mm/THP: add pmd args to pgtable deposit and withdraw APIs
[deliverable/linux.git] / arch / s390 / include / asm / pgtable.h
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
21 *
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
25 *
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
28 */
29 #ifndef __ASSEMBLY__
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <asm/bug.h>
34 #include <asm/page.h>
35
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
39
40 /*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
44 #define update_mmu_cache(vma, address, ptep) do { } while (0)
45 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46
47 /*
48 * ZERO_PAGE is a global shared page that is always zero; used
49 * for zero-mapped memory areas etc..
50 */
51
52 extern unsigned long empty_zero_page;
53 extern unsigned long zero_page_mask;
54
55 #define ZERO_PAGE(vaddr) \
56 (virt_to_page((void *)(empty_zero_page + \
57 (((unsigned long)(vaddr)) &zero_page_mask))))
58 #define __HAVE_COLOR_ZERO_PAGE
59
60 /* TODO: s390 cannot support io_remap_pfn_range... */
61 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
62 remap_pfn_range(vma, vaddr, pfn, size, prot)
63
64 #endif /* !__ASSEMBLY__ */
65
66 /*
67 * PMD_SHIFT determines the size of the area a second-level page
68 * table can map
69 * PGDIR_SHIFT determines what a third-level page table entry can map
70 */
71 #ifndef CONFIG_64BIT
72 # define PMD_SHIFT 20
73 # define PUD_SHIFT 20
74 # define PGDIR_SHIFT 20
75 #else /* CONFIG_64BIT */
76 # define PMD_SHIFT 20
77 # define PUD_SHIFT 31
78 # define PGDIR_SHIFT 42
79 #endif /* CONFIG_64BIT */
80
81 #define PMD_SIZE (1UL << PMD_SHIFT)
82 #define PMD_MASK (~(PMD_SIZE-1))
83 #define PUD_SIZE (1UL << PUD_SHIFT)
84 #define PUD_MASK (~(PUD_SIZE-1))
85 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
86 #define PGDIR_MASK (~(PGDIR_SIZE-1))
87
88 /*
89 * entries per page directory level: the S390 is two-level, so
90 * we don't really have any PMD directory physically.
91 * for S390 segment-table entries are combined to one PGD
92 * that leads to 1024 pte per pgd
93 */
94 #define PTRS_PER_PTE 256
95 #ifndef CONFIG_64BIT
96 #define PTRS_PER_PMD 1
97 #define PTRS_PER_PUD 1
98 #else /* CONFIG_64BIT */
99 #define PTRS_PER_PMD 2048
100 #define PTRS_PER_PUD 2048
101 #endif /* CONFIG_64BIT */
102 #define PTRS_PER_PGD 2048
103
104 #define FIRST_USER_ADDRESS 0
105
106 #define pte_ERROR(e) \
107 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
108 #define pmd_ERROR(e) \
109 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
110 #define pud_ERROR(e) \
111 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
112 #define pgd_ERROR(e) \
113 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
114
115 #ifndef __ASSEMBLY__
116 /*
117 * The vmalloc and module area will always be on the topmost area of the kernel
118 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
119 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
120 * modules will reside. That makes sure that inter module branches always
121 * happen without trampolines and in addition the placement within a 2GB frame
122 * is branch prediction unit friendly.
123 */
124 extern unsigned long VMALLOC_START;
125 extern unsigned long VMALLOC_END;
126 extern struct page *vmemmap;
127
128 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
129
130 #ifdef CONFIG_64BIT
131 extern unsigned long MODULES_VADDR;
132 extern unsigned long MODULES_END;
133 #define MODULES_VADDR MODULES_VADDR
134 #define MODULES_END MODULES_END
135 #define MODULES_LEN (1UL << 31)
136 #endif
137
138 /*
139 * A 31 bit pagetable entry of S390 has following format:
140 * | PFRA | | OS |
141 * 0 0IP0
142 * 00000000001111111111222222222233
143 * 01234567890123456789012345678901
144 *
145 * I Page-Invalid Bit: Page is not available for address-translation
146 * P Page-Protection Bit: Store access not possible for page
147 *
148 * A 31 bit segmenttable entry of S390 has following format:
149 * | P-table origin | |PTL
150 * 0 IC
151 * 00000000001111111111222222222233
152 * 01234567890123456789012345678901
153 *
154 * I Segment-Invalid Bit: Segment is not available for address-translation
155 * C Common-Segment Bit: Segment is not private (PoP 3-30)
156 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
157 *
158 * The 31 bit segmenttable origin of S390 has following format:
159 *
160 * |S-table origin | | STL |
161 * X **GPS
162 * 00000000001111111111222222222233
163 * 01234567890123456789012345678901
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit: *
167 * P Private-Space Bit: Segment is not private (PoP 3-30)
168 * S Storage-Alteration:
169 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
170 *
171 * A 64 bit pagetable entry of S390 has following format:
172 * | PFRA |0IPC| OS |
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
175 *
176 * I Page-Invalid Bit: Page is not available for address-translation
177 * P Page-Protection Bit: Store access not possible for page
178 * C Change-bit override: HW is not required to set change bit
179 *
180 * A 64 bit segmenttable entry of S390 has following format:
181 * | P-table origin | TT
182 * 0000000000111111111122222222223333333333444444444455555555556666
183 * 0123456789012345678901234567890123456789012345678901234567890123
184 *
185 * I Segment-Invalid Bit: Segment is not available for address-translation
186 * C Common-Segment Bit: Segment is not private (PoP 3-30)
187 * P Page-Protection Bit: Store access not possible for page
188 * TT Type 00
189 *
190 * A 64 bit region table entry of S390 has following format:
191 * | S-table origin | TF TTTL
192 * 0000000000111111111122222222223333333333444444444455555555556666
193 * 0123456789012345678901234567890123456789012345678901234567890123
194 *
195 * I Segment-Invalid Bit: Segment is not available for address-translation
196 * TT Type 01
197 * TF
198 * TL Table length
199 *
200 * The 64 bit regiontable origin of S390 has following format:
201 * | region table origon | DTTL
202 * 0000000000111111111122222222223333333333444444444455555555556666
203 * 0123456789012345678901234567890123456789012345678901234567890123
204 *
205 * X Space-Switch event:
206 * G Segment-Invalid Bit:
207 * P Private-Space Bit:
208 * S Storage-Alteration:
209 * R Real space
210 * TL Table-Length:
211 *
212 * A storage key has the following format:
213 * | ACC |F|R|C|0|
214 * 0 3 4 5 6 7
215 * ACC: access key
216 * F : fetch protection bit
217 * R : referenced bit
218 * C : changed bit
219 */
220
221 /* Hardware bits in the page table entry */
222 #define _PAGE_CO 0x100 /* HW Change-bit override */
223 #define _PAGE_RO 0x200 /* HW read-only bit */
224 #define _PAGE_INVALID 0x400 /* HW invalid bit */
225
226 /* Software bits in the page table entry */
227 #define _PAGE_SWT 0x001 /* SW pte type bit t */
228 #define _PAGE_SWX 0x002 /* SW pte type bit x */
