b59b44badae94d209a51c0d062d30656f4a39fcd
[deliverable/linux.git] / arch / s390 / include / asm / pgtable.h
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
21 *
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
25 *
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
28 */
29 #ifndef __ASSEMBLY__
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <asm/bug.h>
34 #include <asm/page.h>
35
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
39
40 /*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
44 #define update_mmu_cache(vma, address, ptep) do { } while (0)
45 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46
47 /*
48 * ZERO_PAGE is a global shared page that is always zero; used
49 * for zero-mapped memory areas etc..
50 */
51
52 extern unsigned long empty_zero_page;
53 extern unsigned long zero_page_mask;
54
55 #define ZERO_PAGE(vaddr) \
56 (virt_to_page((void *)(empty_zero_page + \
57 (((unsigned long)(vaddr)) &zero_page_mask))))
58 #define __HAVE_COLOR_ZERO_PAGE
59
60 /* TODO: s390 cannot support io_remap_pfn_range... */
61 #endif /* !__ASSEMBLY__ */
62
63 /*
64 * PMD_SHIFT determines the size of the area a second-level page
65 * table can map
66 * PGDIR_SHIFT determines what a third-level page table entry can map
67 */
68 #ifndef CONFIG_64BIT
69 # define PMD_SHIFT 20
70 # define PUD_SHIFT 20
71 # define PGDIR_SHIFT 20
72 #else /* CONFIG_64BIT */
73 # define PMD_SHIFT 20
74 # define PUD_SHIFT 31
75 # define PGDIR_SHIFT 42
76 #endif /* CONFIG_64BIT */
77
78 #define PMD_SIZE (1UL << PMD_SHIFT)
79 #define PMD_MASK (~(PMD_SIZE-1))
80 #define PUD_SIZE (1UL << PUD_SHIFT)
81 #define PUD_MASK (~(PUD_SIZE-1))
82 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
83 #define PGDIR_MASK (~(PGDIR_SIZE-1))
84
85 /*
86 * entries per page directory level: the S390 is two-level, so
87 * we don't really have any PMD directory physically.
88 * for S390 segment-table entries are combined to one PGD
89 * that leads to 1024 pte per pgd
90 */
91 #define PTRS_PER_PTE 256
92 #ifndef CONFIG_64BIT
93 #define PTRS_PER_PMD 1
94 #define PTRS_PER_PUD 1
95 #else /* CONFIG_64BIT */
96 #define PTRS_PER_PMD 2048
97 #define PTRS_PER_PUD 2048
98 #endif /* CONFIG_64BIT */
99 #define PTRS_PER_PGD 2048
100
101 #define FIRST_USER_ADDRESS 0
102
103 #define pte_ERROR(e) \
104 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
105 #define pmd_ERROR(e) \
106 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
107 #define pud_ERROR(e) \
108 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
109 #define pgd_ERROR(e) \
110 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
111
112 #ifndef __ASSEMBLY__
113 /*
114 * The vmalloc and module area will always be on the topmost area of the kernel
115 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
116 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
117 * modules will reside. That makes sure that inter module branches always
118 * happen without trampolines and in addition the placement within a 2GB frame
119 * is branch prediction unit friendly.
120 */
121 extern unsigned long VMALLOC_START;
122 extern unsigned long VMALLOC_END;
123 extern struct page *vmemmap;
124
125 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
126
127 #ifdef CONFIG_64BIT
128 extern unsigned long MODULES_VADDR;
129 extern unsigned long MODULES_END;
130 #define MODULES_VADDR MODULES_VADDR
131 #define MODULES_END MODULES_END
132 #define MODULES_LEN (1UL << 31)
133 #endif
134
135 /*
136 * A 31 bit pagetable entry of S390 has following format:
137 * | PFRA | | OS |
138 * 0 0IP0
139 * 00000000001111111111222222222233
140 * 01234567890123456789012345678901
141 *
142 * I Page-Invalid Bit: Page is not available for address-translation
143 * P Page-Protection Bit: Store access not possible for page
144 *
145 * A 31 bit segmenttable entry of S390 has following format:
146 * | P-table origin | |PTL
147 * 0 IC
148 * 00000000001111111111222222222233
149 * 01234567890123456789012345678901
150 *
151 * I Segment-Invalid Bit: Segment is not available for address-translation
152 * C Common-Segment Bit: Segment is not private (PoP 3-30)
153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
154 *
155 * The 31 bit segmenttable origin of S390 has following format:
156 *
157 * |S-table origin | | STL |
158 * X **GPS
159 * 00000000001111111111222222222233
160 * 01234567890123456789012345678901
161 *
162 * X Space-Switch event:
163 * G Segment-Invalid Bit: *
164 * P Private-Space Bit: Segment is not private (PoP 3-30)
165 * S Storage-Alteration:
166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
167 *
168 * A 64 bit pagetable entry of S390 has following format:
169 * | PFRA |0IPC| OS |
170 * 0000000000111111111122222222223333333333444444444455555555556666
171 * 0123456789012345678901234567890123456789012345678901234567890123
172 *
173 * I Page-Invalid Bit: Page is not available for address-translation
174 * P Page-Protection Bit: Store access not possible for page
175 * C Change-bit override: HW is not required to set change bit
176 *
177 * A 64 bit segmenttable entry of S390 has following format:
178 * | P-table origin | TT
179 * 0000000000111111111122222222223333333333444444444455555555556666
180 * 0123456789012345678901234567890123456789012345678901234567890123
181 *
182 * I Segment-Invalid Bit: Segment is not available for address-translation
183 * C Common-Segment Bit: Segment is not private (PoP 3-30)
184 * P Page-Protection Bit: Store access not possible for page
185 * TT Type 00
186 *
187 * A 64 bit region table entry of S390 has following format:
188 * | S-table origin | TF TTTL
189 * 0000000000111111111122222222223333333333444444444455555555556666
190 * 0123456789012345678901234567890123456789012345678901234567890123
191 *
192 * I Segment-Invalid Bit: Segment is not available for address-translation
193 * TT Type 01
194 * TF
195 * TL Table length
196 *
197 * The 64 bit regiontable origin of S390 has following format:
198 * | region table origon | DTTL
199 * 0000000000111111111122222222223333333333444444444455555555556666
200 * 0123456789012345678901234567890123456789012345678901234567890123
201 *
202 * X Space-Switch event:
203 * G Segment-Invalid Bit:
204 * P Private-Space Bit:
205 * S Storage-Alteration:
206 * R Real space
207 * TL Table-Length:
208 *
209 * A storage key has the following format:
210 * | ACC |F|R|C|0|
211 * 0 3 4 5 6 7
212 * ACC: access key
213 * F : fetch protection bit
214 * R : referenced bit
215 * C : changed bit
216 */
217
218 /* Hardware bits in the page table entry */
219 #define _PAGE_CO 0x100 /* HW Change-bit override */
