Merge branch 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[deliverable/linux.git] / arch / s390 / include / asm / pgtable.h
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <asm/bug.h>
32 #include <asm/page.h>
33
34 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
35 extern void paging_init(void);
36 extern void vmem_map_init(void);
37
38 /*
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
41 */
42 #define update_mmu_cache(vma, address, ptep) do { } while (0)
43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
44
45 /*
46 * ZERO_PAGE is a global shared page that is always zero; used
47 * for zero-mapped memory areas etc..
48 */
49
50 extern unsigned long empty_zero_page;
51 extern unsigned long zero_page_mask;
52
53 #define ZERO_PAGE(vaddr) \
54 (virt_to_page((void *)(empty_zero_page + \
55 (((unsigned long)(vaddr)) &zero_page_mask))))
56 #define __HAVE_COLOR_ZERO_PAGE
57
58 /* TODO: s390 cannot support io_remap_pfn_range... */
59 #endif /* !__ASSEMBLY__ */
60
61 /*
62 * PMD_SHIFT determines the size of the area a second-level page
63 * table can map
64 * PGDIR_SHIFT determines what a third-level page table entry can map
65 */
66 #define PMD_SHIFT 20
67 #define PUD_SHIFT 31
68 #define PGDIR_SHIFT 42
69
70 #define PMD_SIZE (1UL << PMD_SHIFT)
71 #define PMD_MASK (~(PMD_SIZE-1))
72 #define PUD_SIZE (1UL << PUD_SHIFT)
73 #define PUD_MASK (~(PUD_SIZE-1))
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
76
77 /*
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
82 */
83 #define PTRS_PER_PTE 256
84 #define PTRS_PER_PMD 2048
85 #define PTRS_PER_PUD 2048
86 #define PTRS_PER_PGD 2048
87
88 #define FIRST_USER_ADDRESS 0UL
89
90 #define pte_ERROR(e) \
91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92 #define pmd_ERROR(e) \
93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94 #define pud_ERROR(e) \
95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96 #define pgd_ERROR(e) \
97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
98
99 #ifndef __ASSEMBLY__
100 /*
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
107 */
108 extern unsigned long VMALLOC_START;
109 extern unsigned long VMALLOC_END;
110 extern struct page *vmemmap;
111
112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
113
114 extern unsigned long MODULES_VADDR;
115 extern unsigned long MODULES_END;
116 #define MODULES_VADDR MODULES_VADDR
117 #define MODULES_END MODULES_END
118 #define MODULES_LEN (1UL << 31)
119
120 static inline int is_module_addr(void *addr)
121 {
122 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
123 if (addr < (void *)MODULES_VADDR)
124 return 0;
125 if (addr > (void *)MODULES_END)
126 return 0;
127 return 1;
128 }
129
130 /*
131 * A 64 bit pagetable entry of S390 has following format:
132 * | PFRA |0IPC| OS |
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
135 *
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
139 *
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
148 * TT Type 00
149 *
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
154 *
155 * I Segment-Invalid Bit: Segment is not available for address-translation
156 * TT Type 01
157 * TF
158 * TL Table length
159 *
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
169 * R Real space
170 * TL Table-Length:
171 *
172 * A storage key has the following format:
173 * | ACC |F|R|C|0|
174 * 0 3 4 5 6 7
175 * ACC: access key
176 * F : fetch protection bit
177 * R : referenced bit
178 * C : changed bit
179 */
180
181 /* Hardware bits in the page table entry */
182 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
183 #define _PAGE_INVALID 0x400 /* HW invalid bit */
184 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
185
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
188 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
189 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
190 #define _PAGE_READ 0x010 /* SW pte read bit */
191 #define _PAGE_WRITE 0x020 /* SW pte write bit */
192 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
193 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
194 #define __HAVE_ARCH_PTE_SPECIAL
195
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
198 #else
199 #define _PAGE_SOFT_DIRTY 0x000
200 #endif
201
202 /* Set of bits not changed in pte_modify */
203 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
204 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
205
206 /*
207 * handle_pte_fault uses pte_present and pte_none to find out the pte type
208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
209 * distinguish present from not-present ptes. It is changed only with the page
210 * table lock held.