229 #define _PAGE_SWC 0x004 /* SW pte changed bit */
230 #define _PAGE_SWR 0x008 /* SW pte referenced bit */
231 #define _PAGE_SWW 0x010 /* SW pte write bit */
232 #define _PAGE_SPECIAL 0x020 /* SW associated with special page */
233 #define __HAVE_ARCH_PTE_SPECIAL
234
235 /* Set of bits not changed in pte_modify */
236 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
237 _PAGE_SWC | _PAGE_SWR)
238
239 /* Six different types of pages. */
240 #define _PAGE_TYPE_EMPTY 0x400
241 #define _PAGE_TYPE_NONE 0x401
242 #define _PAGE_TYPE_SWAP 0x403
243 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
244 #define _PAGE_TYPE_RO 0x200
245 #define _PAGE_TYPE_RW 0x000
246
247 /*
248 * Only four types for huge pages, using the invalid bit and protection bit
249 * of a segment table entry.
250 */
251 #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
252 #define _HPAGE_TYPE_NONE 0x220
253 #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
254 #define _HPAGE_TYPE_RW 0x000
255
256 /*
257 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
258 * pte_none and pte_file to find out the pte type WITHOUT holding the page
259 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
260 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
261 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
262 * This change is done while holding the lock, but the intermediate step
263 * of a previously valid pte with the hw invalid bit set can be observed by
264 * handle_pte_fault. That makes it necessary that all valid pte types with
265 * the hw invalid bit set must be distinguishable from the four pte types
266 * empty, none, swap and file.
267 *
268 * irxt ipte irxt
269 * _PAGE_TYPE_EMPTY 1000 -> 1000
270 * _PAGE_TYPE_NONE 1001 -> 1001
271 * _PAGE_TYPE_SWAP 1011 -> 1011
272 * _PAGE_TYPE_FILE 11?1 -> 11?1
273 * _PAGE_TYPE_RO 0100 -> 1100
274 * _PAGE_TYPE_RW 0000 -> 1000
275 *
276 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
277 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
278 * pte_file is true for bits combinations 1101, 1111
279 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
280 */
281
282 #ifndef CONFIG_64BIT
283
284 /* Bits in the segment table address-space-control-element */
285 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
286 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
287 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
288 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
289 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
290
291 /* Bits in the segment table entry */
292 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
293 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
294 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
295 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
296 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
297
298 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
299 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
300
301 /* Page status table bits for virtualization */
302 #define RCP_ACC_BITS 0xf0000000UL
303 #define RCP_FP_BIT 0x08000000UL
304 #define RCP_PCL_BIT 0x00800000UL
305 #define RCP_HR_BIT 0x00400000UL
306 #define RCP_HC_BIT 0x00200000UL
307 #define RCP_GR_BIT 0x00040000UL
308 #define RCP_GC_BIT 0x00020000UL
309 #define RCP_IN_BIT 0x00002000UL /* IPTE notify bit */
310
311 /* User dirty / referenced bit for KVM's migration feature */
312 #define KVM_UR_BIT 0x00008000UL
313 #define KVM_UC_BIT 0x00004000UL
314
315 #else /* CONFIG_64BIT */
316
317 /* Bits in the segment/region table address-space-control-element */
318 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
319 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
320 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
321 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
322 #define _ASCE_REAL_SPACE 0x20 /* real space control */
323 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
324 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
325 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
326 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
327 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
328 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
329
330 /* Bits in the region table entry */
331 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
332 #define _REGION_ENTRY_RO 0x200 /* region protection bit */
333 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
334 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
335 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
336 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
337 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
338 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
339
340 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
341 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
342 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
343 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
344 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
345 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
346
347 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
348 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
349 #define _REGION3_ENTRY_CO 0x100 /* change-recording override */
350
351 /* Bits in the segment table entry */
352 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
353 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
354 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
355 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
356
357 #define _SEGMENT_ENTRY (0)
358 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
359
360 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
361 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
362 #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
363 #define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
364
365 /* Set of bits not changed in pmd_modify */
366 #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
367 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
368
369 /* Page status table bits for virtualization */
370 #define RCP_ACC_BITS 0xf000000000000000UL
371 #define RCP_FP_BIT 0x0800000000000000UL
372 #define RCP_PCL_BIT 0x0080000000000000UL
373 #define RCP_HR_BIT 0x0040000000000000UL
374 #define RCP_HC_BIT 0x0020000000000000UL
375 #define RCP_GR_BIT 0x0004000000000000UL
376 #define RCP_GC_BIT 0x0002000000000000UL
377 #define RCP_IN_BIT 0x0000200000000000UL /* IPTE notify bit */
378
379 /* User dirty / referenced bit for KVM's migration feature */
380 #define KVM_UR_BIT 0x0000800000000000UL
381 #define KVM_UC_BIT 0x0000400000000000UL
382
383 #endif /* CONFIG_64BIT */
384
385 /*
386 * A user page table pointer has the space-switch-event bit, the
387 * private-space-control bit and the storage-alteration-event-control
388 * bit set. A kernel page table pointer doesn't need them.
