l == 0 || (l == 1 && (*p) == 0))
986 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
987 #endif /* CONFIG_CMDLINE */
988
989 DBG("Command line is: %s\n", cmd_line);
990
991 DBG(" <- unflatten_device_tree()\n");
992 }
993
994
995 static int __init early_init_dt_scan_cpus(unsigned long node,
996 const char *uname, int depth, void *data)
997 {
998 char *type = get_flat_dt_prop(node, "device_type", NULL);
999 u32 *prop;
1000 unsigned long size;
1001
1002 /* We are scanning "cpu" nodes only */
1003 if (type == NULL || strcmp(type, "cpu") != 0)
1004 return 0;
1005
1006 /* On LPAR, look for the first ibm,pft-size property for the hash table size
1007 */
1008 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1009 u32 *pft_size;
1010 pft_size = (u32 *)get_flat_dt_prop(node, "ibm,pft-size", NULL);
1011 if (pft_size != NULL) {
1012 /* pft_size[0] is the NUMA CEC cookie */
1013 ppc64_pft_size = pft_size[1];
1014 }
1015 }
1016
1017 if (initial_boot_params && initial_boot_params->version >= 2) {
1018 /* version 2 of the kexec param format adds the phys cpuid
1019 * of booted proc.
1020 */
1021 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1022 boot_cpuid = 0;
1023 } else {
1024 /* Check if it's the boot-cpu, set it's hw index in paca now */
1025 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
1026 u32 *prop = get_flat_dt_prop(node, "reg", NULL);
1027 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
1028 boot_cpuid_phys = get_hard_smp_processor_id(0);
1029 }
1030 }
1031
1032 #ifdef CONFIG_ALTIVEC
1033 /* Check if we have a VMX and eventually update CPU features */
1034 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", NULL);
1035 if (prop && (*prop) > 0) {
1036 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1037 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1038 }
1039
1040 /* Same goes for Apple's "altivec" property */
1041 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1042 if (prop) {
1043 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1044 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1045 }
1046 #endif /* CONFIG_ALTIVEC */
1047
1048 /*
1049 * Check for an SMT capable CPU and set the CPU feature. We do
1050 * this by looking at the size of the ibm,ppc-interrupt-server#s
1051 * property
1052 */
1053 prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1054 &size);
1055 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1056 if (prop && ((size / sizeof(u32)) > 1))
1057 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1058
1059 return 0;
1060 }
1061
1062 static int __init early_init_dt_scan_chosen(unsigned long node,
1063 const char *uname, int depth, void *data)
1064 {
1065 u32 *prop;
1066 u64 *prop64;
1067 extern unsigned long memory_limit, tce_alloc_start, tce_alloc_end;
1068
1069 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1070
1071 if (depth != 1 || strcmp(uname, "chosen") != 0)
1072 return 0;
1073
1074 /* get platform type */
1075 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1076 if (prop == NULL)
1077 return 0;
1078 systemcfg->platform = *prop;
1079
1080 /* check if iommu is forced on or off */
1081 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1082 iommu_is_off = 1;
1083 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1084 iommu_force_on = 1;
1085
1086 prop64 = (u64*)get_flat_dt_prop(node, "linux,memory-limit", NULL);
1087 if (prop64)
1088 memory_limit = *prop64;
1089
1090 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1091 if (prop64)
1092 tce_alloc_start = *prop64;
1093
1094 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1095 if (prop64)
1096 tce_alloc_end = *prop64;
1097
1098 #ifdef CONFIG_PPC_RTAS
1099 /* To help early debugging via the front panel, we retreive a minimal
1100 * set of RTAS infos now if available
1101 */
1102 {
1103 u64 *basep, *entryp;
1104
1105 basep = (u64*)get_flat_dt_prop(node, "linux,rtas-base", NULL);