211 *
212 * The following table gives the different possible bit combinations for
213 * the pte hardware and software bits in the last 12 bits of a pte
214 * (. unassigned bit, x don't care, t swap type):
215 *
216 * 842100000000
217 * 000084210000
218 * 000000008421
219 * .IR.uswrdy.p
220 * empty .10.00000000
221 * swap .11..ttttt.0
222 * prot-none, clean, old .11.xx0000.1
223 * prot-none, clean, young .11.xx0001.1
224 * prot-none, dirty, old .10.xx0010.1
225 * prot-none, dirty, young .10.xx0011.1
226 * read-only, clean, old .11.xx0100.1
227 * read-only, clean, young .01.xx0101.1
228 * read-only, dirty, old .11.xx0110.1
229 * read-only, dirty, young .01.xx0111.1
230 * read-write, clean, old .11.xx1100.1
231 * read-write, clean, young .01.xx1101.1
232 * read-write, dirty, old .10.xx1110.1
233 * read-write, dirty, young .00.xx1111.1
234 * HW-bits: R read-only, I invalid
235 * SW-bits: p present, y young, d dirty, r read, w write, s special,
236 * u unused, l large
237 *
238 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
239 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
241 */
242
243 /* Bits in the segment/region table address-space-control-element */
244 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
245 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
246 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
247 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
248 #define _ASCE_REAL_SPACE 0x20 /* real space control */
249 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
250 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
251 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
252 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
253 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
254 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
255
256 /* Bits in the region table entry */
257 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
258 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
259 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
260 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
261 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
262 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
263 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
264 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
265
266 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
267 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
268 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
269 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
270 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
271 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
272
273 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
274 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
275
276 /* Bits in the segment table entry */
277 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
278 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
279 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
280 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
281 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
282 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
283
284 #define _SEGMENT_ENTRY (0)
285 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
286
287 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
289 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
290 #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
291 #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
292
293 #ifdef CONFIG_MEM_SOFT_DIRTY
294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
295 #else
296 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
297 #endif
298
299 /*
300 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
301 * dy..R...I...wr
302 * prot-none, clean, old 00..1...1...00
303 * prot-none, clean, young 01..1...1...00
304 * prot-none, dirty, old 10..1...1...00
305 * prot-none, dirty, young 11..1...1...00
306 * read-only, clean, old 00..1...1...01
307 * read-only, clean, young 01..1...0...01
308 * read-only, dirty, old 10..1...1...01
309 * read-only, dirty, young 11..1...0...01
310 * read-write, clean, old 00..1...1...11
311 * read-write, clean, young 01..1...0...11
312 * read-write, dirty, old 10..0...1...11
313 * read-write, dirty, young 11..0...0...11
314 * The segment table origin is used to distinguish empty (origin==0) from
315 * read-write, old segment table entries (origin!=0)
316 * HW-bits: R read-only, I invalid
317 * SW-bits: y young, d dirty, r read, w write
318 */
319
320 /* Page status table bits for virtualization */
321 #define PGSTE_ACC_BITS 0xf000000000000000UL
322 #define PGSTE_FP_BIT 0x0800000000000000UL
323 #define PGSTE_PCL_BIT 0x0080000000000000UL
324 #define PGSTE_HR_BIT 0x0040000000000000UL
325 #define PGSTE_HC_BIT 0x0020000000000000UL
326 #define PGSTE_GR_BIT 0x0004000000000000UL
327 #define PGSTE_GC_BIT 0x0002000000000000UL
328 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
329 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
330
331 /* Guest Page State used for virtualization */
332 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
333 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
334 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
335 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
336
337 /*
338 * A user page table pointer has the space-switch-event bit, the
339 * private-space-control bit and the storage-alteration-event-control
340 * bit set. A kernel page table pointer doesn't need them.
341 */
342 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
343 _ASCE_ALT_EVENT)
344
345 /*
346 * Page protection definitions.
347 */
348 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
349 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
350 _PAGE_INVALID | _PAGE_PROTECT)
351 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
352 _PAGE_INVALID | _PAGE_PROTECT)
353
354 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
355 _PAGE_YOUNG | _PAGE_DIRTY)
356 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
357 _PAGE_YOUNG | _PAGE_DIRTY)
358 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
359 _PAGE_PROTECT)
360
361 /*
362 * On s390 the page table entry has an invalid bit and a read-only bit.
363 * Read permission implies execute permission and write permission
364 * implies read permission.
365 */
366 /*xwr*/
367 #define __P000 PAGE_NONE
368 #define __P001 PAGE_READ
369 #define __P010 PAGE_READ
370 #define __P011 PAGE_READ
371 #define __P100 PAGE_READ
372 #define __P101 PAGE_READ
373 #define __P110 PAGE_READ
374 #define __P111 PAGE_READ
375
376 #define __S000 PAGE_NONE
377 #define __S001 PAGE_READ
378 #define __S010 PAGE_WRITE
379 #define __S011 PAGE_WRITE
380 #define __S100 PAGE_READ
381 #define __S101 PAGE_READ
382 #define __S110 PAGE_WRITE
383 #define __S111 PAGE_WRITE
384
385 /*
386 * Segment entry (large page) protection definitions.
387 */
388 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
389 _SEGMENT_ENTRY_PROTECT)
390 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
391 _SEGMENT_ENTRY_READ)
392 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
393 _SEGMENT_ENTRY_WRITE)
394
395 static inline int mm_has_pgste(struct mm_struct *mm)
396 {
397 #ifdef CONFIG_PGSTE
398 if (unlikely(mm->context.has_pgste))
399 return 1;
400 #endif
401 return 0;
402 }
403
404 static inline int mm_alloc_pgste(struct mm_struct *mm)
405 {
406 #ifdef CONFIG_PGSTE
407 if (unlikely(mm->context.alloc_pgste))
408 return 1;
409 #endif
410 return 0;
411 }
412
413 /*
414 * In the case that a guest uses storage keys
415 * faults should no longer be backed by zero pages
416 */
417 #define mm_forbids_zeropage mm_use_skey
418 static inline int mm_use_skey(struct mm_struct *mm)
419 {
420 #ifdef CONFIG_PGSTE
421 if (mm->context.use_skey)
422 return 1;
423 #endif
424 return 0;
425 }
426
427 /*
428 * pgd/pmd/pte query functions
429 */
430 static inline int pgd_present(pgd_t pgd)
431 {
432 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
433 return 1;
434 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
435 }
436
437 static inline int pgd_none(pgd_t pgd)
438 {
439 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
440 return 0;
441 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
442 }
443
444 static inline int pgd_bad(pgd_t pgd)
445 {
446 /*
447 * With dynamic page table levels the pgd can be a region table
448 * entry or a segment table entry. Check for the bit that are
449 * invalid for either table entry.