389 */
390 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
391 _ASCE_ALT_EVENT)
392
393 /*
394 * Page protection definitions.
395 */
396 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
397 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
398 #define PAGE_RW __pgprot(_PAGE_TYPE_RO | _PAGE_SWW)
399 #define PAGE_RWC __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC)
400
401 #define PAGE_KERNEL PAGE_RWC
402 #define PAGE_SHARED PAGE_KERNEL
403 #define PAGE_COPY PAGE_RO
404
405 /*
406 * On s390 the page table entry has an invalid bit and a read-only bit.
407 * Read permission implies execute permission and write permission
408 * implies read permission.
409 */
410 /*xwr*/
411 #define __P000 PAGE_NONE
412 #define __P001 PAGE_RO
413 #define __P010 PAGE_RO
414 #define __P011 PAGE_RO
415 #define __P100 PAGE_RO
416 #define __P101 PAGE_RO
417 #define __P110 PAGE_RO
418 #define __P111 PAGE_RO
419
420 #define __S000 PAGE_NONE
421 #define __S001 PAGE_RO
422 #define __S010 PAGE_RW
423 #define __S011 PAGE_RW
424 #define __S100 PAGE_RO
425 #define __S101 PAGE_RO
426 #define __S110 PAGE_RW
427 #define __S111 PAGE_RW
428
429 /*
430 * Segment entry (large page) protection definitions.
431 */
432 #define SEGMENT_NONE __pgprot(_HPAGE_TYPE_NONE)
433 #define SEGMENT_RO __pgprot(_HPAGE_TYPE_RO)
434 #define SEGMENT_RW __pgprot(_HPAGE_TYPE_RW)
435
436 static inline int mm_exclusive(struct mm_struct *mm)
437 {
438 return likely(mm == current->active_mm &&
439 atomic_read(&mm->context.attach_count) <= 1);
440 }
441
442 static inline int mm_has_pgste(struct mm_struct *mm)
443 {
444 #ifdef CONFIG_PGSTE
445 if (unlikely(mm->context.has_pgste))
446 return 1;
447 #endif
448 return 0;
449 }
450 /*
451 * pgd/pmd/pte query functions
452 */
453 #ifndef CONFIG_64BIT
454
455 static inline int pgd_present(pgd_t pgd) { return 1; }
456 static inline int pgd_none(pgd_t pgd) { return 0; }
457 static inline int pgd_bad(pgd_t pgd) { return 0; }
458
459 static inline int pud_present(pud_t pud) { return 1; }
460 static inline int pud_none(pud_t pud) { return 0; }
461 static inline int pud_large(pud_t pud) { return 0; }
462 static inline int pud_bad(pud_t pud) { return 0; }
463
464 #else /* CONFIG_64BIT */
465
466 static inline int pgd_present(pgd_t pgd)
467 {
468 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
469 return 1;
470 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
471 }
472
473 static inline int pgd_none(pgd_t pgd)
474 {
475 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
476 return 0;
477 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
478 }
479
480 static inline int pgd_bad(pgd_t pgd)
481 {
482 /*
483 * With dynamic page table levels the pgd can be a region table
484 * entry or a segment table entry. Check for the bit that are
485 * invalid for either table entry.
486 */
487 unsigned long mask =
488 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
489 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
490 return (pgd_val(pgd) & mask) != 0;
491 }
492
493 static inline int pud_present(pud_t pud)
494 {
495 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
496 return 1;
497 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
498 }
499
500 static inline int pud_none(pud_t pud)
501 {
502 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
503 return 0;
504 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
505 }
506
507 static inline int pud_large(pud_t pud)
508 {
509 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
510 return 0;
511 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
512 }
513
514 static inline int pud_bad(pud_t pud)
515 {
516 /*
517 * With dynamic page table levels the pud can be a region table
518 * entry or a segment table entry. Check for the bit that are
519 * invalid for either table entry.
