/spare/repo/netdev-2.6 branch 'master'
[deliverable/linux.git] / arch / ppc64 / mm / init.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 *
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 *
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version
19 * 2 of the License, or (at your option) any later version.
20 *
21 */
22
23 #include <linux/config.h>
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
42
43 #include <asm/pgalloc.h>
44 #include <asm/page.h>
45 #include <asm/prom.h>
46 #include <asm/lmb.h>
47 #include <asm/rtas.h>
48 #include <asm/io.h>
49 #include <asm/mmu_context.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu.h>
52 #include <asm/uaccess.h>
53 #include <asm/smp.h>
54 #include <asm/machdep.h>
55 #include <asm/tlb.h>
56 #include <asm/eeh.h>
57 #include <asm/processor.h>
58 #include <asm/mmzone.h>
59 #include <asm/cputable.h>
60 #include <asm/ppcdebug.h>
61 #include <asm/sections.h>
62 #include <asm/system.h>
63 #include <asm/iommu.h>
64 #include <asm/abs_addr.h>
65 #include <asm/vdso.h>
66 #include <asm/imalloc.h>
67
68 #if PGTABLE_RANGE > USER_VSID_RANGE
69 #warning Limited user VSID range means pagetable space is wasted
70 #endif
71
72 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
73 #warning TASK_SIZE is smaller than it needs to be.
74 #endif
75
76 int mem_init_done;
77 unsigned long ioremap_bot = IMALLOC_BASE;
78 static unsigned long phbs_io_bot = PHBS_IO_BASE;
79
80 extern pgd_t swapper_pg_dir[];
81 extern struct task_struct *current_set[NR_CPUS];
82
83 unsigned long klimit = (unsigned long)_end;
84
85 unsigned long _SDR1=0;
86 unsigned long _ASR=0;
87
88 /* max amount of RAM to use */
89 unsigned long __max_memory;
90
91 /* info on what we think the IO hole is */
92 unsigned long io_hole_start;
93 unsigned long io_hole_size;
94
95 void show_mem(void)
96 {
97 unsigned long total = 0, reserved = 0;
98 unsigned long shared = 0, cached = 0;
99 struct page *page;
100 pg_data_t *pgdat;
101 unsigned long i;
102
103 printk("Mem-info:\n");
104 show_free_areas();
105 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
106 for_each_pgdat(pgdat) {
107 for (i = 0; i < pgdat->node_spanned_pages; i++) {
108 page = pgdat_page_nr(pgdat, i);
109 total++;
110 if (PageReserved(page))
111 reserved++;
112 else if (PageSwapCache(page))
113 cached++;
114 else if (page_count(page))
115 shared += page_count(page) - 1;
116 }
117 }
118 printk("%ld pages of RAM\n", total);
119 printk("%ld reserved pages\n", reserved);
120 printk("%ld pages shared\n", shared);
121 printk("%ld pages swap cached\n", cached);
122 }
123
124 #ifdef CONFIG_PPC_ISERIES
125
126 void __iomem *ioremap(unsigned long addr, unsigned long size)
127 {
128 return (void __iomem *)addr;
129 }
130
131 extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
132 unsigned long flags)
133 {
134 return (void __iomem *)addr;
135 }
136
137 void iounmap(volatile void __iomem *addr)
138 {
139 return;
140 }
141
142 #else
143
144 /*
145 * map_io_page currently only called by __ioremap
146 * map_io_page adds an entry to the ioremap page table
147 * and adds an entry to the HPT, possibly bolting it
148 */
149 static int map_io_page(unsigned long ea, unsigned long pa, int flags)
150 {
151 pgd_t *pgdp;
152 pud_t *pudp;
153 pmd_t *pmdp;
154 pte_t *ptep;
155 unsigned long vsid;
156
157 if (mem_init_done) {
158 spin_lock(&init_mm.page_table_lock);
159 pgdp = pgd_offset_k(ea);
160 pudp = pud_alloc(&init_mm, pgdp, ea);
161 if (!pudp)
162 return -ENOMEM;
163 pmdp = pmd_alloc(&init_mm, pudp, ea);
164 if (!pmdp)
165 return -ENOMEM;
166 ptep = pte_alloc_kernel(&init_mm, pmdp, ea);
167 if (!ptep)
168 return -ENOMEM;
169 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
170 __pgprot(flags)));
171 spin_unlock(&init_mm.page_table_lock);
172 } else {
173 unsigned long va, vpn, hash, hpteg;
174
175 /*
176 * If the mm subsystem is not fully up, we cannot create a
177 * linux page table entry for this mapping. Simply bolt an
178 * entry in the hardware page table.