450 */
451 unsigned long mask =
452 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
453 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
454 return (pgd_val(pgd) & mask) != 0;
455 }
456
457 static inline int pud_present(pud_t pud)
458 {
459 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
460 return 1;
461 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
462 }
463
464 static inline int pud_none(pud_t pud)
465 {
466 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
467 return 0;
468 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
469 }
470
471 static inline int pud_large(pud_t pud)
472 {
473 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
474 return 0;
475 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
476 }
477
478 static inline int pud_bad(pud_t pud)
479 {
480 /*
481 * With dynamic page table levels the pud can be a region table
482 * entry or a segment table entry. Check for the bit that are
483 * invalid for either table entry.
484 */
485 unsigned long mask =
486 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
487 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
488 return (pud_val(pud) & mask) != 0;
489 }
490
491 static inline int pmd_present(pmd_t pmd)
492 {
493 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
494 }
495
496 static inline int pmd_none(pmd_t pmd)
497 {
498 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
499 }
500
501 static inline int pmd_large(pmd_t pmd)
502 {
503 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
504 }
505
506 static inline unsigned long pmd_pfn(pmd_t pmd)
507 {
508 unsigned long origin_mask;
509
510 origin_mask = _SEGMENT_ENTRY_ORIGIN;
511 if (pmd_large(pmd))
512 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
513 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
514 }
515
516 static inline int pmd_bad(pmd_t pmd)
517 {
518 if (pmd_large(pmd))
519 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
520 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
521 }
522
523 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
524 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
525 unsigned long address, pmd_t *pmdp,
526 pmd_t entry, int dirty);
527
528 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
529 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
530 unsigned long address, pmd_t *pmdp);
531
532 #define __HAVE_ARCH_PMD_WRITE
533 static inline int pmd_write(pmd_t pmd)
534 {
535 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
536 }
537
538 static inline int pmd_dirty(pmd_t pmd)
539 {
540 int dirty = 1;
541 if (pmd_large(pmd))
542 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
543 return dirty;
544 }
545
546 static inline int pmd_young(pmd_t pmd)
547 {
548 int young = 1;
549 if (pmd_large(pmd))
550 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
551 return young;
552 }
553
554 static inline int pte_present(pte_t pte)
555 {
556 /* Bit pattern: (pte & 0x001) == 0x001 */
557 return (pte_val(pte) & _PAGE_PRESENT) != 0;
558 }
559
560 static inline int pte_none(pte_t pte)
561 {
562 /* Bit pattern: pte == 0x400 */
563 return pte_val(pte) == _PAGE_INVALID;
564 }
565
566 static inline int pte_swap(pte_t pte)
567 {
568 /* Bit pattern: (pte & 0x201) == 0x200 */
569 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
570 == _PAGE_PROTECT;
571 }
572
573 static inline int pte_special(pte_t pte)
574 {
575 return (pte_val(pte) & _PAGE_SPECIAL);
576 }
577
578 #define __HAVE_ARCH_PTE_SAME
579 static inline int pte_same(pte_t a, pte_t b)
580 {
581 return pte_val(a) == pte_val(b);
582 }
583
584 #ifdef CONFIG_NUMA_BALANCING
585 static inline int pte_protnone(pte_t pte)
586 {
587 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
588 }
589
590 static inline int pmd_protnone(pmd_t pmd)
591 {
592 /* pmd_large(pmd) implies pmd_present(pmd) */
593 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
594 }
595 #endif
596
597 static inline int pte_soft_dirty(pte_t pte)
598 {
599 return pte_val(pte) & _PAGE_SOFT_DIRTY;
600 }
601 #define pte_swp_soft_dirty pte_soft_dirty
602
603 static inline pte_t pte_mksoft_dirty(pte_t pte)
604 {
605 pte_val(pte) |= _PAGE_SOFT_DIRTY;
606 return pte;
607 }
608 #define pte_swp_mksoft_dirty pte_mksoft_dirty
609
610 static inline pte_t pte_clear_soft_dirty(pte_t pte)
611 {
612 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
613 return pte;
614 }
615 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
616
617 static inline int pmd_soft_dirty(pmd_t pmd)
618 {
619 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
620 }
621
622 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
623 {
624 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
625 return pmd;
626 }
627
628 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
629 {
630 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
631 return pmd;
632 }
633
634 static inline pgste_t pgste_get_lock(pte_t *ptep)
635 {
636 unsigned long new = 0;
637 #ifdef CONFIG_PGSTE
638 unsigned long old;
639
640 preempt_disable();
641 asm(
642 " lg %0,%2\n"
643 "0: lgr %1,%0\n"
644 " nihh %0,0xff7f\n" /* clear PCL bit in old */
645 " oihh %1,0x0080\n" /* set PCL bit in new */
646 " csg %0,%1,%2\n"
647 " jl 0b\n"
648 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
649 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
650 #endif
651 return __pgste(new);
652 }
653
654 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
655 {
656 #ifdef CONFIG_PGSTE
657 asm(
658 " nihh %1,0xff7f\n" /* clear PCL bit */
659 " stg %1,%0\n"
660 : "=Q" (ptep[PTRS_PER_PTE])
661 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
662 : "cc", "memory");
663 preempt_enable();
664 #endif
665 }
666
667 static inline pgste_t pgste_get(pte_t *ptep)
668 {
669 unsigned long pgste = 0;
670 #ifdef CONFIG_PGSTE
671 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
672 #endif
673 return __pgste(pgste);
674 }
675
676 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
677 {
678 #ifdef CONFIG_PGSTE
679 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
680 #endif
681 }
682
683 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
684 struct mm_struct *mm)
685 {
686 #ifdef CONFIG_PGSTE
687 unsigned long address, bits, skey;
688
689 if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
690 return pgste;
691 address = pte_val(*ptep) & PAGE_MASK;
692 skey = (unsigned long) page_get_storage_key(address);
693 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
694 /* Transfer page changed & referenced bit to guest bits in pgste */
695 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
696 /* Copy page access key and fetch protection bit to pgste */
697 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
698 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
699 #endif
700 return pgste;
701
702 }
703
704 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
705 struct mm_struct *mm)
706 {
707 #ifdef CONFIG_PGSTE
708 unsigned long address;
709 unsigned long nkey;
710
711 if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
712 return;
713 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
714 address = pte_val(entry) & PAGE_MASK;
715 /*
716 * Set page access key and fetch protection bit from pgste.