520 */
521 unsigned long mask =
522 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
523 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
524 return (pud_val(pud) & mask) != 0;
525 }
526
527 #endif /* CONFIG_64BIT */
528
529 static inline int pmd_present(pmd_t pmd)
530 {
531 unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO;
532 return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE ||
533 !(pmd_val(pmd) & _SEGMENT_ENTRY_INV);
534 }
535
536 static inline int pmd_none(pmd_t pmd)
537 {
538 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) &&
539 !(pmd_val(pmd) & _SEGMENT_ENTRY_RO);
540 }
541
542 static inline int pmd_large(pmd_t pmd)
543 {
544 #ifdef CONFIG_64BIT
545 return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
546 #else
547 return 0;
548 #endif
549 }
550
551 static inline int pmd_bad(pmd_t pmd)
552 {
553 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
554 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
555 }
556
557 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
558 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
559 unsigned long addr, pmd_t *pmdp);
560
561 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
562 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
563 unsigned long address, pmd_t *pmdp,
564 pmd_t entry, int dirty);
565
566 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
567 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
568 unsigned long address, pmd_t *pmdp);
569
570 #define __HAVE_ARCH_PMD_WRITE
571 static inline int pmd_write(pmd_t pmd)
572 {
573 return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
574 }
575
576 static inline int pmd_young(pmd_t pmd)
577 {
578 return 0;
579 }
580
581 static inline int pte_none(pte_t pte)
582 {
583 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
584 }
585
586 static inline int pte_present(pte_t pte)
587 {
588 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
589 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
590 (!(pte_val(pte) & _PAGE_INVALID) &&
591 !(pte_val(pte) & _PAGE_SWT));
592 }
593
594 static inline int pte_file(pte_t pte)
595 {
596 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
597 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
598 }
599
600 static inline int pte_special(pte_t pte)
601 {
602 return (pte_val(pte) & _PAGE_SPECIAL);
603 }
604
605 #define __HAVE_ARCH_PTE_SAME
606 static inline int pte_same(pte_t a, pte_t b)
607 {
608 return pte_val(a) == pte_val(b);
609 }
610
611 static inline pgste_t pgste_get_lock(pte_t *ptep)
612 {
613 unsigned long new = 0;
614 #ifdef CONFIG_PGSTE
615 unsigned long old;
616
617 preempt_disable();
618 asm(
619 " lg %0,%2\n"
620 "0: lgr %1,%0\n"
621 " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */
622 " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */
623 " csg %0,%1,%2\n"
624 " jl 0b\n"
625 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
626 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
627 #endif
628 return __pgste(new);
629 }
630
631 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
632 {
633 #ifdef CONFIG_PGSTE
634 asm(
635 " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */
636 " stg %1,%0\n"
637 : "=Q" (ptep[PTRS_PER_PTE])
638 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
639 : "cc", "memory");
640 preempt_enable();
641 #endif
642 }
643
644 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
645 {
646 #ifdef CONFIG_PGSTE
647 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
648 #endif
649 }
650
651 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
652 {
653 #ifdef CONFIG_PGSTE
654 unsigned long address, bits;
655 unsigned char skey;
656
657 if (pte_val(*ptep) & _PAGE_INVALID)
658 return pgste;
659 address = pte_val(*ptep) & PAGE_MASK;
660 skey = page_get_storage_key(address);
661 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
662 /* Clear page changed & referenced bit in the storage key */
663 if (bits & _PAGE_CHANGED)
664 page_set_storage_key(address, skey ^ bits, 0);
665 else if (bits)
666 page_reset_referenced(address);
667 /* Transfer page changed & referenced bit to guest bits in pgste */
668 pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */
669 /* Get host changed & referenced bits from pgste */
670 bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
671 /* Transfer page changed & referenced bit to kvm user bits */
672 pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */
673 /* Clear relevant host bits in pgste. */
674 pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
675 pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
676 /* Copy page access key and fetch protection bit to pgste */
677 pgste_val(pgste) |=
678 (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
679 /* Transfer referenced bit to pte */
680 pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1;
681 #endif
682 return pgste;
683
684 }
685
686 static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
687 {
688 #ifdef CONFIG_PGSTE
689 int young;
690
691 if (pte_val(*ptep) & _PAGE_INVALID)
692 return pgste;
693 /* Get referenced bit from storage key */
694 young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
695 if (young)
696 pgste_val(pgste) |= RCP_GR_BIT;
697 /* Get host referenced bit from pgste */
698 if (pgste_val(pgste) & RCP_HR_BIT) {
699 pgste_val(pgste) &= ~RCP_HR_BIT;
700 young = 1;
701 }
702 /* Transfer referenced bit to kvm user bits and pte */
703 if (young) {
704 pgste_val(pgste) |= KVM_UR_BIT;
705 pte_val(*ptep) |= _PAGE_SWR;
706 }
707 #endif
708 return pgste;
709 }
710
711 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
712 {
713 #ifdef CONFIG_PGSTE
714 unsigned long address;
715 unsigned long nkey;
716
717 if (pte_val(entry) & _PAGE_INVALID)
718 return;
719 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
720 address = pte_val(entry) & PAGE_MASK;
721 /*
722 * Set page access key and fetch protection bit from pgste.
723 * The guest C/R information is still in the PGSTE, set real
724 * key C/R to 0.
725 */
726 nkey = (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
727 page_set_storage_key(address, nkey, 0);
728 #endif
729 }
730
731 static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
732 {
733 if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) {
734 /*
735 * Without enhanced suppression-on-protection force
736 * the dirty bit on for all writable ptes.