1106 entryp = (u64*)get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1107 prop = (u32*)get_flat_dt_prop(node, "linux,rtas-size", NULL);
1108 if (basep && entryp && prop) {
1109 rtas.base = *basep;
1110 rtas.entry = *entryp;
1111 rtas.size = *prop;
1112 }
1113 }
1114 #endif /* CONFIG_PPC_RTAS */
1115
1116 /* break now */
1117 return 1;
1118 }
1119
1120 static int __init early_init_dt_scan_root(unsigned long node,
1121 const char *uname, int depth, void *data)
1122 {
1123 u32 *prop;
1124
1125 if (depth != 0)
1126 return 0;
1127
1128 prop = (u32 *)get_flat_dt_prop(node, "#size-cells", NULL);
1129 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1130 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1131
1132 prop = (u32 *)get_flat_dt_prop(node, "#address-cells", NULL);
1133 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1134 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1135
1136 /* break now */
1137 return 1;
1138 }
1139
1140 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1141 {
1142 cell_t *p = *cellp;
1143 unsigned long r = 0;
1144
1145 /* Ignore more than 2 cells */
1146 while (s > 2) {
1147 p++;
1148 s--;
1149 }
1150 while (s) {
1151 r <<= 32;
1152 r |= *(p++);
1153 s--;
1154 }
1155
1156 *cellp = p;
1157 return r;
1158 }
1159
1160
1161 static int __init early_init_dt_scan_memory(unsigned long node,
1162 const char *uname, int depth, void *data)
1163 {
1164 char *type = get_flat_dt_prop(node, "device_type", NULL);
1165 cell_t *reg, *endp;
1166 unsigned long l;
1167
1168 /* We are scanning "memory" nodes only */
1169 if (type == NULL || strcmp(type, "memory") != 0)
1170 return 0;
1171
1172 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1173 if (reg == NULL)
1174 return 0;
1175
1176 endp = reg + (l / sizeof(cell_t));
1177
1178 DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1179 uname, l, reg[0], reg[1], reg[2], reg[3]);
1180
1181 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1182 unsigned long base, size;
1183
1184 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1185 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1186
1187 if (size == 0)
1188 continue;
1189 DBG(" - %lx , %lx\n", base, size);
1190 if (iommu_is_off) {
1191 if (base >= 0x80000000ul)
1192 continue;
1193 if ((base + size) > 0x80000000ul)
1194 size = 0x80000000ul - base;
1195 }
1196 lmb_add(base, size);
1197 }
1198 return 0;
1199 }
1200
1201 static void __init early_reserve_mem(void)
1202 {
1203 u64 base, size;
1204 u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1205 initial_boot_params->off_mem_rsvmap);
1206 while (1) {
1207 base = *(reserve_map++);
1208 size = *(reserve_map++);
1209 if (size == 0)
1210 break;
1211 DBG("reserving: %lx -> %lx\n", base, size);
1212 lmb_reserve(base, size);
1213 }
1214
1215 #if 0
1216 DBG("memory reserved, lmbs :\n");
1217 lmb_dump_all();
1218 #endif
1219 }
1220
1221 void __init early_init_devtree(void *params)
1222 {
1223 DBG(" -> early_init_devtree()\n");
1224
1225 /* Setup flat device-tree pointer */
1226 initial_boot_params = params;
1227
1228 /* By default, hash size is not set */
1229 ppc64_pft_size = 0;
1230
1231 /* Retreive various informations from the /chosen node of the
1232 * device-tree, including the platform type, initrd location and
1233 * size, TCE reserve, and more ...
1234 */
1235 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1236
1237 /* Scan memory nodes and rebuild LMBs */
1238 lmb_init();
1239 scan_flat_dt(early_init_dt_scan_root, NULL);
1240 scan_flat_dt(early_init_dt_scan_memory, NULL);
1241 lmb_enforce_memory_limit();
1242 lmb_analyze();
1243 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1244 lmb_reserve(0, __pa(klimit));
1245
1246 DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize);
1247
1248 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1249 early_reserve_mem();
1250
1251 DBG("Scanning CPUs ...\n");
1252
1253 /* Retreive hash table size from flattened tree plus other
1254 * CPU related informations (altivec support, boot CPU ID, ...)