220 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
221 #define _PAGE_INVALID 0x400 /* HW invalid bit */
222 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
223
224 /* Software bits in the page table entry */
225 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
226 #define _PAGE_TYPE 0x002 /* SW pte type bit */
227 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
228 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
229 #define _PAGE_WRITE 0x010 /* SW pte write bit */
230 #define _PAGE_SPECIAL 0x020 /* SW associated with special page */
231 #define __HAVE_ARCH_PTE_SPECIAL
232
233 /* Set of bits not changed in pte_modify */
234 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
235 _PAGE_DIRTY | _PAGE_YOUNG)
236
237 /*
238 * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
239 * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
240 * is used to distinguish present from not-present ptes. It is changed only
241 * with the page table lock held.
242 *
243 * The following table gives the different possible bit combinations for
244 * the pte hardware and software bits in the last 12 bits of a pte:
245 *
246 * 842100000000
247 * 000084210000
248 * 000000008421
249 * .IR....wdytp
250 * empty .10....00000
251 * swap .10....xxx10
252 * file .11....xxxx0
253 * prot-none, clean .11....00x01
254 * prot-none, dirty .10....01x01
255 * read-only, clean .01....00x01
256 * read-only, dirty .01....01x01
257 * read-write, clean .01....10x01
258 * read-write, dirty .00....11x01
259 *
260 * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
261 * pte_none is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
262 * pte_file is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
263 * pte_swap is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
264 */
265
266 #ifndef CONFIG_64BIT
267
268 /* Bits in the segment table address-space-control-element */
269 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
270 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
271 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
272 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
273 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
274
275 /* Bits in the segment table entry */
276 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
277 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
278 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
279 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
280 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
281
282 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
283 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
284
285 /* Page status table bits for virtualization */
286 #define PGSTE_ACC_BITS 0xf0000000UL
287 #define PGSTE_FP_BIT 0x08000000UL
288 #define PGSTE_PCL_BIT 0x00800000UL
289 #define PGSTE_HR_BIT 0x00400000UL
290 #define PGSTE_HC_BIT 0x00200000UL
291 #define PGSTE_GR_BIT 0x00040000UL
292 #define PGSTE_GC_BIT 0x00020000UL
293 #define PGSTE_UR_BIT 0x00008000UL
294 #define PGSTE_UC_BIT 0x00004000UL /* user dirty (migration) */
295 #define PGSTE_IN_BIT 0x00002000UL /* IPTE notify bit */
296
297 #else /* CONFIG_64BIT */
298
299 /* Bits in the segment/region table address-space-control-element */
300 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
301 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
302 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
303 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
304 #define _ASCE_REAL_SPACE 0x20 /* real space control */
305 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
306 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
307 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
308 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
309 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
310 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
311
312 /* Bits in the region table entry */
313 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
314 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
315 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
316 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
317 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
318 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
319 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
320 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
321
322 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
323 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
324 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
325 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
326 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
327 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
328
329 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
330 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
331 #define _REGION3_ENTRY_CO 0x100 /* change-recording override */
332
333 /* Bits in the segment table entry */
334 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
335 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
336 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
337 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
338
339 #define _SEGMENT_ENTRY (0)
340 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
341
342 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
343 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
344 #define _SEGMENT_ENTRY_SPLIT 0x001 /* THP splitting bit */
345
346 #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
347
348 /* Set of bits not changed in pmd_modify */
349 #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
350 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
351
352 /* Page status table bits for virtualization */
353 #define PGSTE_ACC_BITS 0xf000000000000000UL
354 #define PGSTE_FP_BIT 0x0800000000000000UL
355 #define PGSTE_PCL_BIT 0x0080000000000000UL
356 #define PGSTE_HR_BIT 0x0040000000000000UL
357 #define PGSTE_HC_BIT 0x0020000000000000UL
358 #define PGSTE_GR_BIT 0x0004000000000000UL
359 #define PGSTE_GC_BIT 0x0002000000000000UL
360 #define PGSTE_UR_BIT 0x0000800000000000UL
361 #define PGSTE_UC_BIT 0x0000400000000000UL /* user dirty (migration) */
362 #define PGSTE_IN_BIT 0x0000200000000000UL /* IPTE notify bit */
363
364 #endif /* CONFIG_64BIT */
365
366 /*
367 * A user page table pointer has the space-switch-event bit, the
368 * private-space-control bit and the storage-alteration-event-control
369 * bit set. A kernel page table pointer doesn't need them.