737 */
738 pte_val(entry) |= _PAGE_SWC;
739 pte_val(entry) &= ~_PAGE_RO;
740 }
741 *ptep = entry;
742 }
743
744 /**
745 * struct gmap_struct - guest address space
746 * @mm: pointer to the parent mm_struct
747 * @table: pointer to the page directory
748 * @asce: address space control element for gmap page table
749 * @crst_list: list of all crst tables used in the guest address space
750 */
751 struct gmap {
752 struct list_head list;
753 struct mm_struct *mm;
754 unsigned long *table;
755 unsigned long asce;
756 struct list_head crst_list;
757 };
758
759 /**
760 * struct gmap_rmap - reverse mapping for segment table entries
761 * @gmap: pointer to the gmap_struct
762 * @entry: pointer to a segment table entry
763 * @vmaddr: virtual address in the guest address space
764 */
765 struct gmap_rmap {
766 struct list_head list;
767 struct gmap *gmap;
768 unsigned long *entry;
769 unsigned long vmaddr;
770 };
771
772 /**
773 * struct gmap_pgtable - gmap information attached to a page table
774 * @vmaddr: address of the 1MB segment in the process virtual memory
775 * @mapper: list of segment table entries mapping a page table
776 */
777 struct gmap_pgtable {
778 unsigned long vmaddr;
779 struct list_head mapper;
780 };
781
782 /**
783 * struct gmap_notifier - notify function block for page invalidation
784 * @notifier_call: address of callback function
785 */
786 struct gmap_notifier {
787 struct list_head list;
788 void (*notifier_call)(struct gmap *gmap, unsigned long address);
789 };
790
791 struct gmap *gmap_alloc(struct mm_struct *mm);
792 void gmap_free(struct gmap *gmap);
793 void gmap_enable(struct gmap *gmap);
794 void gmap_disable(struct gmap *gmap);
795 int gmap_map_segment(struct gmap *gmap, unsigned long from,
796 unsigned long to, unsigned long len);
797 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
798 unsigned long __gmap_translate(unsigned long address, struct gmap *);
799 unsigned long gmap_translate(unsigned long address, struct gmap *);
800 unsigned long __gmap_fault(unsigned long address, struct gmap *);
801 unsigned long gmap_fault(unsigned long address, struct gmap *);
802 void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
803
804 void gmap_register_ipte_notifier(struct gmap_notifier *);
805 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
806 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
807 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
808
809 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
810 unsigned long addr,
811 pte_t *ptep, pgste_t pgste)
812 {
813 #ifdef CONFIG_PGSTE
814 if (pgste_val(pgste) & RCP_IN_BIT) {
815 pgste_val(pgste) &= ~RCP_IN_BIT;
816 gmap_do_ipte_notify(mm, addr, ptep);
817 }
818 #endif
819 return pgste;
820 }
821
822 /*
823 * Certain architectures need to do special things when PTEs
824 * within a page table are directly modified. Thus, the following
825 * hook is made available.
826 */
827 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
828 pte_t *ptep, pte_t entry)
829 {
830 pgste_t pgste;
831
832 if (mm_has_pgste(mm)) {
833 pgste = pgste_get_lock(ptep);
834 pgste_set_key(ptep, pgste, entry);
835 pgste_set_pte(ptep, entry);
836 pgste_set_unlock(ptep, pgste);
837 } else {
838 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
839 pte_val(entry) |= _PAGE_CO;
840 *ptep = entry;
841 }
842 }
843
844 /*
845 * query functions pte_write/pte_dirty/pte_young only work if
846 * pte_present() is true. Undefined behaviour if not..
847 */
848 static inline int pte_write(pte_t pte)
849 {
850 return (pte_val(pte) & _PAGE_SWW) != 0;
851 }
852
853 static inline int pte_dirty(pte_t pte)
854 {
855 return (pte_val(pte) & _PAGE_SWC) != 0;
856 }
857
858 static inline int pte_young(pte_t pte)
859 {
860 #ifdef CONFIG_PGSTE
861 if (pte_val(pte) & _PAGE_SWR)
862 return 1;
863 #endif
864 return 0;
865 }
866
867 /*
868 * pgd/pmd/pte modification functions
869 */
870
871 static inline void pgd_clear(pgd_t *pgd)
872 {
873 #ifdef CONFIG_64BIT
874 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
875 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
876 #endif
877 }
878
879 static inline void pud_clear(pud_t *pud)
880 {
881 #ifdef CONFIG_64BIT
882 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
883 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
884 #endif
885 }
886
887 static inline void pmd_clear(pmd_t *pmdp)
888 {
889 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
890 }
891
892 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
893 {
894 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
895 }
896
897 /*
898 * The following pte modification functions only work if
899 * pte_present() is true. Undefined behaviour if not..
900 */
901 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
902 {
903 pte_val(pte) &= _PAGE_CHG_MASK;
904 pte_val(pte) |= pgprot_val(newprot);
905 if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW))
906 pte_val(pte) &= ~_PAGE_RO;
907 return pte;
908 }
909
910 static inline pte_t pte_wrprotect(pte_t pte)
911 {
912 pte_val(pte) &= ~_PAGE_SWW;
913 /* Do not clobber _PAGE_TYPE_NONE pages! */
914 if (!(pte_val(pte) & _PAGE_INVALID))
915 pte_val(pte) |= _PAGE_RO;
916 return pte;
917 }
918
919 static inline pte_t pte_mkwrite(pte_t pte)
920 {
921 pte_val(pte) |= _PAGE_SWW;
922 if (pte_val(pte) & _PAGE_SWC)
923 pte_val(pte) &= ~_PAGE_RO;
924 return pte;
925 }
926
927 static inline pte_t pte_mkclean(pte_t pte)
928 {
929 pte_val(pte) &= ~_PAGE_SWC;
930 /* Do not clobber _PAGE_TYPE_NONE pages! */
931 if (!(pte_val(pte) & _PAGE_INVALID))
932 pte_val(pte) |= _PAGE_RO;
933 return pte;
934 }
935
936 static inline pte_t pte_mkdirty(pte_t pte)
937 {
938 pte_val(pte) |= _PAGE_SWC;
939 if (pte_val(pte) & _PAGE_SWW)
940 pte_val(pte) &= ~_PAGE_RO;
941 return pte;
942 }
943
944 static inline pte_t pte_mkold(pte_t pte)
945 {
946 #ifdef CONFIG_PGSTE
947 pte_val(pte) &= ~_PAGE_SWR;
948 #endif
949 return pte;
950 }
951
952 static inline pte_t pte_mkyoung(pte_t pte)
953 {
954 return pte;
955 }
956
957 static inline pte_t pte_mkspecial(pte_t pte)
958 {
959 pte_val(pte) |= _PAGE_SPECIAL;
960 return pte;
961 }
962
963 #ifdef CONFIG_HUGETLB_PAGE
964 static inline pte_t pte_mkhuge(pte_t pte)
965 {
966 pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
967 return pte;
968 }
969 #endif
970
971 /*
972 * Get (and clear) the user dirty bit for a pte.