1255 */
1256 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1257
1258 /* If hash size wasn't obtained above, we calculate it now based on
1259 * the total RAM size
1260 */
1261 if (ppc64_pft_size == 0) {
1262 unsigned long rnd_mem_size, pteg_count;
1263
1264 /* round mem_size up to next power of 2 */
1265 rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize);
1266 if (rnd_mem_size < systemcfg->physicalMemorySize)
1267 rnd_mem_size <<= 1;
1268
1269 /* # pages / 2 */
1270 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
1271
1272 ppc64_pft_size = __ilog2(pteg_count << 7);
1273 }
1274
1275 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size);
1276 DBG(" <- early_init_devtree()\n");
1277 }
1278
1279 #undef printk
1280
1281 int
1282 prom_n_addr_cells(struct device_node* np)
1283 {
1284 int* ip;
1285 do {
1286 if (np->parent)
1287 np = np->parent;
1288 ip = (int *) get_property(np, "#address-cells", NULL);
1289 if (ip != NULL)
1290 return *ip;
1291 } while (np->parent);
1292 /* No #address-cells property for the root node, default to 1 */
1293 return 1;
1294 }
1295
1296 int
1297 prom_n_size_cells(struct device_node* np)
1298 {
1299 int* ip;
1300 do {
1301 if (np->parent)
1302 np = np->parent;
1303 ip = (int *) get_property(np, "#size-cells", NULL);
1304 if (ip != NULL)
1305 return *ip;
1306 } while (np->parent);
1307 /* No #size-cells property for the root node, default to 1 */
1308 return 1;
1309 }
1310
1311 /**
1312 * Work out the sense (active-low level / active-high edge)
1313 * of each interrupt from the device tree.
1314 */
1315 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1316 {
1317 struct device_node *np;
1318 int i, j;
1319
1320 /* default to level-triggered */
1321 memset(senses, 1, max - off);
1322
1323 for (np = allnodes; np != 0; np = np->allnext) {
1324 for (j = 0; j < np->n_intrs; j++) {
1325 i = np->intrs[j].line;
1326 if (i >= off && i < max)
1327 senses[i-off] = np->intrs[j].sense ?
1328 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1329 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1330 }
1331 }
1332 }
1333
1334 /**
1335 * Construct and return a list of the device_nodes with a given name.
1336 */
1337 struct device_node *
1338 find_devices(const char *name)
1339 {
1340 struct device_node *head, **prevp, *np;
1341
1342 prevp = &head;
1343 for (np = allnodes; np != 0; np = np->allnext) {
1344 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1345 *prevp = np;
1346 prevp = &np->next;
1347 }
1348 }
1349 *prevp = NULL;
1350 return head;
1351 }
1352 EXPORT_SYMBOL(find_devices);
1353
1354 /**
1355 * Construct and return a list of the device_nodes with a given type.
1356 */
1357 struct device_node *
1358 find_type_devices(const char *type)
1359 {
1360 struct device_node *head, **prevp, *np;
1361
1362 prevp = &head;
1363 for (np = allnodes; np != 0; np = np->allnext) {
1364 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1365 *prevp = np;
1366 prevp = &np->next;
1367 }
1368 }
1369 *prevp = NULL;
1370 return head;
1371 }
1372 EXPORT_SYMBOL(find_type_devices);
1373
1374 /**
1375 * Returns all nodes linked together
1376 */
1377 struct device_node *
1378 find_all_nodes(void)
1379 {
1380 struct device_node *head, **prevp, *np;
1381
1382 prevp = &head;
1383 for (np = allnodes; np != 0; np = np->allnext) {
1384 *prevp = np;
1385 prevp = &np->next;
1386 }
1387 *prevp = NULL;
1388 return head;
1389 }
1390 EXPORT_SYMBOL(find_all_nodes);
1391
1392 /** Checks if the given "compat" string matches one of the strings in
1393 * the device's "compatible" property
1394 */
1395 int
1396 device_is_compatible(struct device_node *device, const char *compat)
1397 {
1398 const char* cp;
1399 int cplen, l;
1400
1401 cp = (char *) get_property(device, "compatible", &cplen);
1402 if (cp == NULL)
1403 return 0;
1404 while (cplen > 0) {
1405 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1406 return 1;
1407 l = strlen(cp) + 1;
1408 cp += l;
1409 cplen -= l;
1410 }
1411
1412 return 0;
1413 }
1414 EXPORT_SYMBOL(device_is_compatible);
1415
1416
1417 /**
1418 * Indicates whether the root node has a given value in its
1419 * compatible property.
