Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / arch / s390 / crypto / aes_s390.c
1 /*
2 * Cryptographic API.
3 *
4 * s390 implementation of the AES Cipher Algorithm.
5 *
6 * s390 Version:
7 * Copyright IBM Corp. 2005, 2007
8 * Author(s): Jan Glauber (jang@de.ibm.com)
9 * Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
10 *
11 * Derived from "crypto/aes_generic.c"
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
17 *
18 */
19
20 #define KMSG_COMPONENT "aes_s390"
21 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
22
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/err.h>
26 #include <linux/module.h>
27 #include <linux/cpufeature.h>
28 #include <linux/init.h>
29 #include <linux/spinlock.h>
30 #include <crypto/xts.h>
31 #include "crypt_s390.h"
32
33 #define AES_KEYLEN_128 1
34 #define AES_KEYLEN_192 2
35 #define AES_KEYLEN_256 4
36
37 static u8 *ctrblk;
38 static DEFINE_SPINLOCK(ctrblk_lock);
39 static char keylen_flag;
40
41 struct s390_aes_ctx {
42 u8 key[AES_MAX_KEY_SIZE];
43 long enc;
44 long dec;
45 int key_len;
46 union {
47 struct crypto_blkcipher *blk;
48 struct crypto_cipher *cip;
49 } fallback;
50 };
51
52 struct pcc_param {
53 u8 key[32];
54 u8 tweak[16];
55 u8 block[16];
56 u8 bit[16];
57 u8 xts[16];
58 };
59
60 struct s390_xts_ctx {
61 u8 key[32];
62 u8 pcc_key[32];
63 long enc;
64 long dec;
65 int key_len;
66 struct crypto_blkcipher *fallback;
67 };
68
69 /*
70 * Check if the key_len is supported by the HW.
71 * Returns 0 if it is, a positive number if it is not and software fallback is
72 * required or a negative number in case the key size is not valid
73 */
74 static int need_fallback(unsigned int key_len)
75 {
76 switch (key_len) {
77 case 16:
78 if (!(keylen_flag & AES_KEYLEN_128))
79 return 1;
80 break;
81 case 24:
82 if (!(keylen_flag & AES_KEYLEN_192))
83 return 1;
84 break;
85 case 32:
86 if (!(keylen_flag & AES_KEYLEN_256))
87 return 1;
88 break;
89 default:
90 return -1;
91 break;
92 }
93 return 0;
94 }
95
96 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
97 unsigned int key_len)
98 {
99 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
100 int ret;
101
102 sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
103 sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
104 CRYPTO_TFM_REQ_MASK);
105
106 ret = crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
107 if (ret) {
108 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
109 tfm->crt_flags |= (sctx->fallback.cip->base.crt_flags &
110 CRYPTO_TFM_RES_MASK);
111 }
112 return ret;
113 }
114
115 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
116 unsigned int key_len)
117 {
118 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
119 u32 *flags = &tfm->crt_flags;
120 int ret;
121
122 ret = need_fallback(key_len);
123 if (ret < 0) {
124 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
125 return -EINVAL;
126 }
127
128 sctx->key_len = key_len;
129 if (!ret) {
130 memcpy(sctx->key, in_key, key_len);
131 return 0;
132 }
133
134 return setkey_fallback_cip(tfm, in_key, key_len);
135 }
136
137 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
138 {
139 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
140
141 if (unlikely(need_fallback(sctx->key_len))) {
142 crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
143 return;
144 }
145
146 switch (sctx->key_len) {
147 case 16:
148 crypt_s390_km(KM_AES_128_ENCRYPT, &sctx->key, out, in,