370 */
371 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
372 _ASCE_ALT_EVENT)
373
374 /*
375 * Page protection definitions.
376 */
377 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
378 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_PROTECT)
379 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_WRITE | _PAGE_PROTECT)
380
381 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_WRITE | _PAGE_DIRTY)
382 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_WRITE | _PAGE_DIRTY)
383 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_PROTECT)
384
385 /*
386 * On s390 the page table entry has an invalid bit and a read-only bit.
387 * Read permission implies execute permission and write permission
388 * implies read permission.
389 */
390 /*xwr*/
391 #define __P000 PAGE_NONE
392 #define __P001 PAGE_READ
393 #define __P010 PAGE_READ
394 #define __P011 PAGE_READ
395 #define __P100 PAGE_READ
396 #define __P101 PAGE_READ
397 #define __P110 PAGE_READ
398 #define __P111 PAGE_READ
399
400 #define __S000 PAGE_NONE
401 #define __S001 PAGE_READ
402 #define __S010 PAGE_WRITE
403 #define __S011 PAGE_WRITE
404 #define __S100 PAGE_READ
405 #define __S101 PAGE_READ
406 #define __S110 PAGE_WRITE
407 #define __S111 PAGE_WRITE
408
409 /*
410 * Segment entry (large page) protection definitions.
411 */
412 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
413 _SEGMENT_ENTRY_PROTECT)
414 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT)
415 #define SEGMENT_WRITE __pgprot(0)
416
417 static inline int mm_exclusive(struct mm_struct *mm)
418 {
419 return likely(mm == current->active_mm &&
420 atomic_read(&mm->context.attach_count) <= 1);
421 }
422
423 static inline int mm_has_pgste(struct mm_struct *mm)
424 {
425 #ifdef CONFIG_PGSTE
426 if (unlikely(mm->context.has_pgste))
427 return 1;
428 #endif
429 return 0;
430 }
431 /*
432 * pgd/pmd/pte query functions
433 */
434 #ifndef CONFIG_64BIT
435
436 static inline int pgd_present(pgd_t pgd) { return 1; }
437 static inline int pgd_none(pgd_t pgd) { return 0; }
438 static inline int pgd_bad(pgd_t pgd) { return 0; }
439
440 static inline int pud_present(pud_t pud) { return 1; }
441 static inline int pud_none(pud_t pud) { return 0; }
442 static inline int pud_large(pud_t pud) { return 0; }
443 static inline int pud_bad(pud_t pud) { return 0; }
444
445 #else /* CONFIG_64BIT */
446
447 static inline int pgd_present(pgd_t pgd)
448 {
449 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
450 return 1;
451 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
452 }
453
454 static inline int pgd_none(pgd_t pgd)
455 {
456 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
457 return 0;
458 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
459 }
460
461 static inline int pgd_bad(pgd_t pgd)
462 {
463 /*
464 * With dynamic page table levels the pgd can be a region table
465 * entry or a segment table entry. Check for the bit that are
466 * invalid for either table entry.
467 */
468 unsigned long mask =
469 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
470 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
471 return (pgd_val(pgd) & mask) != 0;
472 }
473
474 static inline int pud_present(pud_t pud)
475 {
476 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
477 return 1;
478 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
479 }
480
481 static inline int pud_none(pud_t pud)
482 {
483 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
484 return 0;
485 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
486 }
487
488 static inline int pud_large(pud_t pud)
489 {
490 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
491 return 0;
492 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
493 }
494
495 static inline int pud_bad(pud_t pud)
496 {
497 /*
498 * With dynamic page table levels the pud can be a region table
499 * entry or a segment table entry. Check for the bit that are
500 * invalid for either table entry.