179 */
180 vsid = get_kernel_vsid(ea);
181 va = (vsid << 28) | (ea & 0xFFFFFFF);
182 vpn = va >> PAGE_SHIFT;
183
184 hash = hpt_hash(vpn, 0);
185
186 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
187
188 /* Panic if a pte grpup is full */
189 if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT,
190 HPTE_V_BOLTED,
191 _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX)
192 == -1) {
193 panic("map_io_page: could not insert mapping");
194 }
195 }
196 return 0;
197 }
198
199
200 static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
201 unsigned long ea, unsigned long size,
202 unsigned long flags)
203 {
204 unsigned long i;
205
206 if ((flags & _PAGE_PRESENT) == 0)
207 flags |= pgprot_val(PAGE_KERNEL);
208
209 for (i = 0; i < size; i += PAGE_SIZE)
210 if (map_io_page(ea+i, pa+i, flags))
211 return NULL;
212
213 return (void __iomem *) (ea + (addr & ~PAGE_MASK));
214 }
215
216
217 void __iomem *
218 ioremap(unsigned long addr, unsigned long size)
219 {
220 return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
221 }
222
223 void __iomem * __ioremap(unsigned long addr, unsigned long size,
224 unsigned long flags)
225 {
226 unsigned long pa, ea;
227 void __iomem *ret;
228
229 /*
230 * Choose an address to map it to.
231 * Once the imalloc system is running, we use it.
232 * Before that, we map using addresses going
233 * up from ioremap_bot. imalloc will use
234 * the addresses from ioremap_bot through
235 * IMALLOC_END
236 *
237 */
238 pa = addr & PAGE_MASK;
239 size = PAGE_ALIGN(addr + size) - pa;
240
241 if (size == 0)
242 return NULL;
243
244 if (mem_init_done) {
245 struct vm_struct *area;
246 area = im_get_free_area(size);
247 if (area == NULL)
248 return NULL;
249 ea = (unsigned long)(area->addr);
250 ret = __ioremap_com(addr, pa, ea, size, flags);
251 if (!ret)
252 im_free(area->addr);
253 } else {
254 ea = ioremap_bot;
255 ret = __ioremap_com(addr, pa, ea, size, flags);
256 if (ret)
257 ioremap_bot += size;
258 }
259 return ret;
260 }
261
262 #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
263
264 int __ioremap_explicit(unsigned long pa, unsigned long ea,
265 unsigned long size, unsigned long flags)
266 {
267 struct vm_struct *area;
268 void __iomem *ret;
269
270 /* For now, require page-aligned values for pa, ea, and size */
271 if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
272 !IS_PAGE_ALIGNED(size)) {
273 printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
274 return 1;
275 }
276
277 if (!mem_init_done) {
278 /* Two things to consider in this case:
279 * 1) No records will be kept (imalloc, etc) that the region
280 * has been remapped
281 * 2) It won't be easy to iounmap() the region later (because
282 * of 1)
283 */
284 ;
285 } else {
286 area = im_get_area(ea, size,
287 IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
288 if (area == NULL) {
289 /* Expected when PHB-dlpar is in play */
290 return 1;
291 }
292 if (ea != (unsigned long) area->addr) {
293 printk(KERN_ERR "unexpected addr return from "
294 "im_get_area\n");
295 return 1;
296 }
297 }
298
299 ret = __ioremap_com(pa, pa, ea, size, flags);
300 if (ret == NULL) {
301 printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
302 return 1;
303 }
304 if (ret != (void *) ea) {
305 printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
306 return 1;
307 }
308
309 return 0;
310 }
311
312 /*
313 * Unmap an IO region and remove it from imalloc'd list.
314 * Access to IO memory should be serialized by driver.