717 * The guest C/R information is still in the PGSTE, set real
718 * key C/R to 0.
719 */
720 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
721 nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
722 page_set_storage_key(address, nkey, 0);
723 #endif
724 }
725
726 static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
727 {
728 if ((pte_val(entry) & _PAGE_PRESENT) &&
729 (pte_val(entry) & _PAGE_WRITE) &&
730 !(pte_val(entry) & _PAGE_INVALID)) {
731 if (!MACHINE_HAS_ESOP) {
732 /*
733 * Without enhanced suppression-on-protection force
734 * the dirty bit on for all writable ptes.
735 */
736 pte_val(entry) |= _PAGE_DIRTY;
737 pte_val(entry) &= ~_PAGE_PROTECT;
738 }
739 if (!(pte_val(entry) & _PAGE_PROTECT))
740 /* This pte allows write access, set user-dirty */
741 pgste_val(pgste) |= PGSTE_UC_BIT;
742 }
743 *ptep = entry;
744 return pgste;
745 }
746
747 /**
748 * struct gmap_struct - guest address space
749 * @crst_list: list of all crst tables used in the guest address space
750 * @mm: pointer to the parent mm_struct
751 * @guest_to_host: radix tree with guest to host address translation
752 * @host_to_guest: radix tree with pointer to segment table entries
753 * @guest_table_lock: spinlock to protect all entries in the guest page table
754 * @table: pointer to the page directory
755 * @asce: address space control element for gmap page table
756 * @pfault_enabled: defines if pfaults are applicable for the guest
757 */
758 struct gmap {
759 struct list_head list;
760 struct list_head crst_list;
761 struct mm_struct *mm;
762 struct radix_tree_root guest_to_host;
763 struct radix_tree_root host_to_guest;
764 spinlock_t guest_table_lock;
765 unsigned long *table;
766 unsigned long asce;
767 unsigned long asce_end;
768 void *private;
769 bool pfault_enabled;
770 };
771
772 /**
773 * struct gmap_notifier - notify function block for page invalidation
774 * @notifier_call: address of callback function
775 */
776 struct gmap_notifier {
777 struct list_head list;
778 void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
779 };
780
781 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
782 void gmap_free(struct gmap *gmap);
783 void gmap_enable(struct gmap *gmap);
784 void gmap_disable(struct gmap *gmap);
785 int gmap_map_segment(struct gmap *gmap, unsigned long from,
786 unsigned long to, unsigned long len);
787 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
788 unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
789 unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
790 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
791 int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
792 void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
793 void __gmap_zap(struct gmap *, unsigned long gaddr);
794 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
795
796
797 void gmap_register_ipte_notifier(struct gmap_notifier *);
798 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
799 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
800 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
801
802 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
803 unsigned long addr,
804 pte_t *ptep, pgste_t pgste)
805 {
806 #ifdef CONFIG_PGSTE
807 if (pgste_val(pgste) & PGSTE_IN_BIT) {
808 pgste_val(pgste) &= ~PGSTE_IN_BIT;
809 gmap_do_ipte_notify(mm, addr, ptep);
810 }
811 #endif
812 return pgste;
813 }
814
815 /*
816 * Certain architectures need to do special things when PTEs
817 * within a page table are directly modified. Thus, the following
818 * hook is made available.
819 */
820 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
821 pte_t *ptep, pte_t entry)
822 {
823 pgste_t pgste;
824
825 if (mm_has_pgste(mm)) {
826 pgste = pgste_get_lock(ptep);
827 pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
828 pgste_set_key(ptep, pgste, entry, mm);
829 pgste = pgste_set_pte(ptep, pgste, entry);
830 pgste_set_unlock(ptep, pgste);
831 } else {
832 *ptep = entry;
833 }
834 }
835
836 /*
837 * query functions pte_write/pte_dirty/pte_young only work if
838 * pte_present() is true. Undefined behaviour if not..
839 */
840 static inline int pte_write(pte_t pte)
841 {
842 return (pte_val(pte) & _PAGE_WRITE) != 0;
843 }
844
845 static inline int pte_dirty(pte_t pte)
846 {
847 return (pte_val(pte) & _PAGE_DIRTY) != 0;
848 }
849
850 static inline int pte_young(pte_t pte)
851 {
852 return (pte_val(pte) & _PAGE_YOUNG) != 0;
853 }
854
855 #define __HAVE_ARCH_PTE_UNUSED
856 static inline int pte_unused(pte_t pte)
857 {
858 return pte_val(pte) & _PAGE_UNUSED;
859 }
860
861 /*
862 * pgd/pmd/pte modification functions
863 */
864
865 static inline void pgd_clear(pgd_t *pgd)
866 {
867 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
868 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
869 }
870
871 static inline void pud_clear(pud_t *pud)
872 {
873 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
874 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
875 }
876
877 static inline void pmd_clear(pmd_t *pmdp)
878 {
879 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
880 }
881
882 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
883 {
884 pte_val(*ptep) = _PAGE_INVALID;
885 }
886
887 /*
888 * The following pte modification functions only work if
889 * pte_present() is true. Undefined behaviour if not..