501 */
502 unsigned long mask =
503 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
504 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
505 return (pud_val(pud) & mask) != 0;
506 }
507
508 #endif /* CONFIG_64BIT */
509
510 static inline int pmd_present(pmd_t pmd)
511 {
512 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
513 }
514
515 static inline int pmd_none(pmd_t pmd)
516 {
517 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
518 }
519
520 static inline int pmd_large(pmd_t pmd)
521 {
522 #ifdef CONFIG_64BIT
523 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
524 #else
525 return 0;
526 #endif
527 }
528
529 static inline int pmd_bad(pmd_t pmd)
530 {
531 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INVALID;
532 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
533 }
534
535 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
536 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
537 unsigned long addr, pmd_t *pmdp);
538
539 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
540 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
541 unsigned long address, pmd_t *pmdp,
542 pmd_t entry, int dirty);
543
544 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
545 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
546 unsigned long address, pmd_t *pmdp);
547
548 #define __HAVE_ARCH_PMD_WRITE
549 static inline int pmd_write(pmd_t pmd)
550 {
551 return (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) == 0;
552 }
553
554 static inline int pmd_young(pmd_t pmd)
555 {
556 return 0;
557 }
558
559 static inline int pte_present(pte_t pte)
560 {
561 /* Bit pattern: (pte & 0x001) == 0x001 */
562 return (pte_val(pte) & _PAGE_PRESENT) != 0;
563 }
564
565 static inline int pte_none(pte_t pte)
566 {
567 /* Bit pattern: pte == 0x400 */
568 return pte_val(pte) == _PAGE_INVALID;
569 }
570
571 static inline int pte_file(pte_t pte)
572 {
573 /* Bit pattern: (pte & 0x601) == 0x600 */
574 return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
575 == (_PAGE_INVALID | _PAGE_PROTECT);
576 }
577
578 static inline int pte_special(pte_t pte)
579 {
580 return (pte_val(pte) & _PAGE_SPECIAL);
581 }
582
583 #define __HAVE_ARCH_PTE_SAME
584 static inline int pte_same(pte_t a, pte_t b)
585 {
586 return pte_val(a) == pte_val(b);
587 }
588
589 static inline pgste_t pgste_get_lock(pte_t *ptep)
590 {
591 unsigned long new = 0;
592 #ifdef CONFIG_PGSTE
593 unsigned long old;
594
595 preempt_disable();
596 asm(
597 " lg %0,%2\n"
598 "0: lgr %1,%0\n"
599 " nihh %0,0xff7f\n" /* clear PCL bit in old */
600 " oihh %1,0x0080\n" /* set PCL bit in new */
601 " csg %0,%1,%2\n"
602 " jl 0b\n"
603 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
604 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
605 #endif
606 return __pgste(new);
607 }
608
609 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
610 {
611 #ifdef CONFIG_PGSTE
612 asm(
613 " nihh %1,0xff7f\n" /* clear PCL bit */
614 " stg %1,%0\n"
615 : "=Q" (ptep[PTRS_PER_PTE])
616 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
617 : "cc", "memory");
618 preempt_enable();
619 #endif
620 }
621
622 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
623 {
624 #ifdef CONFIG_PGSTE
625 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
626 #endif
627 }
628
629 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
630 {
631 #ifdef CONFIG_PGSTE
632 unsigned long address, bits;
633 unsigned char skey;
634
635 if (pte_val(*ptep) & _PAGE_INVALID)
636 return pgste;
637 address = pte_val(*ptep) & PAGE_MASK;
638 skey = page_get_storage_key(address);
639 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
640 /* Clear page changed & referenced bit in the storage key */
641 if (bits & _PAGE_CHANGED)
642 page_set_storage_key(address, skey ^ bits, 0);
643 else if (bits)
644 page_reset_referenced(address);
645 /* Transfer page changed & referenced bit to guest bits in pgste */
646 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
647 /* Get host changed & referenced bits from pgste */
648 bits |= (pgste_val(pgste) & (PGSTE_HR_BIT | PGSTE_HC_BIT)) >> 52;
649 /* Transfer page changed & referenced bit to kvm user bits */
650 pgste_val(pgste) |= bits << 45; /* PGSTE_UR_BIT & PGSTE_UC_BIT */
651 /* Clear relevant host bits in pgste. */
652 pgste_val(pgste) &= ~(PGSTE_HR_BIT | PGSTE_HC_BIT);
653 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
654 /* Copy page access key and fetch protection bit to pgste */
655 pgste_val(pgste) |=
656 (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
657 /* Transfer referenced bit to pte */
658 pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1;
659 #endif
660 return pgste;
661
662 }
663
664 static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
665 {
666 #ifdef CONFIG_PGSTE
667 int young;
668
669 if (pte_val(*ptep) & _PAGE_INVALID)
670 return pgste;
671 /* Get referenced bit from storage key */
672 young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
673 if (young)
674 pgste_val(pgste) |= PGSTE_GR_BIT;
675 /* Get host referenced bit from pgste */
676 if (pgste_val(pgste) & PGSTE_HR_BIT) {
677 pgste_val(pgste) &= ~PGSTE_HR_BIT;
678 young = 1;
679 }
680 /* Transfer referenced bit to kvm user bits and pte */
681 if (young) {
682 pgste_val(pgste) |= PGSTE_UR_BIT;
683 pte_val(*ptep) |= _PAGE_YOUNG;
684 }
685 #endif
686 return pgste;
687 }
688
689 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
690 {
691 #ifdef CONFIG_PGSTE
692 unsigned long address;
693 unsigned long nkey;
694
695 if (pte_val(entry) & _PAGE_INVALID)
696 return;
697 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
698 address = pte_val(entry) & PAGE_MASK;
699 /*
700 * Set page access key and fetch protection bit from pgste.
701 * The guest C/R information is still in the PGSTE, set real
702 * key C/R to 0.
703 */
704 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
705 page_set_storage_key(address, nkey, 0);
706 #endif
707 }
708
709 static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
710 {
711 if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_WRITE)) {
712 /*
713 * Without enhanced suppression-on-protection force
714 * the dirty bit on for all writable ptes.