1420 */
1421 int
1422 machine_is_compatible(const char *compat)
1423 {
1424 struct device_node *root;
1425 int rc = 0;
1426
1427 root = of_find_node_by_path("/");
1428 if (root) {
1429 rc = device_is_compatible(root, compat);
1430 of_node_put(root);
1431 }
1432 return rc;
1433 }
1434 EXPORT_SYMBOL(machine_is_compatible);
1435
1436 /**
1437 * Construct and return a list of the device_nodes with a given type
1438 * and compatible property.
1439 */
1440 struct device_node *
1441 find_compatible_devices(const char *type, const char *compat)
1442 {
1443 struct device_node *head, **prevp, *np;
1444
1445 prevp = &head;
1446 for (np = allnodes; np != 0; np = np->allnext) {
1447 if (type != NULL
1448 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1449 continue;
1450 if (device_is_compatible(np, compat)) {
1451 *prevp = np;
1452 prevp = &np->next;
1453 }
1454 }
1455 *prevp = NULL;
1456 return head;
1457 }
1458 EXPORT_SYMBOL(find_compatible_devices);
1459
1460 /**
1461 * Find the device_node with a given full_name.
1462 */
1463 struct device_node *
1464 find_path_device(const char *path)
1465 {
1466 struct device_node *np;
1467
1468 for (np = allnodes; np != 0; np = np->allnext)
1469 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1470 return np;
1471 return NULL;
1472 }
1473 EXPORT_SYMBOL(find_path_device);
1474
1475 /*******
1476 *
1477 * New implementation of the OF "find" APIs, return a refcounted
1478 * object, call of_node_put() when done. The device tree and list
1479 * are protected by a rw_lock.
1480 *
1481 * Note that property management will need some locking as well,
1482 * this isn't dealt with yet.
1483 *
1484 *******/
1485
1486 /**
1487 * of_find_node_by_name - Find a node by its "name" property
1488 * @from: The node to start searching from or NULL, the node
1489 * you pass will not be searched, only the next one
1490 * will; typically, you pass what the previous call
1491 * returned. of_node_put() will be called on it
1492 * @name: The name string to match against
1493 *
1494 * Returns a node pointer with refcount incremented, use
1495 * of_node_put() on it when done.
1496 */
1497 struct device_node *of_find_node_by_name(struct device_node *from,
1498 const char *name)
1499 {
1500 struct device_node *np;
1501
1502 read_lock(&devtree_lock);
1503 np = from ? from->allnext : allnodes;
1504 for (; np != 0; np = np->allnext)
1505 if (np->name != 0 && strcasecmp(np->name, name) == 0
1506 && of_node_get(np))
1507 break;
1508 if (from)
1509 of_node_put(from);
1510 read_unlock(&devtree_lock);
1511 return np;
1512 }
1513 EXPORT_SYMBOL(of_find_node_by_name);
1514
1515 /**
1516 * of_find_node_by_type - Find a node by its "device_type" property
1517 * @from: The node to start searching from or NULL, the node
1518 * you pass will not be searched, only the next one
1519 * will; typically, you pass what the previous call
1520 * returned. of_node_put() will be called on it
1521 * @name: The type string to match against
1522 *
1523 * Returns a node pointer with refcount incremented, use
1524 * of_node_put() on it when done.
1525 */
1526 struct device_node *of_find_node_by_type(struct device_node *from,
1527 const char *type)
1528 {
1529 struct device_node *np;
1530
1531 read_lock(&devtree_lock);
1532 np = from ? from->allnext : allnodes;
1533 for (; np != 0; np = np->allnext)
1534 if (np->type != 0 && strcasecmp(np->type, type) == 0
1535 && of_node_get(np))
1536 break;
1537 if (from)
1538 of_node_put(from);
1539 read_unlock(&devtree_lock);
1540 return np;
1541 }
1542 EXPORT_SYMBOL(of_find_node_by_type);
1543
1544 /**
1545 * of_find_compatible_node - Find a node based on type and one of the
1546 * tokens in its "compatible" property
1547 * @from: The node to start searching from or NULL, the node
1548 * you pass will not be searched, only the next one
1549 * will; typically, you pass what the previous call
1550 * returned. of_node_put() will be called on it
1551 * @type: The type string to match "device_type" or NULL to ignore
1552 * @compatible: The string to match to one of the tokens in the device
1553 * "compatible" list.