149 AES_BLOCK_SIZE);
150 break;
151 case 24:
152 crypt_s390_km(KM_AES_192_ENCRYPT, &sctx->key, out, in,
153 AES_BLOCK_SIZE);
154 break;
155 case 32:
156 crypt_s390_km(KM_AES_256_ENCRYPT, &sctx->key, out, in,
157 AES_BLOCK_SIZE);
158 break;
159 }
160 }
161
162 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
163 {
164 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
165
166 if (unlikely(need_fallback(sctx->key_len))) {
167 crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
168 return;
169 }
170
171 switch (sctx->key_len) {
172 case 16:
173 crypt_s390_km(KM_AES_128_DECRYPT, &sctx->key, out, in,
174 AES_BLOCK_SIZE);
175 break;
176 case 24:
177 crypt_s390_km(KM_AES_192_DECRYPT, &sctx->key, out, in,
178 AES_BLOCK_SIZE);
179 break;
180 case 32:
181 crypt_s390_km(KM_AES_256_DECRYPT, &sctx->key, out, in,
182 AES_BLOCK_SIZE);
183 break;
184 }
185 }
186
187 static int fallback_init_cip(struct crypto_tfm *tfm)
188 {
189 const char *name = tfm->__crt_alg->cra_name;
190 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
191
192 sctx->fallback.cip = crypto_alloc_cipher(name, 0,
193 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
194
195 if (IS_ERR(sctx->fallback.cip)) {
196 pr_err("Allocating AES fallback algorithm %s failed\n",
197 name);
198 return PTR_ERR(sctx->fallback.cip);
199 }
200
201 return 0;
202 }
203
204 static void fallback_exit_cip(struct crypto_tfm *tfm)
205 {
206 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
207
208 crypto_free_cipher(sctx->fallback.cip);
209 sctx->fallback.cip = NULL;
210 }
211
212 static struct crypto_alg aes_alg = {
213 .cra_name = "aes",
214 .cra_driver_name = "aes-s390",
215 .cra_priority = CRYPT_S390_PRIORITY,
216 .cra_flags = CRYPTO_ALG_TYPE_CIPHER |
217 CRYPTO_ALG_NEED_FALLBACK,
218 .cra_blocksize = AES_BLOCK_SIZE,
219 .cra_ctxsize = sizeof(struct s390_aes_ctx),
220 .cra_module = THIS_MODULE,
221 .cra_init = fallback_init_cip,
222 .cra_exit = fallback_exit_cip,
223 .cra_u = {
224 .cipher = {
225 .cia_min_keysize = AES_MIN_KEY_SIZE,
226 .cia_max_keysize = AES_MAX_KEY_SIZE,
227 .cia_setkey = aes_set_key,
228 .cia_encrypt = aes_encrypt,
229 .cia_decrypt = aes_decrypt,
230 }
231 }
232 };
233
234 static int setkey_fallback_blk(struct crypto_tfm *tfm, const u8 *key,
235 unsigned int len)
236 {
237 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
238 unsigned int ret;
239
240 sctx->fallback.blk->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
241 sctx->fallback.blk->base.crt_flags |= (tfm->crt_flags &
242 CRYPTO_TFM_REQ_MASK);
243
244 ret = crypto_blkcipher_setkey(sctx->fallback.blk, key, len);
245 if (ret) {
246 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
247 tfm->crt_flags |= (sctx->fallback.blk->base.crt_flags &
248 CRYPTO_TFM_RES_MASK);
249 }
250 return ret;
251 }
252
253 static int fallback_blk_dec(struct blkcipher_desc *desc,
254 struct scatterlist *dst, struct scatterlist *src,
255 unsigned int nbytes)
256 {
257 unsigned int ret;
258 struct crypto_blkcipher *tfm;
259 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
260
261 tfm = desc->tfm;
262 desc->tfm = sctx->fallback.blk;
263
264 ret = crypto_blkcipher_decrypt_iv(desc, dst, src, nbytes);
265
266 desc->tfm = tfm;
267 return ret;
268 }
269
270 static int fallback_blk_enc(struct blkcipher_desc *desc,
271 struct scatterlist *dst, struct scatterlist *src,
272 unsigned int nbytes)
273 {
274 unsigned int ret;