890 */
891 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
892 {
893 pte_val(pte) &= _PAGE_CHG_MASK;
894 pte_val(pte) |= pgprot_val(newprot);
895 /*
896 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
897 * invalid bit set, clear it again for readable, young pages
898 */
899 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
900 pte_val(pte) &= ~_PAGE_INVALID;
901 /*
902 * newprot for PAGE_READ and PAGE_WRITE has the page protection
903 * bit set, clear it again for writable, dirty pages
904 */
905 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
906 pte_val(pte) &= ~_PAGE_PROTECT;
907 return pte;
908 }
909
910 static inline pte_t pte_wrprotect(pte_t pte)
911 {
912 pte_val(pte) &= ~_PAGE_WRITE;
913 pte_val(pte) |= _PAGE_PROTECT;
914 return pte;
915 }
916
917 static inline pte_t pte_mkwrite(pte_t pte)
918 {
919 pte_val(pte) |= _PAGE_WRITE;
920 if (pte_val(pte) & _PAGE_DIRTY)
921 pte_val(pte) &= ~_PAGE_PROTECT;
922 return pte;
923 }
924
925 static inline pte_t pte_mkclean(pte_t pte)
926 {
927 pte_val(pte) &= ~_PAGE_DIRTY;
928 pte_val(pte) |= _PAGE_PROTECT;
929 return pte;
930 }
931
932 static inline pte_t pte_mkdirty(pte_t pte)
933 {
934 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
935 if (pte_val(pte) & _PAGE_WRITE)
936 pte_val(pte) &= ~_PAGE_PROTECT;
937 return pte;
938 }
939
940 static inline pte_t pte_mkold(pte_t pte)
941 {
942 pte_val(pte) &= ~_PAGE_YOUNG;
943 pte_val(pte) |= _PAGE_INVALID;
944 return pte;
945 }
946
947 static inline pte_t pte_mkyoung(pte_t pte)
948 {
949 pte_val(pte) |= _PAGE_YOUNG;
950 if (pte_val(pte) & _PAGE_READ)
951 pte_val(pte) &= ~_PAGE_INVALID;
952 return pte;
953 }
954
955 static inline pte_t pte_mkspecial(pte_t pte)
956 {
957 pte_val(pte) |= _PAGE_SPECIAL;
958 return pte;
959 }
960
961 #ifdef CONFIG_HUGETLB_PAGE
962 static inline pte_t pte_mkhuge(pte_t pte)
963 {
964 pte_val(pte) |= _PAGE_LARGE;
965 return pte;
966 }
967 #endif
968
969 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
970 {
971 unsigned long pto = (unsigned long) ptep;
972
973 /* Invalidation + global TLB flush for the pte */
974 asm volatile(
975 " ipte %2,%3"
976 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
977 }
978
979 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
980 {
981 unsigned long pto = (unsigned long) ptep;
982
983 /* Invalidation + local TLB flush for the pte */
984 asm volatile(
985 " .insn rrf,0xb2210000,%2,%3,0,1"
986 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
987 }
988
989 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
990 {
991 unsigned long pto = (unsigned long) ptep;
992
993 /* Invalidate a range of ptes + global TLB flush of the ptes */
994 do {
995 asm volatile(
996 " .insn rrf,0xb2210000,%2,%0,%1,0"
997 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
998 } while (nr != 255);
999 }
1000
1001 static inline void ptep_flush_direct(struct mm_struct *mm,
1002 unsigned long address, pte_t *ptep)
1003 {
1004 int active, count;
1005
1006 if (pte_val(*ptep) & _PAGE_INVALID)
1007 return;
1008 active = (mm == current->active_mm) ? 1 : 0;
1009 count = atomic_add_return(0x10000, &mm->context.attach_count);
1010 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1011 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1012 __ptep_ipte_local(address, ptep);
1013 else
1014 __ptep_ipte(address, ptep);
1015 atomic_sub(0x10000, &mm->context.attach_count);
1016 }
1017
1018 static inline void ptep_flush_lazy(struct mm_struct *mm,
1019 unsigned long address, pte_t *ptep)
1020 {
1021 int active, count;
1022
1023 if (pte_val(*ptep) & _PAGE_INVALID)
1024 return;
1025 active = (mm == current->active_mm) ? 1 : 0;
1026 count = atomic_add_return(0x10000, &mm->context.attach_count);
1027 if ((count & 0xffff) <= active) {
1028 pte_val(*ptep) |= _PAGE_INVALID;
1029 mm->context.flush_mm = 1;
1030 } else
1031 __ptep_ipte(address, ptep);
1032 atomic_sub(0x10000, &mm->context.attach_count);
1033 }
1034
1035 /*
1036 * Get (and clear) the user dirty bit for a pte.