715 */
716 pte_val(entry) |= _PAGE_DIRTY;
717 pte_val(entry) &= ~_PAGE_PROTECT;
718 }
719 *ptep = entry;
720 }
721
722 /**
723 * struct gmap_struct - guest address space
724 * @mm: pointer to the parent mm_struct
725 * @table: pointer to the page directory
726 * @asce: address space control element for gmap page table
727 * @crst_list: list of all crst tables used in the guest address space
728 */
729 struct gmap {
730 struct list_head list;
731 struct mm_struct *mm;
732 unsigned long *table;
733 unsigned long asce;
734 void *private;
735 struct list_head crst_list;
736 };
737
738 /**
739 * struct gmap_rmap - reverse mapping for segment table entries
740 * @gmap: pointer to the gmap_struct
741 * @entry: pointer to a segment table entry
742 * @vmaddr: virtual address in the guest address space
743 */
744 struct gmap_rmap {
745 struct list_head list;
746 struct gmap *gmap;
747 unsigned long *entry;
748 unsigned long vmaddr;
749 };
750
751 /**
752 * struct gmap_pgtable - gmap information attached to a page table
753 * @vmaddr: address of the 1MB segment in the process virtual memory
754 * @mapper: list of segment table entries mapping a page table
755 */
756 struct gmap_pgtable {
757 unsigned long vmaddr;
758 struct list_head mapper;
759 };
760
761 /**
762 * struct gmap_notifier - notify function block for page invalidation
763 * @notifier_call: address of callback function
764 */
765 struct gmap_notifier {
766 struct list_head list;
767 void (*notifier_call)(struct gmap *gmap, unsigned long address);
768 };
769
770 struct gmap *gmap_alloc(struct mm_struct *mm);
771 void gmap_free(struct gmap *gmap);
772 void gmap_enable(struct gmap *gmap);
773 void gmap_disable(struct gmap *gmap);
774 int gmap_map_segment(struct gmap *gmap, unsigned long from,
775 unsigned long to, unsigned long len);
776 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
777 unsigned long __gmap_translate(unsigned long address, struct gmap *);
778 unsigned long gmap_translate(unsigned long address, struct gmap *);
779 unsigned long __gmap_fault(unsigned long address, struct gmap *);
780 unsigned long gmap_fault(unsigned long address, struct gmap *);
781 void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
782
783 void gmap_register_ipte_notifier(struct gmap_notifier *);
784 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
785 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
786 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
787
788 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
789 unsigned long addr,
790 pte_t *ptep, pgste_t pgste)
791 {
792 #ifdef CONFIG_PGSTE
793 if (pgste_val(pgste) & PGSTE_IN_BIT) {
794 pgste_val(pgste) &= ~PGSTE_IN_BIT;
795 gmap_do_ipte_notify(mm, addr, ptep);
796 }
797 #endif
798 return pgste;
799 }
800
801 /*
802 * Certain architectures need to do special things when PTEs
803 * within a page table are directly modified. Thus, the following
804 * hook is made available.
805 */
806 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
807 pte_t *ptep, pte_t entry)
808 {
809 pgste_t pgste;
810
811 if (mm_has_pgste(mm)) {
812 pgste = pgste_get_lock(ptep);
813 pgste_set_key(ptep, pgste, entry);
814 pgste_set_pte(ptep, entry);
815 pgste_set_unlock(ptep, pgste);
816 } else {
817 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
818 pte_val(entry) |= _PAGE_CO;
819 *ptep = entry;
820 }
821 }
822
823 /*
824 * query functions pte_write/pte_dirty/pte_young only work if
825 * pte_present() is true. Undefined behaviour if not..
826 */
827 static inline int pte_write(pte_t pte)
828 {
829 return (pte_val(pte) & _PAGE_WRITE) != 0;
830 }
831
832 static inline int pte_dirty(pte_t pte)
833 {
834 return (pte_val(pte) & _PAGE_DIRTY) != 0;
835 }
836
837 static inline int pte_young(pte_t pte)
838 {
839 #ifdef CONFIG_PGSTE
840 if (pte_val(pte) & _PAGE_YOUNG)
841 return 1;
842 #endif
843 return 0;
844 }
845
846 /*
847 * pgd/pmd/pte modification functions
848 */
849
850 static inline void pgd_clear(pgd_t *pgd)
851 {
852 #ifdef CONFIG_64BIT
853 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
854 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
855 #endif
856 }
857
858 static inline void pud_clear(pud_t *pud)
859 {
860 #ifdef CONFIG_64BIT
861 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
862 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
863 #endif
864 }
865
866 static inline void pmd_clear(pmd_t *pmdp)
867 {
868 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
869 }
870
871 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
872 {
873 pte_val(*ptep) = _PAGE_INVALID;
874 }
875
876 /*
877 * The following pte modification functions only work if
878 * pte_present() is true. Undefined behaviour if not..
879 */
880 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
881 {
882 pte_val(pte) &= _PAGE_CHG_MASK;
883 pte_val(pte) |= pgprot_val(newprot);
884 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
885 pte_val(pte) &= ~_PAGE_PROTECT;
886 return pte;
887 }
888
889 static inline pte_t pte_wrprotect(pte_t pte)
890 {
891 pte_val(pte) &= ~_PAGE_WRITE;
892 pte_val(pte) |= _PAGE_PROTECT;
893 return pte;
894 }
895
896 static inline pte_t pte_mkwrite(pte_t pte)
897 {
898 pte_val(pte) |= _PAGE_WRITE;
899 if (pte_val(pte) & _PAGE_DIRTY)
900 pte_val(pte) &= ~_PAGE_PROTECT;
901 return pte;
902 }
903
904 static inline pte_t pte_mkclean(pte_t pte)
905 {
906 pte_val(pte) &= ~_PAGE_DIRTY;
907 pte_val(pte) |= _PAGE_PROTECT;
908 return pte;
909 }
910
911 static inline pte_t pte_mkdirty(pte_t pte)
912 {
913 pte_val(pte) |= _PAGE_DIRTY;
914 if (pte_val(pte) & _PAGE_WRITE)
915 pte_val(pte) &= ~_PAGE_PROTECT;
916 return pte;
917 }
918
919 static inline pte_t pte_mkold(pte_t pte)
920 {
921 #ifdef CONFIG_PGSTE
922 pte_val(pte) &= ~_PAGE_YOUNG;
923 #endif
924 return pte;
925 }
926
927 static inline pte_t pte_mkyoung(pte_t pte)
928 {
929 return pte;
930 }
931
932 static inline pte_t pte_mkspecial(pte_t pte)
933 {
934 pte_val(pte) |= _PAGE_SPECIAL;
935 return pte;
936 }
937
938 #ifdef CONFIG_HUGETLB_PAGE
939 static inline pte_t pte_mkhuge(pte_t pte)
940 {
941 pte_val(pte) |= _PAGE_LARGE;
942 return pte;
943 }
944 #endif
945
946 /*
947 * Get (and clear) the user dirty bit for a pte.