1554 *
1555 * Returns a node pointer with refcount incremented, use
1556 * of_node_put() on it when done.
1557 */
1558 struct device_node *of_find_compatible_node(struct device_node *from,
1559 const char *type, const char *compatible)
1560 {
1561 struct device_node *np;
1562
1563 read_lock(&devtree_lock);
1564 np = from ? from->allnext : allnodes;
1565 for (; np != 0; np = np->allnext) {
1566 if (type != NULL
1567 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1568 continue;
1569 if (device_is_compatible(np, compatible) && of_node_get(np))
1570 break;
1571 }
1572 if (from)
1573 of_node_put(from);
1574 read_unlock(&devtree_lock);
1575 return np;
1576 }
1577 EXPORT_SYMBOL(of_find_compatible_node);
1578
1579 /**
1580 * of_find_node_by_path - Find a node matching a full OF path
1581 * @path: The full path to match
1582 *
1583 * Returns a node pointer with refcount incremented, use
1584 * of_node_put() on it when done.
1585 */
1586 struct device_node *of_find_node_by_path(const char *path)
1587 {
1588 struct device_node *np = allnodes;
1589
1590 read_lock(&devtree_lock);
1591 for (; np != 0; np = np->allnext) {
1592 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1593 && of_node_get(np))
1594 break;
1595 }
1596 read_unlock(&devtree_lock);
1597 return np;
1598 }
1599 EXPORT_SYMBOL(of_find_node_by_path);
1600
1601 /**
1602 * of_find_node_by_phandle - Find a node given a phandle
1603 * @handle: phandle of the node to find
1604 *
1605 * Returns a node pointer with refcount incremented, use
1606 * of_node_put() on it when done.
1607 */
1608 struct device_node *of_find_node_by_phandle(phandle handle)
1609 {
1610 struct device_node *np;
1611
1612 read_lock(&devtree_lock);
1613 for (np = allnodes; np != 0; np = np->allnext)
1614 if (np->linux_phandle == handle)
1615 break;
1616 if (np)
1617 of_node_get(np);
1618 read_unlock(&devtree_lock);
1619 return np;
1620 }
1621 EXPORT_SYMBOL(of_find_node_by_phandle);
1622
1623 /**
1624 * of_find_all_nodes - Get next node in global list
1625 * @prev: Previous node or NULL to start iteration
1626 * of_node_put() will be called on it
1627 *
1628 * Returns a node pointer with refcount incremented, use
1629 * of_node_put() on it when done.
1630 */
1631 struct device_node *of_find_all_nodes(struct device_node *prev)
1632 {
1633 struct device_node *np;
1634
1635 read_lock(&devtree_lock);
1636 np = prev ? prev->allnext : allnodes;
1637 for (; np != 0; np = np->allnext)
1638 if (of_node_get(np))
1639 break;
1640 if (prev)
1641 of_node_put(prev);
1642 read_unlock(&devtree_lock);
1643 return np;
1644 }
1645 EXPORT_SYMBOL(of_find_all_nodes);
1646
1647 /**
1648 * of_get_parent - Get a node's parent if any
1649 * @node: Node to get parent
1650 *
1651 * Returns a node pointer with refcount incremented, use
1652 * of_node_put() on it when done.
1653 */
1654 struct device_node *of_get_parent(const struct device_node *node)
1655 {
1656 struct device_node *np;
1657
1658 if (!node)
1659 return NULL;
1660
1661 read_lock(&devtree_lock);
1662 np = of_node_get(node->parent);
1663 read_unlock(&devtree_lock);
1664 return np;
1665 }
1666 EXPORT_SYMBOL(of_get_parent);
1667
1668 /**
1669 * of_get_next_child - Iterate a node childs
1670 * @node: parent node
1671 * @prev: previous child of the parent node, or NULL to get first
1672 *
1673 * Returns a node pointer with refcount incremented, use
1674 * of_node_put() on it when done.