973 */
974 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
975 pte_t *ptep)
976 {
977 pgste_t pgste;
978 int dirty = 0;
979
980 if (mm_has_pgste(mm)) {
981 pgste = pgste_get_lock(ptep);
982 pgste = pgste_update_all(ptep, pgste);
983 dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
984 pgste_val(pgste) &= ~KVM_UC_BIT;
985 pgste_set_unlock(ptep, pgste);
986 return dirty;
987 }
988 return dirty;
989 }
990
991 /*
992 * Get (and clear) the user referenced bit for a pte.
993 */
994 static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
995 pte_t *ptep)
996 {
997 pgste_t pgste;
998 int young = 0;
999
1000 if (mm_has_pgste(mm)) {
1001 pgste = pgste_get_lock(ptep);
1002 pgste = pgste_update_young(ptep, pgste);
1003 young = !!(pgste_val(pgste) & KVM_UR_BIT);
1004 pgste_val(pgste) &= ~KVM_UR_BIT;
1005 pgste_set_unlock(ptep, pgste);
1006 }
1007 return young;
1008 }
1009
1010 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1011 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1012 unsigned long addr, pte_t *ptep)
1013 {
1014 pgste_t pgste;
1015 pte_t pte;
1016
1017 if (mm_has_pgste(vma->vm_mm)) {
1018 pgste = pgste_get_lock(ptep);
1019 pgste = pgste_update_young(ptep, pgste);
1020 pte = *ptep;
1021 *ptep = pte_mkold(pte);
1022 pgste_set_unlock(ptep, pgste);
1023 return pte_young(pte);
1024 }
1025 return 0;
1026 }
1027
1028 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1029 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1030 unsigned long address, pte_t *ptep)
1031 {
1032 /* No need to flush TLB
1033 * On s390 reference bits are in storage key and never in TLB
1034 * With virtualization we handle the reference bit, without we
1035 * we can simply return */
1036 return ptep_test_and_clear_young(vma, address, ptep);
1037 }
1038
1039 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1040 {
1041 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1042 #ifndef CONFIG_64BIT
1043 /* pto must point to the start of the segment table */
1044 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
1045 #else
1046 /* ipte in zarch mode can do the math */
1047 pte_t *pto = ptep;
1048 #endif
1049 asm volatile(
1050 " ipte %2,%3"
1051 : "=m" (*ptep) : "m" (*ptep),
1052 "a" (pto), "a" (address));
1053 }
1054 }
1055
1056 /*
1057 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1058 * both clear the TLB for the unmapped pte. The reason is that
1059 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1060 * to modify an active pte. The sequence is
1061 * 1) ptep_get_and_clear
1062 * 2) set_pte_at
1063 * 3) flush_tlb_range
1064 * On s390 the tlb needs to get flushed with the modification of the pte
1065 * if the pte is active. The only way how this can be implemented is to
1066 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1067 * is a nop.
1068 */
1069 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1070 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1071 unsigned long address, pte_t *ptep)
1072 {
1073 pgste_t pgste;
1074 pte_t pte;
1075
1076 mm->context.flush_mm = 1;
1077 if (mm_has_pgste(mm)) {
1078 pgste = pgste_get_lock(ptep);
1079 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1080 }
1081
1082 pte = *ptep;
1083 if (!mm_exclusive(mm))
1084 __ptep_ipte(address, ptep);
1085 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1086
1087 if (mm_has_pgste(mm)) {
1088 pgste = pgste_update_all(&pte, pgste);
1089 pgste_set_unlock(ptep, pgste);
1090 }
1091 return pte;
1092 }
1093
1094 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1095 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1096 unsigned long address,
1097 pte_t *ptep)
1098 {
1099 pgste_t pgste;
1100 pte_t pte;
1101
1102 mm->context.flush_mm = 1;
1103 if (mm_has_pgste(mm)) {
1104 pgste = pgste_get_lock(ptep);
1105 pgste_ipte_notify(mm, address, ptep, pgste);
1106 }
1107
1108 pte = *ptep;
1109 if (!mm_exclusive(mm))
1110 __ptep_ipte(address, ptep);
1111
1112 if (mm_has_pgste(mm)) {
1113 pgste = pgste_update_all(&pte, pgste);
1114 pgste_set(ptep, pgste);
1115 }
1116 return pte;
1117 }
1118
1119 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1120 unsigned long address,
1121 pte_t *ptep, pte_t pte)
1122 {
1123 pgste_t pgste;
1124
1125 if (mm_has_pgste(mm)) {
1126 pgste = *(pgste_t *)(ptep + PTRS_PER_PTE);
1127 pgste_set_key(ptep, pgste, pte);
1128 pgste_set_pte(ptep, pte);
1129 pgste_set_unlock(ptep, pgste);
1130 } else
1131 *ptep = pte;
1132 }
1133
1134 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1135 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1136 unsigned long address, pte_t *ptep)
1137 {
1138 pgste_t pgste;
1139 pte_t pte;
1140
1141 if (mm_has_pgste(vma->vm_mm)) {
1142 pgste = pgste_get_lock(ptep);
1143 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1144 }
1145
1146 pte = *ptep;
1147 __ptep_ipte(address, ptep);
1148 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1149
1150 if (mm_has_pgste(vma->vm_mm)) {
1151 pgste = pgste_update_all(&pte, pgste);
1152 pgste_set_unlock(ptep, pgste);
1153 }
1154 return pte;
1155 }
1156
1157 /*
1158 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1159 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1160 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1161 * cannot be accessed while the batched unmap is running. In this case
1162 * full==1 and a simple pte_clear is enough. See tlb.h.