948 */
949 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
950 pte_t *ptep)
951 {
952 pgste_t pgste;
953 int dirty = 0;
954
955 if (mm_has_pgste(mm)) {
956 pgste = pgste_get_lock(ptep);
957 pgste = pgste_update_all(ptep, pgste);
958 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
959 pgste_val(pgste) &= ~PGSTE_UC_BIT;
960 pgste_set_unlock(ptep, pgste);
961 return dirty;
962 }
963 return dirty;
964 }
965
966 /*
967 * Get (and clear) the user referenced bit for a pte.
968 */
969 static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
970 pte_t *ptep)
971 {
972 pgste_t pgste;
973 int young = 0;
974
975 if (mm_has_pgste(mm)) {
976 pgste = pgste_get_lock(ptep);
977 pgste = pgste_update_young(ptep, pgste);
978 young = !!(pgste_val(pgste) & PGSTE_UR_BIT);
979 pgste_val(pgste) &= ~PGSTE_UR_BIT;
980 pgste_set_unlock(ptep, pgste);
981 }
982 return young;
983 }
984
985 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
986 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
987 unsigned long addr, pte_t *ptep)
988 {
989 pgste_t pgste;
990 pte_t pte;
991
992 if (mm_has_pgste(vma->vm_mm)) {
993 pgste = pgste_get_lock(ptep);
994 pgste = pgste_update_young(ptep, pgste);
995 pte = *ptep;
996 *ptep = pte_mkold(pte);
997 pgste_set_unlock(ptep, pgste);
998 return pte_young(pte);
999 }
1000 return 0;
1001 }
1002
1003 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1004 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1005 unsigned long address, pte_t *ptep)
1006 {
1007 /* No need to flush TLB
1008 * On s390 reference bits are in storage key and never in TLB
1009 * With virtualization we handle the reference bit, without we
1010 * we can simply return */
1011 return ptep_test_and_clear_young(vma, address, ptep);
1012 }
1013
1014 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1015 {
1016 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1017 #ifndef CONFIG_64BIT
1018 /* pto must point to the start of the segment table */
1019 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
1020 #else
1021 /* ipte in zarch mode can do the math */
1022 pte_t *pto = ptep;
1023 #endif
1024 asm volatile(
1025 " ipte %2,%3"
1026 : "=m" (*ptep) : "m" (*ptep),
1027 "a" (pto), "a" (address));
1028 }
1029 }
1030
1031 /*
1032 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1033 * both clear the TLB for the unmapped pte. The reason is that
1034 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1035 * to modify an active pte. The sequence is
1036 * 1) ptep_get_and_clear
1037 * 2) set_pte_at
1038 * 3) flush_tlb_range
1039 * On s390 the tlb needs to get flushed with the modification of the pte
1040 * if the pte is active. The only way how this can be implemented is to
1041 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1042 * is a nop.
1043 */
1044 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1045 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1046 unsigned long address, pte_t *ptep)
1047 {
1048 pgste_t pgste;
1049 pte_t pte;
1050
1051 mm->context.flush_mm = 1;
1052 if (mm_has_pgste(mm)) {
1053 pgste = pgste_get_lock(ptep);
1054 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1055 }
1056
1057 pte = *ptep;
1058 if (!mm_exclusive(mm))
1059 __ptep_ipte(address, ptep);
1060 pte_val(*ptep) = _PAGE_INVALID;
1061
1062 if (mm_has_pgste(mm)) {
1063 pgste = pgste_update_all(&pte, pgste);
1064 pgste_set_unlock(ptep, pgste);
1065 }
1066 return pte;
1067 }
1068
1069 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1070 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1071 unsigned long address,
1072 pte_t *ptep)
1073 {
1074 pgste_t pgste;
1075 pte_t pte;
1076
1077 mm->context.flush_mm = 1;
1078 if (mm_has_pgste(mm)) {
1079 pgste = pgste_get_lock(ptep);
1080 pgste_ipte_notify(mm, address, ptep, pgste);
1081 }
1082
1083 pte = *ptep;
1084 if (!mm_exclusive(mm))
1085 __ptep_ipte(address, ptep);
1086
1087 if (mm_has_pgste(mm)) {
1088 pgste = pgste_update_all(&pte, pgste);
1089 pgste_set(ptep, pgste);
1090 }
1091 return pte;
1092 }
1093
1094 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1095 unsigned long address,
1096 pte_t *ptep, pte_t pte)
1097 {
1098 pgste_t pgste;
1099
1100 if (mm_has_pgste(mm)) {
1101 pgste = *(pgste_t *)(ptep + PTRS_PER_PTE);
1102 pgste_set_key(ptep, pgste, pte);
1103 pgste_set_pte(ptep, pte);
1104 pgste_set_unlock(ptep, pgste);
1105 } else
1106 *ptep = pte;
1107 }
1108
1109 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1110 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1111 unsigned long address, pte_t *ptep)
1112 {
1113 pgste_t pgste;
1114 pte_t pte;
1115
1116 if (mm_has_pgste(vma->vm_mm)) {
1117 pgste = pgste_get_lock(ptep);
1118 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1119 }
1120
1121 pte = *ptep;
1122 __ptep_ipte(address, ptep);
1123 pte_val(*ptep) = _PAGE_INVALID;
1124
1125 if (mm_has_pgste(vma->vm_mm)) {
1126 pgste = pgste_update_all(&pte, pgste);
1127 pgste_set_unlock(ptep, pgste);
1128 }
1129 return pte;
1130 }
1131
1132 /*
1133 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1134 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1135 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1136 * cannot be accessed while the batched unmap is running. In this case
1137 * full==1 and a simple pte_clear is enough. See tlb.h.