275 struct crypto_blkcipher *tfm;
276 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
277
278 tfm = desc->tfm;
279 desc->tfm = sctx->fallback.blk;
280
281 ret = crypto_blkcipher_encrypt_iv(desc, dst, src, nbytes);
282
283 desc->tfm = tfm;
284 return ret;
285 }
286
287 static int ecb_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
288 unsigned int key_len)
289 {
290 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
291 int ret;
292
293 ret = need_fallback(key_len);
294 if (ret > 0) {
295 sctx->key_len = key_len;
296 return setkey_fallback_blk(tfm, in_key, key_len);
297 }
298
299 switch (key_len) {
300 case 16:
301 sctx->enc = KM_AES_128_ENCRYPT;
302 sctx->dec = KM_AES_128_DECRYPT;
303 break;
304 case 24:
305 sctx->enc = KM_AES_192_ENCRYPT;
306 sctx->dec = KM_AES_192_DECRYPT;
307 break;
308 case 32:
309 sctx->enc = KM_AES_256_ENCRYPT;
310 sctx->dec = KM_AES_256_DECRYPT;
311 break;
312 }
313
314 return aes_set_key(tfm, in_key, key_len);
315 }
316
317 static int ecb_aes_crypt(struct blkcipher_desc *desc, long func, void *param,
318 struct blkcipher_walk *walk)
319 {
320 int ret = blkcipher_walk_virt(desc, walk);
321 unsigned int nbytes;
322
323 while ((nbytes = walk->nbytes)) {
324 /* only use complete blocks */
325 unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
326 u8 *out = walk->dst.virt.addr;
327 u8 *in = walk->src.virt.addr;
328
329 ret = crypt_s390_km(func, param, out, in, n);
330 if (ret < 0 || ret != n)
331 return -EIO;
332
333 nbytes &= AES_BLOCK_SIZE - 1;
334 ret = blkcipher_walk_done(desc, walk, nbytes);
335 }
336
337 return ret;
338 }
339
340 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
341 struct scatterlist *dst, struct scatterlist *src,
342 unsigned int nbytes)
343 {
344 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
345 struct blkcipher_walk walk;
346
347 if (unlikely(need_fallback(sctx->key_len)))
348 return fallback_blk_enc(desc, dst, src, nbytes);
349
350 blkcipher_walk_init(&walk, dst, src, nbytes);
351 return ecb_aes_crypt(desc, sctx->enc, sctx->key, &walk);
352 }
353
354 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
355 struct scatterlist *dst, struct scatterlist *src,
356 unsigned int nbytes)
357 {
358 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
359 struct blkcipher_walk walk;
360
361 if (unlikely(need_fallback(sctx->key_len)))
362 return fallback_blk_dec(desc, dst, src, nbytes);
363
364 blkcipher_walk_init(&walk, dst, src, nbytes);
365 return ecb_aes_crypt(desc, sctx->dec, sctx->key, &walk);
366 }
367
368 static int fallback_init_blk(struct crypto_tfm *tfm)
369 {
370 const char *name = tfm->__crt_alg->cra_name;
371 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
372
373 sctx->fallback.blk = crypto_alloc_blkcipher(name, 0,
374 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
375
376 if (IS_ERR(sctx->fallback.blk)) {
377 pr_err("Allocating AES fallback algorithm %s failed\n",
378 name);
379 return PTR_ERR(sctx->fallback.blk);
380 }
381
382 return 0;
383 }
384
385 static void fallback_exit_blk(struct crypto_tfm *tfm)
386 {
387 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
388
389 crypto_free_blkcipher(sctx->fallback.blk);
390 sctx->fallback.blk = NULL;
391 }
392
393 static struct crypto_alg ecb_aes_alg = {
394 .cra_name = "ecb(aes)",
395 .cra_driver_name = "ecb-aes-s390",
396 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