315 * This code is modeled after vmalloc code - unmap_vm_area()
316 *
317 * XXX what about calls before mem_init_done (ie python_countermeasures())
318 */
319 void iounmap(volatile void __iomem *token)
320 {
321 void *addr;
322
323 if (!mem_init_done)
324 return;
325
326 addr = (void *) ((unsigned long __force) token & PAGE_MASK);
327
328 im_free(addr);
329 }
330
331 static int iounmap_subset_regions(unsigned long addr, unsigned long size)
332 {
333 struct vm_struct *area;
334
335 /* Check whether subsets of this region exist */
336 area = im_get_area(addr, size, IM_REGION_SUPERSET);
337 if (area == NULL)
338 return 1;
339
340 while (area) {
341 iounmap((void __iomem *) area->addr);
342 area = im_get_area(addr, size,
343 IM_REGION_SUPERSET);
344 }
345
346 return 0;
347 }
348
349 int iounmap_explicit(volatile void __iomem *start, unsigned long size)
350 {
351 struct vm_struct *area;
352 unsigned long addr;
353 int rc;
354
355 addr = (unsigned long __force) start & PAGE_MASK;
356
357 /* Verify that the region either exists or is a subset of an existing
358 * region. In the latter case, split the parent region to create
359 * the exact region
360 */
361 area = im_get_area(addr, size,
362 IM_REGION_EXISTS | IM_REGION_SUBSET);
363 if (area == NULL) {
364 /* Determine whether subset regions exist. If so, unmap */
365 rc = iounmap_subset_regions(addr, size);
366 if (rc) {
367 printk(KERN_ERR
368 "%s() cannot unmap nonexistent range 0x%lx\n",
369 __FUNCTION__, addr);
370 return 1;
371 }
372 } else {
373 iounmap((void __iomem *) area->addr);
374 }
375 /*
376 * FIXME! This can't be right:
377 iounmap(area->addr);
378 * Maybe it should be "iounmap(area);"
379 */
380 return 0;
381 }
382
383 #endif
384
385 EXPORT_SYMBOL(ioremap);
386 EXPORT_SYMBOL(__ioremap);
387 EXPORT_SYMBOL(iounmap);
388
389 void free_initmem(void)
390 {
391 unsigned long addr;
392
393 addr = (unsigned long)__init_begin;
394 for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
395 ClearPageReserved(virt_to_page(addr));
396 set_page_count(virt_to_page(addr), 1);
397 free_page(addr);
398 totalram_pages++;
399 }
400 printk ("Freeing unused kernel memory: %luk freed\n",
401 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
402 }
403
404 #ifdef CONFIG_BLK_DEV_INITRD
405 void free_initrd_mem(unsigned long start, unsigned long end)
406 {
407 if (start < end)
408 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
409 for (; start < end; start += PAGE_SIZE) {
410 ClearPageReserved(virt_to_page(start));
411 set_page_count(virt_to_page(start), 1);
412 free_page(start);
413 totalram_pages++;
414 }
415 }
416 #endif
417
418 static DEFINE_SPINLOCK(mmu_context_lock);
419 static DEFINE_IDR(mmu_context_idr);
420
421 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
422 {
423 int index;
424 int err;
425
426 again:
427 if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
428 return -ENOMEM;
429
430 spin_lock(&mmu_context_lock);
431 err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
432 spin_unlock(&mmu_context_lock);
433
434 if (err == -EAGAIN)
435 goto again;
436 else if (err)
437 return err;
438
439 if (index > MAX_CONTEXT) {
440 idr_remove(&mmu_context_idr, index);
441 return -ENOMEM;
442 }
443
444 mm->context.id = index;
445
446 return 0;
447 }
448
449 void destroy_context(struct mm_struct *mm)
450 {
451 spin_lock(&mmu_context_lock);
452 idr_remove(&mmu_context_idr, mm->context.id);
453 spin_unlock(&mmu_context_lock);
454
455 mm->context.id = NO_CONTEXT;
456 }
457
458 /*
459 * Do very early mm setup.
460 */
461 void __init mm_init_ppc64(void)
462 {
463 #ifndef CONFIG_PPC_ISERIES
464 unsigned long i;
465 #endif
466
467 ppc64_boot_msg(0x100, "MM Init");
468
469 /* This is the story of the IO hole... please, keep seated,
470 * unfortunately, we are out of oxygen masks at the moment.