1037 */
1038 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1039 unsigned long addr,
1040 pte_t *ptep)
1041 {
1042 pgste_t pgste;
1043 pte_t pte;
1044 int dirty;
1045
1046 if (!mm_has_pgste(mm))
1047 return 0;
1048 pgste = pgste_get_lock(ptep);
1049 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1050 pgste_val(pgste) &= ~PGSTE_UC_BIT;
1051 pte = *ptep;
1052 if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1053 pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1054 __ptep_ipte(addr, ptep);
1055 if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1056 pte_val(pte) |= _PAGE_PROTECT;
1057 else
1058 pte_val(pte) |= _PAGE_INVALID;
1059 *ptep = pte;
1060 }
1061 pgste_set_unlock(ptep, pgste);
1062 return dirty;
1063 }
1064
1065 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1066 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1067 unsigned long addr, pte_t *ptep)
1068 {
1069 pgste_t pgste;
1070 pte_t pte, oldpte;
1071 int young;
1072
1073 if (mm_has_pgste(vma->vm_mm)) {
1074 pgste = pgste_get_lock(ptep);
1075 pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1076 }
1077
1078 oldpte = pte = *ptep;
1079 ptep_flush_direct(vma->vm_mm, addr, ptep);
1080 young = pte_young(pte);
1081 pte = pte_mkold(pte);
1082
1083 if (mm_has_pgste(vma->vm_mm)) {
1084 pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1085 pgste = pgste_set_pte(ptep, pgste, pte);
1086 pgste_set_unlock(ptep, pgste);
1087 } else
1088 *ptep = pte;
1089
1090 return young;
1091 }
1092
1093 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1094 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1095 unsigned long address, pte_t *ptep)
1096 {
1097 return ptep_test_and_clear_young(vma, address, ptep);
1098 }
1099
1100 /*
1101 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1102 * both clear the TLB for the unmapped pte. The reason is that
1103 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1104 * to modify an active pte. The sequence is
1105 * 1) ptep_get_and_clear
1106 * 2) set_pte_at
1107 * 3) flush_tlb_range
1108 * On s390 the tlb needs to get flushed with the modification of the pte
1109 * if the pte is active. The only way how this can be implemented is to
1110 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1111 * is a nop.
1112 */
1113 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1114 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1115 unsigned long address, pte_t *ptep)
1116 {
1117 pgste_t pgste;
1118 pte_t pte;
1119
1120 if (mm_has_pgste(mm)) {
1121 pgste = pgste_get_lock(ptep);
1122 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1123 }
1124
1125 pte = *ptep;
1126 ptep_flush_lazy(mm, address, ptep);
1127 pte_val(*ptep) = _PAGE_INVALID;
1128
1129 if (mm_has_pgste(mm)) {
1130 pgste = pgste_update_all(&pte, pgste, mm);
1131 pgste_set_unlock(ptep, pgste);
1132 }
1133 return pte;
1134 }
1135
1136 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1137 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1138 unsigned long address,
1139 pte_t *ptep)
1140 {
1141 pgste_t pgste;
1142 pte_t pte;
1143
1144 if (mm_has_pgste(mm)) {
1145 pgste = pgste_get_lock(ptep);
1146 pgste_ipte_notify(mm, address, ptep, pgste);
1147 }
1148
1149 pte = *ptep;
1150 ptep_flush_lazy(mm, address, ptep);
1151
1152 if (mm_has_pgste(mm)) {
1153 pgste = pgste_update_all(&pte, pgste, mm);
1154 pgste_set(ptep, pgste);
1155 }
1156 return pte;
1157 }
1158
1159 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1160 unsigned long address,
1161 pte_t *ptep, pte_t pte)
1162 {
1163 pgste_t pgste;
1164
1165 if (mm_has_pgste(mm)) {
1166 pgste = pgste_get(ptep);
1167 pgste_set_key(ptep, pgste, pte, mm);
1168 pgste = pgste_set_pte(ptep, pgste, pte);
1169 pgste_set_unlock(ptep, pgste);
1170 } else
1171 *ptep = pte;
1172 }
1173
1174 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1175 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1176 unsigned long address, pte_t *ptep)
1177 {
1178 pgste_t pgste;
1179 pte_t pte;
1180
1181 if (mm_has_pgste(vma->vm_mm)) {
1182 pgste = pgste_get_lock(ptep);
1183 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1184 }
1185
1186 pte = *ptep;
1187 ptep_flush_direct(vma->vm_mm, address, ptep);
1188 pte_val(*ptep) = _PAGE_INVALID;
1189
1190 if (mm_has_pgste(vma->vm_mm)) {
1191 if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1192 _PGSTE_GPS_USAGE_UNUSED)
1193 pte_val(pte) |= _PAGE_UNUSED;
1194 pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1195 pgste_set_unlock(ptep, pgste);
1196 }
1197 return pte;
1198 }
1199
1200 /*
1201 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1202 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1203 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1204 * cannot be accessed while the batched unmap is running. In this case
1205 * full==1 and a simple pte_clear is enough. See tlb.h.