1675 */
1676 struct device_node *of_get_next_child(const struct device_node *node,
1677 struct device_node *prev)
1678 {
1679 struct device_node *next;
1680
1681 read_lock(&devtree_lock);
1682 next = prev ? prev->sibling : node->child;
1683 for (; next != 0; next = next->sibling)
1684 if (of_node_get(next))
1685 break;
1686 if (prev)
1687 of_node_put(prev);
1688 read_unlock(&devtree_lock);
1689 return next;
1690 }
1691 EXPORT_SYMBOL(of_get_next_child);
1692
1693 /**
1694 * of_node_get - Increment refcount of a node
1695 * @node: Node to inc refcount, NULL is supported to
1696 * simplify writing of callers
1697 *
1698 * Returns node.
1699 */
1700 struct device_node *of_node_get(struct device_node *node)
1701 {
1702 if (node)
1703 kref_get(&node->kref);
1704 return node;
1705 }
1706 EXPORT_SYMBOL(of_node_get);
1707
1708 static inline struct device_node * kref_to_device_node(struct kref *kref)
1709 {
1710 return container_of(kref, struct device_node, kref);
1711 }
1712
1713 /**
1714 * of_node_release - release a dynamically allocated node
1715 * @kref: kref element of the node to be released
1716 *
1717 * In of_node_put() this function is passed to kref_put()
1718 * as the destructor.
1719 */
1720 static void of_node_release(struct kref *kref)
1721 {
1722 struct device_node *node = kref_to_device_node(kref);
1723 struct property *prop = node->properties;
1724
1725 if (!OF_IS_DYNAMIC(node))
1726 return;
1727 while (prop) {
1728 struct property *next = prop->next;
1729 kfree(prop->name);
1730 kfree(prop->value);
1731 kfree(prop);
1732 prop = next;
1733 }
1734 kfree(node->intrs);
1735 kfree(node->addrs);
1736 kfree(node->full_name);
1737 kfree(node);
1738 }
1739
1740 /**
1741 * of_node_put - Decrement refcount of a node
1742 * @node: Node to dec refcount, NULL is supported to
1743 * simplify writing of callers
1744 *
1745 */
1746 void of_node_put(struct device_node *node)
1747 {
1748 if (node)
1749 kref_put(&node->kref, of_node_release);
1750 }
1751 EXPORT_SYMBOL(of_node_put);
1752
1753 /*
1754 * Fix up the uninitialized fields in a new device node:
1755 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1756 *
1757 * A lot of boot-time code is duplicated here, because functions such
1758 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1759 * slab allocator.
1760 *
1761 * This should probably be split up into smaller chunks.
1762 */
1763
1764 static int of_finish_dynamic_node(struct device_node *node,
1765 unsigned long *unused1, int unused2,
1766 int unused3, int unused4)
1767 {
1768 struct device_node *parent = of_get_parent(node);
1769 int err = 0;
1770 phandle *ibm_phandle;
1771
1772 node->name = get_property(node, "name", NULL);
1773 node->type = get_property(node, "device_type", NULL);
1774
1775 if (!parent) {
1776 err = -ENODEV;
1777 goto out;
1778 }
1779
1780 /* We don't support that function on PowerMac, at least
1781 * not yet
1782 */
1783 if (systemcfg->platform == PLATFORM_POWERMAC)
1784 return -ENODEV;
1785
1786 /* fix up new node's linux_phandle field */
1787 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1788 node->linux_phandle = *ibm_phandle;
1789
1790 out:
1791 of_node_put(parent);
1792 return err;
1793 }
1794
1795 /*
1796 * Plug a device node into the tree and global list.
1797 */
1798 void of_attach_node(struct device_node *np)
1799 {
1800 write_lock(&devtree_lock);
1801 np->sibling = np->parent->child;
1802 np->allnext = allnodes;
1803 np->parent->child = np;
1804 allnodes = np;
1805 write_unlock(&devtree_lock);
1806 }
1807
1808 /*
1809 * "Unplug" a node from the device tree. The caller must hold
1810 * a reference to the node. The memory associated with the node
1811 * is not freed until its refcount goes to zero.