397 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
398 CRYPTO_ALG_NEED_FALLBACK,
399 .cra_blocksize = AES_BLOCK_SIZE,
400 .cra_ctxsize = sizeof(struct s390_aes_ctx),
401 .cra_type = &crypto_blkcipher_type,
402 .cra_module = THIS_MODULE,
403 .cra_init = fallback_init_blk,
404 .cra_exit = fallback_exit_blk,
405 .cra_u = {
406 .blkcipher = {
407 .min_keysize = AES_MIN_KEY_SIZE,
408 .max_keysize = AES_MAX_KEY_SIZE,
409 .setkey = ecb_aes_set_key,
410 .encrypt = ecb_aes_encrypt,
411 .decrypt = ecb_aes_decrypt,
412 }
413 }
414 };
415
416 static int cbc_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
417 unsigned int key_len)
418 {
419 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
420 int ret;
421
422 ret = need_fallback(key_len);
423 if (ret > 0) {
424 sctx->key_len = key_len;
425 return setkey_fallback_blk(tfm, in_key, key_len);
426 }
427
428 switch (key_len) {
429 case 16:
430 sctx->enc = KMC_AES_128_ENCRYPT;
431 sctx->dec = KMC_AES_128_DECRYPT;
432 break;
433 case 24:
434 sctx->enc = KMC_AES_192_ENCRYPT;
435 sctx->dec = KMC_AES_192_DECRYPT;
436 break;
437 case 32:
438 sctx->enc = KMC_AES_256_ENCRYPT;
439 sctx->dec = KMC_AES_256_DECRYPT;
440 break;
441 }
442
443 return aes_set_key(tfm, in_key, key_len);
444 }
445
446 static int cbc_aes_crypt(struct blkcipher_desc *desc, long func,
447 struct blkcipher_walk *walk)
448 {
449 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
450 int ret = blkcipher_walk_virt(desc, walk);
451 unsigned int nbytes = walk->nbytes;
452 struct {
453 u8 iv[AES_BLOCK_SIZE];
454 u8 key[AES_MAX_KEY_SIZE];
455 } param;
456
457 if (!nbytes)
458 goto out;
459
460 memcpy(param.iv, walk->iv, AES_BLOCK_SIZE);
461 memcpy(param.key, sctx->key, sctx->key_len);
462 do {
463 /* only use complete blocks */
464 unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
465 u8 *out = walk->dst.virt.addr;
466 u8 *in = walk->src.virt.addr;
467
468 ret = crypt_s390_kmc(func, &param, out, in, n);
469 if (ret < 0 || ret != n)
470 return -EIO;
471
472 nbytes &= AES_BLOCK_SIZE - 1;
473 ret = blkcipher_walk_done(desc, walk, nbytes);
474 } while ((nbytes = walk->nbytes));
475 memcpy(walk->iv, param.iv, AES_BLOCK_SIZE);
476
477 out:
478 return ret;
479 }
480
481 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
482 struct scatterlist *dst, struct scatterlist *src,
483 unsigned int nbytes)
484 {
485 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
486 struct blkcipher_walk walk;
487
488 if (unlikely(need_fallback(sctx->key_len)))
489 return fallback_blk_enc(desc, dst, src, nbytes);
490
491 blkcipher_walk_init(&walk, dst, src, nbytes);
492 return cbc_aes_crypt(desc, sctx->enc, &walk);
493 }
494
495 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
496 struct scatterlist *dst, struct scatterlist *src,
497 unsigned int nbytes)
498 {
499 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
500 struct blkcipher_walk walk;
501
502 if (unlikely(need_fallback(sctx->key_len)))
503 return fallback_blk_dec(desc, dst, src, nbytes);
504
505 blkcipher_walk_init(&walk, dst, src, nbytes);
506 return cbc_aes_crypt(desc, sctx->dec, &walk);
507 }
508
509 static struct crypto_alg cbc_aes_alg = {
510 .cra_name = "cbc(aes)",
511 .cra_driver_name = "cbc-aes-s390",
512 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
513 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
514 CRYPTO_ALG_NEED_FALLBACK,
515 .cra_blocksize = AES_BLOCK_SIZE,