471 * So we need some rough way to tell where your big IO hole
472 * is. On pmac, it's between 2G and 4G, on POWER3, it's around
473 * that area as well, on POWER4 we don't have one, etc...
474 * We need that as a "hint" when sizing the TCE table on POWER3
475 * So far, the simplest way that seem work well enough for us it
476 * to just assume that the first discontinuity in our physical
477 * RAM layout is the IO hole. That may not be correct in the future
478 * (and isn't on iSeries but then we don't care ;)
479 */
480
481 #ifndef CONFIG_PPC_ISERIES
482 for (i = 1; i < lmb.memory.cnt; i++) {
483 unsigned long base, prevbase, prevsize;
484
485 prevbase = lmb.memory.region[i-1].base;
486 prevsize = lmb.memory.region[i-1].size;
487 base = lmb.memory.region[i].base;
488 if (base > (prevbase + prevsize)) {
489 io_hole_start = prevbase + prevsize;
490 io_hole_size = base - (prevbase + prevsize);
491 break;
492 }
493 }
494 #endif /* CONFIG_PPC_ISERIES */
495 if (io_hole_start)
496 printk("IO Hole assumed to be %lx -> %lx\n",
497 io_hole_start, io_hole_start + io_hole_size - 1);
498
499 ppc64_boot_msg(0x100, "MM Init Done");
500 }
501
502 /*
503 * This is called by /dev/mem to know if a given address has to
504 * be mapped non-cacheable or not
505 */
506 int page_is_ram(unsigned long pfn)
507 {
508 int i;
509 unsigned long paddr = (pfn << PAGE_SHIFT);
510
511 for (i=0; i < lmb.memory.cnt; i++) {
512 unsigned long base;
513
514 base = lmb.memory.region[i].base;
515
516 if ((paddr >= base) &&
517 (paddr < (base + lmb.memory.region[i].size))) {
518 return 1;
519 }
520 }
521
522 return 0;
523 }
524 EXPORT_SYMBOL(page_is_ram);
525
526 /*
527 * Initialize the bootmem system and give it all the memory we
528 * have available.
529 */
530 #ifndef CONFIG_NEED_MULTIPLE_NODES
531 void __init do_init_bootmem(void)
532 {
533 unsigned long i;
534 unsigned long start, bootmap_pages;
535 unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
536 int boot_mapsize;
537
538 /*
539 * Find an area to use for the bootmem bitmap. Calculate the size of
540 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
541 * Add 1 additional page in case the address isn't page-aligned.
542 */
543 bootmap_pages = bootmem_bootmap_pages(total_pages);
544
545 start = lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
546 BUG_ON(!start);
547
548 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
549
550 max_pfn = max_low_pfn;
551
552 /* Add all physical memory to the bootmem map, mark each area
553 * present.
554 */
555 for (i=0; i < lmb.memory.cnt; i++) {
556 unsigned long base, size;
557 unsigned long start_pfn, end_pfn;
558
559 base = lmb.memory.region[i].base;
560 size = lmb.memory.region[i].size;
561
562 start_pfn = base >> PAGE_SHIFT;
563 end_pfn = start_pfn + (size >> PAGE_SHIFT);
564 memory_present(0, start_pfn, end_pfn);
565
566 free_bootmem(base, size);
567 }
568
569 /* reserve the sections we're already using */
570 for (i=0; i < lmb.reserved.cnt; i++) {
571 unsigned long base = lmb.reserved.region[i].base;
572 unsigned long size = lmb.reserved.region[i].size;
573
574 reserve_bootmem(base, size);
575 }
576 }
577
578 /*
579 * paging_init() sets up the page tables - in fact we've already done this.
580 */
581 void __init paging_init(void)
582 {
583 unsigned long zones_size[MAX_NR_ZONES];
584 unsigned long zholes_size[MAX_NR_ZONES];
585 unsigned long total_ram = lmb_phys_mem_size();
586 unsigned long top_of_ram = lmb_end_of_DRAM();
587
588 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
589 top_of_ram, total_ram);
590 printk(KERN_INFO "Memory hole size: %ldMB\n",
591 (top_of_ram - total_ram) >> 20);
592 /*
593 * All pages are DMA-able so we put them all in the DMA zone.