1206 */
1207 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1208 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1209 unsigned long address,
1210 pte_t *ptep, int full)
1211 {
1212 pgste_t pgste;
1213 pte_t pte;
1214
1215 if (!full && mm_has_pgste(mm)) {
1216 pgste = pgste_get_lock(ptep);
1217 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1218 }
1219
1220 pte = *ptep;
1221 if (!full)
1222 ptep_flush_lazy(mm, address, ptep);
1223 pte_val(*ptep) = _PAGE_INVALID;
1224
1225 if (!full && mm_has_pgste(mm)) {
1226 pgste = pgste_update_all(&pte, pgste, mm);
1227 pgste_set_unlock(ptep, pgste);
1228 }
1229 return pte;
1230 }
1231
1232 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1233 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1234 unsigned long address, pte_t *ptep)
1235 {
1236 pgste_t pgste;
1237 pte_t pte = *ptep;
1238
1239 if (pte_write(pte)) {
1240 if (mm_has_pgste(mm)) {
1241 pgste = pgste_get_lock(ptep);
1242 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1243 }
1244
1245 ptep_flush_lazy(mm, address, ptep);
1246 pte = pte_wrprotect(pte);
1247
1248 if (mm_has_pgste(mm)) {
1249 pgste = pgste_set_pte(ptep, pgste, pte);
1250 pgste_set_unlock(ptep, pgste);
1251 } else
1252 *ptep = pte;
1253 }
1254 return pte;
1255 }
1256
1257 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1258 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1259 unsigned long address, pte_t *ptep,
1260 pte_t entry, int dirty)
1261 {
1262 pgste_t pgste;
1263 pte_t oldpte;
1264
1265 oldpte = *ptep;
1266 if (pte_same(oldpte, entry))
1267 return 0;
1268 if (mm_has_pgste(vma->vm_mm)) {
1269 pgste = pgste_get_lock(ptep);
1270 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1271 }
1272
1273 ptep_flush_direct(vma->vm_mm, address, ptep);
1274
1275 if (mm_has_pgste(vma->vm_mm)) {
1276 if (pte_val(oldpte) & _PAGE_INVALID)
1277 pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1278 pgste = pgste_set_pte(ptep, pgste, entry);
1279 pgste_set_unlock(ptep, pgste);
1280 } else
1281 *ptep = entry;
1282 return 1;
1283 }
1284
1285 /*
1286 * Conversion functions: convert a page and protection to a page entry,
1287 * and a page entry and page directory to the page they refer to.
1288 */
1289 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1290 {
1291 pte_t __pte;
1292 pte_val(__pte) = physpage + pgprot_val(pgprot);
1293 return pte_mkyoung(__pte);
1294 }
1295
1296 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1297 {
1298 unsigned long physpage = page_to_phys(page);
1299 pte_t __pte = mk_pte_phys(physpage, pgprot);
1300
1301 if (pte_write(__pte) && PageDirty(page))
1302 __pte = pte_mkdirty(__pte);
1303 return __pte;
1304 }
1305
1306 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1307 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1308 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1309 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1310
1311 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1312 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1313
1314 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1315 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1316 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1317
1318 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1319 {
1320 pud_t *pud = (pud_t *) pgd;
1321 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1322 pud = (pud_t *) pgd_deref(*pgd);
1323 return pud + pud_index(address);
1324 }
1325
1326 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1327 {
1328 pmd_t *pmd = (pmd_t *) pud;
1329 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1330 pmd = (pmd_t *) pud_deref(*pud);
1331 return pmd + pmd_index(address);
1332 }
1333
1334 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1335 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1336 #define pte_page(x) pfn_to_page(pte_pfn(x))
1337
1338 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1339
1340 /* Find an entry in the lowest level page table.. */
1341 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1342 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1343 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1344 #define pte_unmap(pte) do { } while (0)
1345
1346 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1347 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1348 {
1349 /*
1350 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1351 * Convert to segment table entry format.
1352 */
1353 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1354 return pgprot_val(SEGMENT_NONE);
1355 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1356 return pgprot_val(SEGMENT_READ);
1357 return pgprot_val(SEGMENT_WRITE);
1358 }
1359
1360 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1361 {
1362 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1363 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1364 return pmd;
1365 }
1366
1367 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1368 {
1369 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1370 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1371 return pmd;
1372 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1373 return pmd;
1374 }
1375
1376 static inline pmd_t pmd_mkclean(pmd_t pmd)
1377 {
1378 if (pmd_large(pmd)) {
1379 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1380 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1381 }
1382 return pmd;
1383 }
1384
1385 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1386 {
1387 if (pmd_large(pmd)) {
1388 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1389 _SEGMENT_ENTRY_SOFT_DIRTY;
1390 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1391 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1392 }
1393 return pmd;
1394 }
1395
1396 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1397 {
1398 if (pmd_large(pmd)) {
1399 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1400 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1401 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1402 }
1403 return pmd;
1404 }
1405
1406 static inline pmd_t pmd_mkold(pmd_t pmd)
1407 {
1408 if (pmd_large(pmd)) {
1409 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1410 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1411 }
1412 return pmd;
1413 }
1414
1415 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1416 {
1417 if (pmd_large(pmd)) {
1418 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1419 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1420 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1421 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1422 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1423 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1424 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1425 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1426 return pmd;
1427 }
1428 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1429 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1430 return pmd;
1431 }
1432
1433 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1434 {
1435 pmd_t __pmd;
1436 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1437 return __pmd;
1438 }
1439
1440 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1441
1442 static inline void __pmdp_csp(pmd_t *pmdp)
1443 {
1444 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1445 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1446 _SEGMENT_ENTRY_INVALID;
1447 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1448
1449 asm volatile(
1450 " csp %1,%3"
1451 : "=m" (*pmdp)
1452 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1453 }