1812 */
1813 void of_detach_node(const struct device_node *np)
1814 {
1815 struct device_node *parent;
1816
1817 write_lock(&devtree_lock);
1818
1819 parent = np->parent;
1820
1821 if (allnodes == np)
1822 allnodes = np->allnext;
1823 else {
1824 struct device_node *prev;
1825 for (prev = allnodes;
1826 prev->allnext != np;
1827 prev = prev->allnext)
1828 ;
1829 prev->allnext = np->allnext;
1830 }
1831
1832 if (parent->child == np)
1833 parent->child = np->sibling;
1834 else {
1835 struct device_node *prevsib;
1836 for (prevsib = np->parent->child;
1837 prevsib->sibling != np;
1838 prevsib = prevsib->sibling)
1839 ;
1840 prevsib->sibling = np->sibling;
1841 }
1842
1843 write_unlock(&devtree_lock);
1844 }
1845
1846 static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node)
1847 {
1848 int err;
1849
1850 switch (action) {
1851 case PSERIES_RECONFIG_ADD:
1852 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1853 if (err < 0) {
1854 printk(KERN_ERR "finish_node returned %d\n", err);
1855 err = NOTIFY_BAD;
1856 }
1857 break;
1858 default:
1859 err = NOTIFY_DONE;
1860 break;
1861 }
1862 return err;
1863 }
1864
1865 static struct notifier_block prom_reconfig_nb = {
1866 .notifier_call = prom_reconfig_notifier,
1867 .priority = 10, /* This one needs to run first */
1868 };
1869
1870 static int __init prom_reconfig_setup(void)
1871 {
1872 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1873 }
1874 __initcall(prom_reconfig_setup);
1875
1876 /*
1877 * Find a property with a given name for a given node
1878 * and return the value.
1879 */
1880 unsigned char *
1881 get_property(struct device_node *np, const char *name, int *lenp)
1882 {
1883 struct property *pp;
1884
1885 for (pp = np->properties; pp != 0; pp = pp->next)
1886 if (strcmp(pp->name, name) == 0) {
1887 if (lenp != 0)
1888 *lenp = pp->length;
1889 return pp->value;
1890 }
1891 return NULL;
1892 }
1893 EXPORT_SYMBOL(get_property);
1894
1895 /*
1896 * Add a property to a node
1897 */
1898 void
1899 prom_add_property(struct device_node* np, struct property* prop)
1900 {
1901 struct property **next = &np->properties;
1902
1903 prop->next = NULL;
1904 while (*next)
1905 next = &(*next)->next;
1906 *next = prop;
1907 }
1908
1909 #if 0
1910 void
1911 print_properties(struct device_node *np)
1912 {
1913 struct property *pp;
1914 char *cp;
1915 int i, n;
1916
1917 for (pp = np->properties; pp != 0; pp = pp->next) {
1918 printk(KERN_INFO "%s", pp->name);
1919 for (i = strlen(pp->name); i < 16; ++i)
1920 printk(" ");
1921 cp = (char *) pp->value;
1922 for (i = pp->length; i > 0; --i, ++cp)
1923 if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
1924 || (i == 1 && *cp != 0))
1925 break;
1926 if (i == 0 && pp->length > 1) {
1927 /* looks like a string */
1928 printk(" %s\n", (char *) pp->value);
1929 } else {
1930 /* dump it in hex */
1931 n = pp->length;
1932 if (n > 64)
1933 n = 64;
1934 if (pp->length % 4 == 0) {
1935 unsigned int *p = (unsigned int *) pp->value;
1936
1937 n /= 4;
1938 for (i = 0; i < n; ++i) {
1939 if (i != 0 && (i % 4) == 0)
1940 printk("\n ");
1941 printk(" %08x", *p++);
1942 }
1943 } else {
1944 unsigned char *bp = pp->value;
1945
1946 for (i = 0; i < n; ++i) {
1947 if (i != 0 && (i % 16) == 0)
1948 printk("\n ");
1949 printk(" %02x", *bp++);
1950 }
1951 }
1952 printk("\n");
1953 if (pp->length > 64)
1954 printk(" ... (length = %d)\n",
1955 pp->length);
1956 }
1957 }
1958 }
1959 #endif
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
This page took 0.108557 seconds and 5 git commands to generate.