594 */
595 memset(zones_size, 0, sizeof(zones_size));
596 memset(zholes_size, 0, sizeof(zholes_size));
597
598 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
599 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
600
601 free_area_init_node(0, NODE_DATA(0), zones_size,
602 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
603 }
604 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
605
606 static struct kcore_list kcore_vmem;
607
608 static int __init setup_kcore(void)
609 {
610 int i;
611
612 for (i=0; i < lmb.memory.cnt; i++) {
613 unsigned long base, size;
614 struct kcore_list *kcore_mem;
615
616 base = lmb.memory.region[i].base;
617 size = lmb.memory.region[i].size;
618
619 /* GFP_ATOMIC to avoid might_sleep warnings during boot */
620 kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
621 if (!kcore_mem)
622 panic("mem_init: kmalloc failed\n");
623
624 kclist_add(kcore_mem, __va(base), size);
625 }
626
627 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
628
629 return 0;
630 }
631 module_init(setup_kcore);
632
633 void __init mem_init(void)
634 {
635 #ifdef CONFIG_NEED_MULTIPLE_NODES
636 int nid;
637 #endif
638 pg_data_t *pgdat;
639 unsigned long i;
640 struct page *page;
641 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
642
643 num_physpages = max_low_pfn; /* RAM is assumed contiguous */
644 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
645
646 #ifdef CONFIG_NEED_MULTIPLE_NODES
647 for_each_online_node(nid) {
648 if (NODE_DATA(nid)->node_spanned_pages != 0) {
649 printk("freeing bootmem node %x\n", nid);
650 totalram_pages +=
651 free_all_bootmem_node(NODE_DATA(nid));
652 }
653 }
654 #else
655 max_mapnr = num_physpages;
656 totalram_pages += free_all_bootmem();
657 #endif
658
659 for_each_pgdat(pgdat) {
660 for (i = 0; i < pgdat->node_spanned_pages; i++) {
661 page = pgdat_page_nr(pgdat, i);
662 if (PageReserved(page))
663 reservedpages++;
664 }
665 }
666
667 codesize = (unsigned long)&_etext - (unsigned long)&_stext;
668 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
669 datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
670 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
671
672 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
673 "%luk reserved, %luk data, %luk bss, %luk init)\n",
674 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
675 num_physpages << (PAGE_SHIFT-10),
676 codesize >> 10,
677 reservedpages << (PAGE_SHIFT-10),
678 datasize >> 10,
679 bsssize >> 10,
680 initsize >> 10);
681
682 mem_init_done = 1;
683
684 /* Initialize the vDSO */
685 vdso_init();
686 }
687
688 /*
689 * This is called when a page has been modified by the kernel.
690 * It just marks the page as not i-cache clean. We do the i-cache
691 * flush later when the page is given to a user process, if necessary.
692 */
693 void flush_dcache_page(struct page *page)
694 {
695 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
696 return;
697 /* avoid an atomic op if possible */
698 if (test_bit(PG_arch_1, &page->flags))
699 clear_bit(PG_arch_1, &page->flags);
700 }
701 EXPORT_SYMBOL(flush_dcache_page);
702
703 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
704 {
705 clear_page(page);
706
707 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
708 return;
709 /*
710 * We shouldnt have to do this, but some versions of glibc
711 * require it (ld.so assumes zero filled pages are icache clean)
712 * - Anton
713 */
714
715 /* avoid an atomic op if possible */
716 if (test_bit(PG_arch_1, &pg->flags))
717 clear_bit(PG_arch_1, &pg->flags);
718 }
719 EXPORT_SYMBOL(clear_user_page);
720
721 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
722 struct page *pg)
723 {
724 copy_page(vto, vfrom);
725
726 /*
727 * We should be able to use the following optimisation, however
728 * there are two problems.
729 * Firstly a bug in some versions of binutils meant PLT sections
730 * were not marked executable.
731 * Secondly the first word in the GOT section is blrl, used
732 * to establish the GOT address. Until recently the GOT was
733 * not marked executable.
734 * - Anton
735 */
736 #if 0
737 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
738 return;
739 #endif
740
741 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
742 return;
743
744 /* avoid an atomic op if possible */
745 if (test_bit(PG_arch_1, &pg->flags))
746 clear_bit(PG_arch_1, &pg->flags);
747 }
748
749 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
750 unsigned long addr, int len)
751 {
752 unsigned long maddr;
753
754 maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
755 flush_icache_range(maddr, maddr + len);
756 }
757 EXPORT_SYMBOL(flush_icache_user_range);
758
759 /*
760 * This is called at the end of handling a user page fault, when the
761 * fault has been handled by updating a PTE in the linux page tables.