516 .cra_ctxsize = sizeof(struct s390_aes_ctx),
517 .cra_type = &crypto_blkcipher_type,
518 .cra_module = THIS_MODULE,
519 .cra_init = fallback_init_blk,
520 .cra_exit = fallback_exit_blk,
521 .cra_u = {
522 .blkcipher = {
523 .min_keysize = AES_MIN_KEY_SIZE,
524 .max_keysize = AES_MAX_KEY_SIZE,
525 .ivsize = AES_BLOCK_SIZE,
526 .setkey = cbc_aes_set_key,
527 .encrypt = cbc_aes_encrypt,
528 .decrypt = cbc_aes_decrypt,
529 }
530 }
531 };
532
533 static int xts_fallback_setkey(struct crypto_tfm *tfm, const u8 *key,
534 unsigned int len)
535 {
536 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
537 unsigned int ret;
538
539 xts_ctx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
540 xts_ctx->fallback->base.crt_flags |= (tfm->crt_flags &
541 CRYPTO_TFM_REQ_MASK);
542
543 ret = crypto_blkcipher_setkey(xts_ctx->fallback, key, len);
544 if (ret) {
545 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
546 tfm->crt_flags |= (xts_ctx->fallback->base.crt_flags &
547 CRYPTO_TFM_RES_MASK);
548 }
549 return ret;
550 }
551
552 static int xts_fallback_decrypt(struct blkcipher_desc *desc,
553 struct scatterlist *dst, struct scatterlist *src,
554 unsigned int nbytes)
555 {
556 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
557 struct crypto_blkcipher *tfm;
558 unsigned int ret;
559
560 tfm = desc->tfm;
561 desc->tfm = xts_ctx->fallback;
562
563 ret = crypto_blkcipher_decrypt_iv(desc, dst, src, nbytes);
564
565 desc->tfm = tfm;
566 return ret;
567 }
568
569 static int xts_fallback_encrypt(struct blkcipher_desc *desc,
570 struct scatterlist *dst, struct scatterlist *src,
571 unsigned int nbytes)
572 {
573 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
574 struct crypto_blkcipher *tfm;
575 unsigned int ret;
576
577 tfm = desc->tfm;
578 desc->tfm = xts_ctx->fallback;
579
580 ret = crypto_blkcipher_encrypt_iv(desc, dst, src, nbytes);
581
582 desc->tfm = tfm;
583 return ret;
584 }
585
586 static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
587 unsigned int key_len)
588 {
589 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
590 u32 *flags = &tfm->crt_flags;
591 int err;
592
593 err = xts_check_key(tfm, in_key, key_len);
594 if (err)
595 return err;
596
597 switch (key_len) {
598 case 32:
599 xts_ctx->enc = KM_XTS_128_ENCRYPT;
600 xts_ctx->dec = KM_XTS_128_DECRYPT;
601 memcpy(xts_ctx->key + 16, in_key, 16);
602 memcpy(xts_ctx->pcc_key + 16, in_key + 16, 16);
603 break;
604 case 48:
605 xts_ctx->enc = 0;
606 xts_ctx->dec = 0;
607 xts_fallback_setkey(tfm, in_key, key_len);
608 break;
609 case 64:
610 xts_ctx->enc = KM_XTS_256_ENCRYPT;
611 xts_ctx->dec = KM_XTS_256_DECRYPT;
612 memcpy(xts_ctx->key, in_key, 32);
613 memcpy(xts_ctx->pcc_key, in_key + 32, 32);
614 break;
615 default:
616 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
617 return -EINVAL;
618 }
619 xts_ctx->key_len = key_len;
620 return 0;
621 }
622
623 static int xts_aes_crypt(struct blkcipher_desc *desc, long func,
624 struct s390_xts_ctx *xts_ctx,
625 struct blkcipher_walk *walk)
626 {
627 unsigned int offset = (xts_ctx->key_len >> 1) & 0x10;
628 int ret = blkcipher_walk_virt(desc, walk);
629 unsigned int nbytes = walk->nbytes;
630 unsigned int n;
631 u8 *in, *out;
632 struct pcc_param pcc_param;
633 struct {
634 u8 key[32];
635 u8 init[16];
636 } xts_param;
637
638 if (!nbytes)
639 goto out;
640
641 memset(pcc_param.block, 0, sizeof(pcc_param.block));