1163 */
1164 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1165 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1166 unsigned long address,
1167 pte_t *ptep, int full)
1168 {
1169 pgste_t pgste;
1170 pte_t pte;
1171
1172 if (mm_has_pgste(mm)) {
1173 pgste = pgste_get_lock(ptep);
1174 if (!full)
1175 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1176 }
1177
1178 pte = *ptep;
1179 if (!full)
1180 __ptep_ipte(address, ptep);
1181 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1182
1183 if (mm_has_pgste(mm)) {
1184 pgste = pgste_update_all(&pte, pgste);
1185 pgste_set_unlock(ptep, pgste);
1186 }
1187 return pte;
1188 }
1189
1190 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1191 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1192 unsigned long address, pte_t *ptep)
1193 {
1194 pgste_t pgste;
1195 pte_t pte = *ptep;
1196
1197 if (pte_write(pte)) {
1198 mm->context.flush_mm = 1;
1199 if (mm_has_pgste(mm)) {
1200 pgste = pgste_get_lock(ptep);
1201 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1202 }
1203
1204 if (!mm_exclusive(mm))
1205 __ptep_ipte(address, ptep);
1206 pte = pte_wrprotect(pte);
1207
1208 if (mm_has_pgste(mm)) {
1209 pgste_set_pte(ptep, pte);
1210 pgste_set_unlock(ptep, pgste);
1211 } else
1212 *ptep = pte;
1213 }
1214 return pte;
1215 }
1216
1217 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1218 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1219 unsigned long address, pte_t *ptep,
1220 pte_t entry, int dirty)
1221 {
1222 pgste_t pgste;
1223
1224 if (pte_same(*ptep, entry))
1225 return 0;
1226 if (mm_has_pgste(vma->vm_mm)) {
1227 pgste = pgste_get_lock(ptep);
1228 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1229 }
1230
1231 __ptep_ipte(address, ptep);
1232
1233 if (mm_has_pgste(vma->vm_mm)) {
1234 pgste_set_pte(ptep, entry);
1235 pgste_set_unlock(ptep, pgste);
1236 } else
1237 *ptep = entry;
1238 return 1;
1239 }
1240
1241 /*
1242 * Conversion functions: convert a page and protection to a page entry,
1243 * and a page entry and page directory to the page they refer to.
1244 */
1245 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1246 {
1247 pte_t __pte;
1248 pte_val(__pte) = physpage + pgprot_val(pgprot);
1249 return __pte;
1250 }
1251
1252 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1253 {
1254 unsigned long physpage = page_to_phys(page);
1255 pte_t __pte = mk_pte_phys(physpage, pgprot);
1256
1257 if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) {
1258 pte_val(__pte) |= _PAGE_SWC;
1259 pte_val(__pte) &= ~_PAGE_RO;
1260 }
1261 return __pte;
1262 }
1263
1264 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1265 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1266 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1267 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1268
1269 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1270 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1271
1272 #ifndef CONFIG_64BIT
1273
1274 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1275 #define pud_deref(pmd) ({ BUG(); 0UL; })
1276 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1277
1278 #define pud_offset(pgd, address) ((pud_t *) pgd)
1279 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1280
1281 #else /* CONFIG_64BIT */
1282
1283 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1284 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1285 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1286
1287 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1288 {
1289 pud_t *pud = (pud_t *) pgd;
1290 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1291 pud = (pud_t *) pgd_deref(*pgd);
1292 return pud + pud_index(address);
1293 }
1294
1295 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1296 {
1297 pmd_t *pmd = (pmd_t *) pud;
1298 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1299 pmd = (pmd_t *) pud_deref(*pud);
1300 return pmd + pmd_index(address);
1301 }
1302
1303 #endif /* CONFIG_64BIT */
1304
1305 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1306 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1307 #define pte_page(x) pfn_to_page(pte_pfn(x))
1308
1309 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1310
1311 /* Find an entry in the lowest level page table.. */
1312 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1313 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1314 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1315 #define pte_unmap(pte) do { } while (0)
1316
1317 static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
1318 {
1319 unsigned long sto = (unsigned long) pmdp -
1320 pmd_index(address) * sizeof(pmd_t);
1321
1322 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
1323 asm volatile(
1324 " .insn rrf,0xb98e0000,%2,%3,0,0"
1325 : "=m" (*pmdp)
1326 : "m" (*pmdp), "a" (sto),
1327 "a" ((address & HPAGE_MASK))
1328 : "cc"
1329 );
1330 }
1331 }
1332
1333 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1334 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1335 {
1336 /*
1337 * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx)
1338 * Convert to segment table entry format.