762 * We use it to preload an HPTE into the hash table corresponding to
763 * the updated linux PTE.
764 *
765 * This must always be called with the mm->page_table_lock held
766 */
767 void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
768 pte_t pte)
769 {
770 unsigned long vsid;
771 void *pgdir;
772 pte_t *ptep;
773 int local = 0;
774 cpumask_t tmp;
775 unsigned long flags;
776
777 /* handle i-cache coherency */
778 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
779 !cpu_has_feature(CPU_FTR_NOEXECUTE)) {
780 unsigned long pfn = pte_pfn(pte);
781 if (pfn_valid(pfn)) {
782 struct page *page = pfn_to_page(pfn);
783 if (!PageReserved(page)
784 && !test_bit(PG_arch_1, &page->flags)) {
785 __flush_dcache_icache(page_address(page));
786 set_bit(PG_arch_1, &page->flags);
787 }
788 }
789 }
790
791 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
792 if (!pte_young(pte))
793 return;
794
795 pgdir = vma->vm_mm->pgd;
796 if (pgdir == NULL)
797 return;
798
799 ptep = find_linux_pte(pgdir, ea);
800 if (!ptep)
801 return;
802
803 vsid = get_vsid(vma->vm_mm->context.id, ea);
804
805 local_irq_save(flags);
806 tmp = cpumask_of_cpu(smp_processor_id());
807 if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
808 local = 1;
809
810 __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
811 0x300, local);
812 local_irq_restore(flags);
813 }
814
815 void __iomem * reserve_phb_iospace(unsigned long size)
816 {
817 void __iomem *virt_addr;
818
819 if (phbs_io_bot >= IMALLOC_BASE)
820 panic("reserve_phb_iospace(): phb io space overflow\n");
821
822 virt_addr = (void __iomem *) phbs_io_bot;
823 phbs_io_bot += size;
824
825 return virt_addr;
826 }
827
828 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
829 {
830 memset(addr, 0, kmem_cache_size(cache));
831 }
832
833 static const int pgtable_cache_size[2] = {
834 PTE_TABLE_SIZE, PMD_TABLE_SIZE
835 };
836 static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = {
837 "pgd_pte_cache", "pud_pmd_cache",
838 };
839
840 kmem_cache_t *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)];
841
842 void pgtable_cache_init(void)
843 {
844 int i;
845
846 BUILD_BUG_ON(PTE_TABLE_SIZE != pgtable_cache_size[PTE_CACHE_NUM]);
847 BUILD_BUG_ON(PMD_TABLE_SIZE != pgtable_cache_size[PMD_CACHE_NUM]);
848 BUILD_BUG_ON(PUD_TABLE_SIZE != pgtable_cache_size[PUD_CACHE_NUM]);
849 BUILD_BUG_ON(PGD_TABLE_SIZE != pgtable_cache_size[PGD_CACHE_NUM]);
850
851 for (i = 0; i < ARRAY_SIZE(pgtable_cache_size); i++) {
852 int size = pgtable_cache_size[i];
853 const char *name = pgtable_cache_name[i];
854
855 pgtable_cache[i] = kmem_cache_create(name,
856 size, size,
857 SLAB_HWCACHE_ALIGN
858 | SLAB_MUST_HWCACHE_ALIGN,
859 zero_ctor,
860 NULL);
861 if (! pgtable_cache[i])
862 panic("pgtable_cache_init(): could not create %s!\n",
863 name);
864 }
865 }
866
867 pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
868 unsigned long size, pgprot_t vma_prot)
869 {
870 if (ppc_md.phys_mem_access_prot)
871 return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
872
873 if (!page_is_ram(addr >> PAGE_SHIFT))
874 vma_prot = __pgprot(pgprot_val(vma_prot)
875 | _PAGE_GUARDED | _PAGE_NO_CACHE);
876 return vma_prot;
877 }
878 EXPORT_SYMBOL(phys_mem_access_prot);
This page took 0.048994 seconds and 5 git commands to generate.