1138 */
1139 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1140 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1141 unsigned long address,
1142 pte_t *ptep, int full)
1143 {
1144 pgste_t pgste;
1145 pte_t pte;
1146
1147 if (!full && mm_has_pgste(mm)) {
1148 pgste = pgste_get_lock(ptep);
1149 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1150 }
1151
1152 pte = *ptep;
1153 if (!full)
1154 __ptep_ipte(address, ptep);
1155 pte_val(*ptep) = _PAGE_INVALID;
1156
1157 if (!full && mm_has_pgste(mm)) {
1158 pgste = pgste_update_all(&pte, pgste);
1159 pgste_set_unlock(ptep, pgste);
1160 }
1161 return pte;
1162 }
1163
1164 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1165 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1166 unsigned long address, pte_t *ptep)
1167 {
1168 pgste_t pgste;
1169 pte_t pte = *ptep;
1170
1171 if (pte_write(pte)) {
1172 mm->context.flush_mm = 1;
1173 if (mm_has_pgste(mm)) {
1174 pgste = pgste_get_lock(ptep);
1175 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1176 }
1177
1178 if (!mm_exclusive(mm))
1179 __ptep_ipte(address, ptep);
1180 pte = pte_wrprotect(pte);
1181
1182 if (mm_has_pgste(mm)) {
1183 pgste_set_pte(ptep, pte);
1184 pgste_set_unlock(ptep, pgste);
1185 } else
1186 *ptep = pte;
1187 }
1188 return pte;
1189 }
1190
1191 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1192 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1193 unsigned long address, pte_t *ptep,
1194 pte_t entry, int dirty)
1195 {
1196 pgste_t pgste;
1197
1198 if (pte_same(*ptep, entry))
1199 return 0;
1200 if (mm_has_pgste(vma->vm_mm)) {
1201 pgste = pgste_get_lock(ptep);
1202 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1203 }
1204
1205 __ptep_ipte(address, ptep);
1206
1207 if (mm_has_pgste(vma->vm_mm)) {
1208 pgste_set_pte(ptep, entry);
1209 pgste_set_unlock(ptep, pgste);
1210 } else
1211 *ptep = entry;
1212 return 1;
1213 }
1214
1215 /*
1216 * Conversion functions: convert a page and protection to a page entry,
1217 * and a page entry and page directory to the page they refer to.
1218 */
1219 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1220 {
1221 pte_t __pte;
1222 pte_val(__pte) = physpage + pgprot_val(pgprot);
1223 return __pte;
1224 }
1225
1226 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1227 {
1228 unsigned long physpage = page_to_phys(page);
1229 pte_t __pte = mk_pte_phys(physpage, pgprot);
1230
1231 if (pte_write(__pte) && PageDirty(page))
1232 __pte = pte_mkdirty(__pte);
1233 return __pte;
1234 }
1235
1236 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1237 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1238 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1239 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1240
1241 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1242 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1243
1244 #ifndef CONFIG_64BIT
1245
1246 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1247 #define pud_deref(pmd) ({ BUG(); 0UL; })
1248 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1249
1250 #define pud_offset(pgd, address) ((pud_t *) pgd)
1251 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1252
1253 #else /* CONFIG_64BIT */
1254
1255 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1256 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1257 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1258
1259 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1260 {
1261 pud_t *pud = (pud_t *) pgd;
1262 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1263 pud = (pud_t *) pgd_deref(*pgd);
1264 return pud + pud_index(address);
1265 }
1266
1267 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1268 {
1269 pmd_t *pmd = (pmd_t *) pud;
1270 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1271 pmd = (pmd_t *) pud_deref(*pud);
1272 return pmd + pmd_index(address);
1273 }
1274
1275 #endif /* CONFIG_64BIT */
1276
1277 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1278 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1279 #define pte_page(x) pfn_to_page(pte_pfn(x))
1280
1281 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1282
1283 /* Find an entry in the lowest level page table.. */
1284 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1285 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1286 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1287 #define pte_unmap(pte) do { } while (0)
1288
1289 static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
1290 {
1291 unsigned long sto = (unsigned long) pmdp -
1292 pmd_index(address) * sizeof(pmd_t);
1293
1294 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)) {
1295 asm volatile(
1296 " .insn rrf,0xb98e0000,%2,%3,0,0"
1297 : "=m" (*pmdp)
1298 : "m" (*pmdp), "a" (sto),
1299 "a" ((address & HPAGE_MASK))
1300 : "cc"
1301 );
1302 }
1303 }
1304
1305 static inline void __pmd_csp(pmd_t *pmdp)
1306 {
1307 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1308 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1309 _SEGMENT_ENTRY_INVALID;
1310 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1311
1312 asm volatile(
1313 " csp %1,%3"
1314 : "=m" (*pmdp)
1315 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1316 }
1317
1318 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1319 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1320 {
1321 /*
1322 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1323 * Convert to segment table entry format.