1454
1455 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1456 {
1457 unsigned long sto;
1458
1459 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1460 asm volatile(
1461 " .insn rrf,0xb98e0000,%2,%3,0,0"
1462 : "=m" (*pmdp)
1463 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1464 : "cc" );
1465 }
1466
1467 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1468 {
1469 unsigned long sto;
1470
1471 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1472 asm volatile(
1473 " .insn rrf,0xb98e0000,%2,%3,0,1"
1474 : "=m" (*pmdp)
1475 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1476 : "cc" );
1477 }
1478
1479 static inline void pmdp_flush_direct(struct mm_struct *mm,
1480 unsigned long address, pmd_t *pmdp)
1481 {
1482 int active, count;
1483
1484 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1485 return;
1486 if (!MACHINE_HAS_IDTE) {
1487 __pmdp_csp(pmdp);
1488 return;
1489 }
1490 active = (mm == current->active_mm) ? 1 : 0;
1491 count = atomic_add_return(0x10000, &mm->context.attach_count);
1492 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1493 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1494 __pmdp_idte_local(address, pmdp);
1495 else
1496 __pmdp_idte(address, pmdp);
1497 atomic_sub(0x10000, &mm->context.attach_count);
1498 }
1499
1500 static inline void pmdp_flush_lazy(struct mm_struct *mm,
1501 unsigned long address, pmd_t *pmdp)
1502 {
1503 int active, count;
1504
1505 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1506 return;
1507 active = (mm == current->active_mm) ? 1 : 0;
1508 count = atomic_add_return(0x10000, &mm->context.attach_count);
1509 if ((count & 0xffff) <= active) {
1510 pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1511 mm->context.flush_mm = 1;
1512 } else if (MACHINE_HAS_IDTE)
1513 __pmdp_idte(address, pmdp);
1514 else
1515 __pmdp_csp(pmdp);
1516 atomic_sub(0x10000, &mm->context.attach_count);
1517 }
1518
1519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1520
1521 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1522 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1523 pgtable_t pgtable);
1524
1525 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1526 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1527
1528 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1529 pmd_t *pmdp, pmd_t entry)
1530 {
1531 *pmdp = entry;
1532 }
1533
1534 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1535 {
1536 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1537 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1538 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1539 return pmd;
1540 }
1541
1542 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1543 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1544 unsigned long address, pmd_t *pmdp)
1545 {
1546 pmd_t pmd;
1547
1548 pmd = *pmdp;
1549 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1550 *pmdp = pmd_mkold(pmd);
1551 return pmd_young(pmd);
1552 }
1553
1554 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1555 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1556 unsigned long address, pmd_t *pmdp)
1557 {
1558 pmd_t pmd = *pmdp;
1559
1560 pmdp_flush_direct(mm, address, pmdp);
1561 pmd_clear(pmdp);
1562 return pmd;
1563 }
1564
1565 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1566 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1567 unsigned long address,
1568 pmd_t *pmdp, int full)
1569 {
1570 pmd_t pmd = *pmdp;
1571
1572 if (!full)
1573 pmdp_flush_lazy(mm, address, pmdp);
1574 pmd_clear(pmdp);
1575 return pmd;
1576 }
1577
1578 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1579 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1580 unsigned long address, pmd_t *pmdp)
1581 {
1582 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1583 }
1584
1585 #define __HAVE_ARCH_PMDP_INVALIDATE
1586 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1587 unsigned long address, pmd_t *pmdp)
1588 {
1589 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1590 }
1591
1592 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1593 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1594 unsigned long address, pmd_t *pmdp)
1595 {
1596 pmd_t pmd = *pmdp;
1597
1598 if (pmd_write(pmd)) {
1599 pmdp_flush_direct(mm, address, pmdp);
1600 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1601 }
1602 }
1603
1604 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1605 unsigned long address,
1606 pmd_t *pmdp)
1607 {
1608 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1609 }
1610 #define pmdp_collapse_flush pmdp_collapse_flush
1611
1612 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1613 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1614
1615 static inline int pmd_trans_huge(pmd_t pmd)
1616 {
1617 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1618 }
1619
1620 static inline int has_transparent_hugepage(void)
1621 {
1622 return MACHINE_HAS_HPAGE ? 1 : 0;
1623 }
1624 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1625
1626 /*
1627 * 64 bit swap entry format:
1628 * A page-table entry has some bits we have to treat in a special way.
1629 * Bits 52 and bit 55 have to be zero, otherwise a specification
1630 * exception will occur instead of a page translation exception. The
1631 * specification exception has the bad habit not to store necessary
1632 * information in the lowcore.
1633 * Bits 54 and 63 are used to indicate the page type.
1634 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1635 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1636 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1637 * for the offset.
1638 * | offset |01100|type |00|
1639 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1640 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1641 */
1642
1643 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1644 #define __SWP_OFFSET_SHIFT 12
1645 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1646 #define __SWP_TYPE_SHIFT 2
1647
1648 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1649 {
1650 pte_t pte;
1651
1652 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1653 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1654 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1655 return pte;
1656 }
1657
1658 static inline unsigned long __swp_type(swp_entry_t entry)
1659 {
1660 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1661 }
1662
1663 static inline unsigned long __swp_offset(swp_entry_t entry)
1664 {
1665 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1666 }
1667
1668 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1669 {
1670 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1671 }
1672
1673 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1674 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1675
1676 #endif /* !__ASSEMBLY__ */
1677
1678 #define kern_addr_valid(addr) (1)
1679
1680 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1681 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1682 extern int s390_enable_sie(void);
1683 extern int s390_enable_skey(void);
1684 extern void s390_reset_cmma(struct mm_struct *mm);
1685
1686 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1687 #define HAVE_ARCH_UNMAPPED_AREA
1688 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1689
1690 /*
1691 * No page table caches to initialise
1692 */
1693 static inline void pgtable_cache_init(void) { }
1694 static inline void check_pgt_cache(void) { }
1695
1696 #include <asm-generic/pgtable.h>
1697
1698 #endif /* _S390_PAGE_H */
This page took 0.10753 seconds and 5 git commands to generate.