1339 */
1340 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1341 return pgprot_val(SEGMENT_NONE);
1342 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1343 return pgprot_val(SEGMENT_RO);
1344 return pgprot_val(SEGMENT_RW);
1345 }
1346
1347 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1348 {
1349 pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1350 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1351 return pmd;
1352 }
1353
1354 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1355 {
1356 pmd_t __pmd;
1357 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1358 return __pmd;
1359 }
1360
1361 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1362 {
1363 /* Do not clobber _HPAGE_TYPE_NONE pages! */
1364 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV))
1365 pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
1366 return pmd;
1367 }
1368 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1369
1370 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1371
1372 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1373 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1374 pgtable_t pgtable);
1375
1376 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1377 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1378
1379 static inline int pmd_trans_splitting(pmd_t pmd)
1380 {
1381 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1382 }
1383
1384 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1385 pmd_t *pmdp, pmd_t entry)
1386 {
1387 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1)
1388 pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1389 *pmdp = entry;
1390 }
1391
1392 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1393 {
1394 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1395 return pmd;
1396 }
1397
1398 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1399 {
1400 pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
1401 return pmd;
1402 }
1403
1404 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1405 {
1406 /* No dirty bit in the segment table entry. */
1407 return pmd;
1408 }
1409
1410 static inline pmd_t pmd_mkold(pmd_t pmd)
1411 {
1412 /* No referenced bit in the segment table entry. */
1413 return pmd;
1414 }
1415
1416 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1417 {
1418 /* No referenced bit in the segment table entry. */
1419 return pmd;
1420 }
1421
1422 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1423 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1424 unsigned long address, pmd_t *pmdp)
1425 {
1426 unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
1427 long tmp, rc;
1428 int counter;
1429
1430 rc = 0;
1431 if (MACHINE_HAS_RRBM) {
1432 counter = PTRS_PER_PTE >> 6;
1433 asm volatile(
1434 "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */
1435 " ogr %1,%0\n"
1436 " la %3,0(%4,%3)\n"
1437 " brct %2,0b\n"
1438 : "=&d" (tmp), "+&d" (rc), "+d" (counter),
1439 "+a" (pmd_addr)
1440 : "a" (64 * 4096UL) : "cc");
1441 rc = !!rc;
1442 } else {
1443 counter = PTRS_PER_PTE;
1444 asm volatile(
1445 "0: rrbe 0,%2\n"
1446 " la %2,0(%3,%2)\n"
1447 " brc 12,1f\n"
1448 " lhi %0,1\n"
1449 "1: brct %1,0b\n"
1450 : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
1451 : "a" (4096UL) : "cc");
1452 }
1453 return rc;
1454 }
1455
1456 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1457 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1458 unsigned long address, pmd_t *pmdp)
1459 {
1460 pmd_t pmd = *pmdp;
1461
1462 __pmd_idte(address, pmdp);
1463 pmd_clear(pmdp);
1464 return pmd;
1465 }
1466
1467 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1468 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1469 unsigned long address, pmd_t *pmdp)
1470 {
1471 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1472 }
1473
1474 #define __HAVE_ARCH_PMDP_INVALIDATE
1475 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1476 unsigned long address, pmd_t *pmdp)
1477 {
1478 __pmd_idte(address, pmdp);
1479 }
1480
1481 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1482 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1483 unsigned long address, pmd_t *pmdp)
1484 {
1485 pmd_t pmd = *pmdp;
1486
1487 if (pmd_write(pmd)) {
1488 __pmd_idte(address, pmdp);
1489 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1490 }
1491 }
1492
1493 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1494 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1495
1496 static inline int pmd_trans_huge(pmd_t pmd)
1497 {
1498 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1499 }
1500
1501 static inline int has_transparent_hugepage(void)
1502 {
1503 return MACHINE_HAS_HPAGE ? 1 : 0;
1504 }
1505
1506 static inline unsigned long pmd_pfn(pmd_t pmd)
1507 {
1508 return pmd_val(pmd) >> PAGE_SHIFT;
1509 }
1510 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1511
1512 /*
1513 * 31 bit swap entry format:
1514 * A page-table entry has some bits we have to treat in a special way.
1515 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1516 * exception will occur instead of a page translation exception. The
1517 * specifiation exception has the bad habit not to store necessary
1518 * information in the lowcore.
1519 * Bit 21 and bit 22 are the page invalid bit and the page protection
1520 * bit. We set both to indicate a swapped page.
1521 * Bit 30 and 31 are used to distinguish the different page types. For
1522 * a swapped page these bits need to be zero.
1523 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1524 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1525 * plus 24 for the offset.
1526 * 0| offset |0110|o|type |00|
1527 * 0 0000000001111111111 2222 2 22222 33
1528 * 0 1234567890123456789 0123 4 56789 01
1529 *
1530 * 64 bit swap entry format:
1531 * A page-table entry has some bits we have to treat in a special way.
1532 * Bits 52 and bit 55 have to be zero, otherwise an specification
1533 * exception will occur instead of a page translation exception. The
1534 * specifiation exception has the bad habit not to store necessary
1535 * information in the lowcore.
1536 * Bit 53 and bit 54 are the page invalid bit and the page protection
1537 * bit. We set both to indicate a swapped page.
1538 * Bit 62 and 63 are used to distinguish the different page types. For
1539 * a swapped page these bits need to be zero.
1540 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1541 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1542 * plus 56 for the offset.
1543 * | offset |0110|o|type |00|
1544 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1545 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1546 */
1547 #ifndef CONFIG_64BIT
1548 #define __SWP_OFFSET_MASK (~0UL >> 12)
1549 #else
1550 #define __SWP_OFFSET_MASK (~0UL >> 11)
1551 #endif
1552 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1553 {
1554 pte_t pte;
1555 offset &= __SWP_OFFSET_MASK;
1556 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1557 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1558 return pte;
1559 }
1560
1561 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1562 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1563 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1564
1565 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1566 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1567
1568 #ifndef CONFIG_64BIT
1569 # define PTE_FILE_MAX_BITS 26
1570 #else /* CONFIG_64BIT */
1571 # define PTE_FILE_MAX_BITS 59
1572 #endif /* CONFIG_64BIT */
1573
1574 #define pte_to_pgoff(__pte) \
1575 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1576
1577 #define pgoff_to_pte(__off) \
1578 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1579 | _PAGE_TYPE_FILE })
1580
1581 #endif /* !__ASSEMBLY__ */
1582
1583 #define kern_addr_valid(addr) (1)
1584
1585 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1586 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1587 extern int s390_enable_sie(void);
1588
1589 /*
1590 * No page table caches to initialise
1591 */
1592 static inline void pgtable_cache_init(void) { }
1593 static inline void check_pgt_cache(void) { }
1594
1595 #include <asm-generic/pgtable.h>
1596
1597 #endif /* _S390_PAGE_H */
This page took 0.063383 seconds and 5 git commands to generate.