642 memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
643 memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
644 memcpy(pcc_param.tweak, walk->iv, sizeof(pcc_param.tweak));
645 memcpy(pcc_param.key, xts_ctx->pcc_key, 32);
646 ret = crypt_s390_pcc(func, &pcc_param.key[offset]);
647 if (ret < 0)
648 return -EIO;
649
650 memcpy(xts_param.key, xts_ctx->key, 32);
651 memcpy(xts_param.init, pcc_param.xts, 16);
652 do {
653 /* only use complete blocks */
654 n = nbytes & ~(AES_BLOCK_SIZE - 1);
655 out = walk->dst.virt.addr;
656 in = walk->src.virt.addr;
657
658 ret = crypt_s390_km(func, &xts_param.key[offset], out, in, n);
659 if (ret < 0 || ret != n)
660 return -EIO;
661
662 nbytes &= AES_BLOCK_SIZE - 1;
663 ret = blkcipher_walk_done(desc, walk, nbytes);
664 } while ((nbytes = walk->nbytes));
665 out:
666 return ret;
667 }
668
669 static int xts_aes_encrypt(struct blkcipher_desc *desc,
670 struct scatterlist *dst, struct scatterlist *src,
671 unsigned int nbytes)
672 {
673 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
674 struct blkcipher_walk walk;
675
676 if (unlikely(xts_ctx->key_len == 48))
677 return xts_fallback_encrypt(desc, dst, src, nbytes);
678
679 blkcipher_walk_init(&walk, dst, src, nbytes);
680 return xts_aes_crypt(desc, xts_ctx->enc, xts_ctx, &walk);
681 }
682
683 static int xts_aes_decrypt(struct blkcipher_desc *desc,
684 struct scatterlist *dst, struct scatterlist *src,
685 unsigned int nbytes)
686 {
687 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
688 struct blkcipher_walk walk;
689
690 if (unlikely(xts_ctx->key_len == 48))
691 return xts_fallback_decrypt(desc, dst, src, nbytes);
692
693 blkcipher_walk_init(&walk, dst, src, nbytes);
694 return xts_aes_crypt(desc, xts_ctx->dec, xts_ctx, &walk);
695 }
696
697 static int xts_fallback_init(struct crypto_tfm *tfm)
698 {
699 const char *name = tfm->__crt_alg->cra_name;
700 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
701
702 xts_ctx->fallback = crypto_alloc_blkcipher(name, 0,
703 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
704
705 if (IS_ERR(xts_ctx->fallback)) {
706 pr_err("Allocating XTS fallback algorithm %s failed\n",
707 name);
708 return PTR_ERR(xts_ctx->fallback);
709 }
710 return 0;
711 }
712
713 static void xts_fallback_exit(struct crypto_tfm *tfm)
714 {
715 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
716
717 crypto_free_blkcipher(xts_ctx->fallback);
718 xts_ctx->fallback = NULL;
719 }
720
721 static struct crypto_alg xts_aes_alg = {
722 .cra_name = "xts(aes)",
723 .cra_driver_name = "xts-aes-s390",
724 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
725 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
726 CRYPTO_ALG_NEED_FALLBACK,
727 .cra_blocksize = AES_BLOCK_SIZE,
728 .cra_ctxsize = sizeof(struct s390_xts_ctx),
729 .cra_type = &crypto_blkcipher_type,
730 .cra_module = THIS_MODULE,
731 .cra_init = xts_fallback_init,
732 .cra_exit = xts_fallback_exit,
733 .cra_u = {
734 .blkcipher = {
735 .min_keysize = 2 * AES_MIN_KEY_SIZE,
736 .max_keysize = 2 * AES_MAX_KEY_SIZE,
737 .ivsize = AES_BLOCK_SIZE,
738 .setkey = xts_aes_set_key,
739 .encrypt = xts_aes_encrypt,
740 .decrypt = xts_aes_decrypt,
741 }
742 }
743 };
744
745 static int xts_aes_alg_reg;
746
747 static int ctr_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
748 unsigned int key_len)
749 {
750 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
751
752 switch (key_len) {
753 case 16:
754 sctx->enc = KMCTR_AES_128_ENCRYPT;
755 sctx->dec = KMCTR_AES_128_DECRYPT;
756 break;
757 case 24:
758 sctx->enc = KMCTR_AES_192_ENCRYPT;
759 sctx->dec = KMCTR_AES_192_DECRYPT;
760 break;
761 case 32:
762 sctx->enc = KMCTR_AES_256_ENCRYPT;
763 sctx->dec = KMCTR_AES_256_DECRYPT;
764 break;
765 }
766
767 return aes_set_key(tfm, in_key, key_len);
768 }
769
770 static unsigned int __ctrblk_init(u8 *ctrptr, unsigned int nbytes)
771 {
772 unsigned int i, n;
773
774 /* only use complete blocks, max. PAGE_SIZE */
775 n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
776 for (i = AES_BLOCK_SIZE; i < n; i += AES_BLOCK_SIZE) {
777 memcpy(ctrptr + i, ctrptr + i - AES_BLOCK_SIZE,
778 AES_BLOCK_SIZE);
779 crypto_inc(ctrptr + i, AES_BLOCK_SIZE);
780 }
781 return n;
782 }
783
784 static int ctr_aes_crypt(struct blkcipher_desc *desc, long func,
785 struct s390_aes_ctx *sctx, struct blkcipher_walk *walk)
786 {
787 int ret = blkcipher_walk_virt_block(desc, walk, AES_BLOCK_SIZE);
788 unsigned int n, nbytes;
789 u8 buf[AES_BLOCK_SIZE], ctrbuf[AES_BLOCK_SIZE];
790 u8 *out, *in, *ctrptr = ctrbuf;
791
792 if (!walk->nbytes)
793 return ret;
794
795 if (spin_trylock(&ctrblk_lock))
796 ctrptr = ctrblk;
797
798 memcpy(ctrptr, walk->iv, AES_BLOCK_SIZE);
799 while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
800 out = walk->dst.virt.addr;
801 in = walk->src.virt.addr;
802 while (nbytes >= AES_BLOCK_SIZE) {
803 if (ctrptr == ctrblk)
804 n = __ctrblk_init(ctrptr, nbytes);
805 else
806 n = AES_BLOCK_SIZE;
807 ret = crypt_s390_kmctr(func, sctx->key, out, in,
808 n, ctrptr);
809 if (ret < 0 || ret != n) {
810 if (ctrptr == ctrblk)
811 spin_unlock(&ctrblk_lock);
812 return -EIO;
813 }
814 if (n > AES_BLOCK_SIZE)
815 memcpy(ctrptr, ctrptr + n - AES_BLOCK_SIZE,
816 AES_BLOCK_SIZE);
817 crypto_inc(ctrptr, AES_BLOCK_SIZE);
818 out += n;
819 in += n;
820 nbytes -= n;
821 }
822 ret = blkcipher_walk_done(desc, walk, nbytes);
823 }
824 if (ctrptr == ctrblk) {
825 if (nbytes)
826 memcpy(ctrbuf, ctrptr, AES_BLOCK_SIZE);
827 else
828 memcpy(walk->iv, ctrptr, AES_BLOCK_SIZE);
829 spin_unlock(&ctrblk_lock);
830 } else {
831 if (!nbytes)
832 memcpy(walk->iv, ctrptr, AES_BLOCK_SIZE);
833 }
834 /*
835 * final block may be < AES_BLOCK_SIZE, copy only nbytes
836 */
837 if (nbytes) {
838 out = walk->dst.virt.addr;
839 in = walk->src.virt.addr;
840 ret = crypt_s390_kmctr(func, sctx->key, buf, in,
841 AES_BLOCK_SIZE, ctrbuf);
842 if (ret < 0 || ret != AES_BLOCK_SIZE)
843 return -EIO;
844 memcpy(out, buf, nbytes);
845 crypto_inc(ctrbuf, AES_BLOCK_SIZE);
846 ret = blkcipher_walk_done(desc, walk, 0);
847 memcpy(walk->iv, ctrbuf, AES_BLOCK_SIZE);
848 }
849
850 return ret;
851 }
852
853 static int ctr_aes_encrypt(struct blkcipher_desc *desc,
854 struct scatterlist *dst, struct scatterlist *src,
855 unsigned int nbytes)
856 {
857 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
858 struct blkcipher_walk walk;
859
860 blkcipher_walk_init(&walk, dst, src, nbytes);
861 return ctr_aes_crypt(desc, sctx->enc, sctx, &walk);
862 }
863
864 static int ctr_aes_decrypt(struct blkcipher_desc *desc,
865 struct scatterlist *dst, struct scatterlist *src,
866 unsigned int nbytes)
867 {
868 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
869 struct blkcipher_walk walk;
870
871 blkcipher_walk_init(&walk, dst, src, nbytes);
872 return ctr_aes_crypt(desc, sctx->dec, sctx, &walk);
873 }
874
875 static struct crypto_alg ctr_aes_alg = {
876 .cra_name = "ctr(aes)",
877 .cra_driver_name = "ctr-aes-s390",
878 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
879 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
880 .cra_blocksize = 1,
881 .cra_ctxsize = sizeof(struct s390_aes_ctx),
882 .cra_type = &crypto_blkcipher_type,
883 .cra_module = THIS_MODULE,
884 .cra_u = {
885 .blkcipher = {
886 .min_keysize = AES_MIN_KEY_SIZE,
887 .max_keysize = AES_MAX_KEY_SIZE,
888 .ivsize = AES_BLOCK_SIZE,
889 .setkey = ctr_aes_set_key,
890 .encrypt = ctr_aes_encrypt,
891 .decrypt = ctr_aes_decrypt,
892 }
893 }
894 };
895
896 static int ctr_aes_alg_reg;
897
898 static int __init aes_s390_init(void)
899 {
900 int ret;
901
902 if (crypt_s390_func_available(KM_AES_128_ENCRYPT, CRYPT_S390_MSA))
903 keylen_flag |= AES_KEYLEN_128;
904 if (crypt_s390_func_available(KM_AES_192_ENCRYPT, CRYPT_S390_MSA))
905 keylen_flag |= AES_KEYLEN_192;
906 if (crypt_s390_func_available(KM_AES_256_ENCRYPT, CRYPT_S390_MSA))
907 keylen_flag |= AES_KEYLEN_256;
908
909 if (!keylen_flag)
910 return -EOPNOTSUPP;
911
912 /* z9 109 and z9 BC/EC only support 128 bit key length */
913 if (keylen_flag == AES_KEYLEN_128)
914 pr_info("AES hardware acceleration is only available for"
915 " 128-bit keys\n");
916
917 ret = crypto_register_alg(&aes_alg);
918 if (ret)
919 goto aes_err;
920
921 ret = crypto_register_alg(&ecb_aes_alg);
922 if (ret)
923 goto ecb_aes_err;
924
925 ret = crypto_register_alg(&cbc_aes_alg);
926 if (ret)
927 goto cbc_aes_err;
928
929 if (crypt_s390_func_available(KM_XTS_128_ENCRYPT,
930 CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
931 crypt_s390_func_available(KM_XTS_256_ENCRYPT,
932 CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
933 ret = crypto_register_alg(&xts_aes_alg);
934 if (ret)
935 goto xts_aes_err;
936 xts_aes_alg_reg = 1;
937 }
938
939 if (crypt_s390_func_available(KMCTR_AES_128_ENCRYPT,
940 CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
941 crypt_s390_func_available(KMCTR_AES_192_ENCRYPT,
942 CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
943 crypt_s390_func_available(KMCTR_AES_256_ENCRYPT,
944 CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
945 ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
946 if (!ctrblk) {
947 ret = -ENOMEM;
948 goto ctr_aes_err;
949 }
950 ret = crypto_register_alg(&ctr_aes_alg);
951 if (ret) {
952 free_page((unsigned long) ctrblk);
953 goto ctr_aes_err;
954 }
955 ctr_aes_alg_reg = 1;
956 }
957
958 out:
959 return ret;
960
961 ctr_aes_err:
962 crypto_unregister_alg(&xts_aes_alg);
963 xts_aes_err:
964 crypto_unregister_alg(&cbc_aes_alg);
965 cbc_aes_err:
966 crypto_unregister_alg(&ecb_aes_alg);
967 ecb_aes_err:
968 crypto_unregister_alg(&aes_alg);
969 aes_err:
970 goto out;
971 }
972
973 static void __exit aes_s390_fini(void)
974 {
975 if (ctr_aes_alg_reg) {
976 crypto_unregister_alg(&ctr_aes_alg);
977 free_page((unsigned long) ctrblk);
978 }
979 if (xts_aes_alg_reg)
980 crypto_unregister_alg(&xts_aes_alg);
981 crypto_unregister_alg(&cbc_aes_alg);
982 crypto_unregister_alg(&ecb_aes_alg);
983 crypto_unregister_alg(&aes_alg);
984 }
985
986 module_cpu_feature_match(MSA, aes_s390_init);
987 module_exit(aes_s390_fini);
988
989 MODULE_ALIAS_CRYPTO("aes-all");
990
991 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
992 MODULE_LICENSE("GPL");
This page took 0.093057 seconds and 6 git commands to generate.