1324 */
1325 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1326 return pgprot_val(SEGMENT_NONE);
1327 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1328 return pgprot_val(SEGMENT_READ);
1329 return pgprot_val(SEGMENT_WRITE);
1330 }
1331
1332 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1333 {
1334 pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1335 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1336 return pmd;
1337 }
1338
1339 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1340 {
1341 pmd_t __pmd;
1342 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1343 return __pmd;
1344 }
1345
1346 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1347 {
1348 /* Do not clobber PROT_NONE pages! */
1349 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INVALID))
1350 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1351 return pmd;
1352 }
1353 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1354
1355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1356
1357 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1358 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1359 pgtable_t pgtable);
1360
1361 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1362 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1363
1364 static inline int pmd_trans_splitting(pmd_t pmd)
1365 {
1366 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1367 }
1368
1369 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1370 pmd_t *pmdp, pmd_t entry)
1371 {
1372 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INVALID) && MACHINE_HAS_EDAT1)
1373 pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1374 *pmdp = entry;
1375 }
1376
1377 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1378 {
1379 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1380 return pmd;
1381 }
1382
1383 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1384 {
1385 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1386 return pmd;
1387 }
1388
1389 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1390 {
1391 /* No dirty bit in the segment table entry. */
1392 return pmd;
1393 }
1394
1395 static inline pmd_t pmd_mkold(pmd_t pmd)
1396 {
1397 /* No referenced bit in the segment table entry. */
1398 return pmd;
1399 }
1400
1401 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1402 {
1403 /* No referenced bit in the segment table entry. */
1404 return pmd;
1405 }
1406
1407 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1408 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1409 unsigned long address, pmd_t *pmdp)
1410 {
1411 unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
1412 long tmp, rc;
1413 int counter;
1414
1415 rc = 0;
1416 if (MACHINE_HAS_RRBM) {
1417 counter = PTRS_PER_PTE >> 6;
1418 asm volatile(
1419 "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */
1420 " ogr %1,%0\n"
1421 " la %3,0(%4,%3)\n"
1422 " brct %2,0b\n"
1423 : "=&d" (tmp), "+&d" (rc), "+d" (counter),
1424 "+a" (pmd_addr)
1425 : "a" (64 * 4096UL) : "cc");
1426 rc = !!rc;
1427 } else {
1428 counter = PTRS_PER_PTE;
1429 asm volatile(
1430 "0: rrbe 0,%2\n"
1431 " la %2,0(%3,%2)\n"
1432 " brc 12,1f\n"
1433 " lhi %0,1\n"
1434 "1: brct %1,0b\n"
1435 : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
1436 : "a" (4096UL) : "cc");
1437 }
1438 return rc;
1439 }
1440
1441 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1442 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1443 unsigned long address, pmd_t *pmdp)
1444 {
1445 pmd_t pmd = *pmdp;
1446
1447 __pmd_idte(address, pmdp);
1448 pmd_clear(pmdp);
1449 return pmd;
1450 }
1451
1452 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1453 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1454 unsigned long address, pmd_t *pmdp)
1455 {
1456 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1457 }
1458
1459 #define __HAVE_ARCH_PMDP_INVALIDATE
1460 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1461 unsigned long address, pmd_t *pmdp)
1462 {
1463 __pmd_idte(address, pmdp);
1464 }
1465
1466 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1467 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1468 unsigned long address, pmd_t *pmdp)
1469 {
1470 pmd_t pmd = *pmdp;
1471
1472 if (pmd_write(pmd)) {
1473 __pmd_idte(address, pmdp);
1474 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1475 }
1476 }
1477
1478 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1479 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1480
1481 static inline int pmd_trans_huge(pmd_t pmd)
1482 {
1483 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1484 }
1485
1486 static inline int has_transparent_hugepage(void)
1487 {
1488 return MACHINE_HAS_HPAGE ? 1 : 0;
1489 }
1490
1491 static inline unsigned long pmd_pfn(pmd_t pmd)
1492 {
1493 return pmd_val(pmd) >> PAGE_SHIFT;
1494 }
1495 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1496
1497 /*
1498 * 31 bit swap entry format:
1499 * A page-table entry has some bits we have to treat in a special way.
1500 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1501 * exception will occur instead of a page translation exception. The
1502 * specifiation exception has the bad habit not to store necessary
1503 * information in the lowcore.
1504 * Bits 21, 22, 30 and 31 are used to indicate the page type.
1505 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1506 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1507 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1508 * plus 24 for the offset.
1509 * 0| offset |0110|o|type |00|
1510 * 0 0000000001111111111 2222 2 22222 33
1511 * 0 1234567890123456789 0123 4 56789 01
1512 *
1513 * 64 bit swap entry format:
1514 * A page-table entry has some bits we have to treat in a special way.
1515 * Bits 52 and bit 55 have to be zero, otherwise an specification
1516 * exception will occur instead of a page translation exception. The
1517 * specifiation exception has the bad habit not to store necessary
1518 * information in the lowcore.
1519 * Bits 53, 54, 62 and 63 are used to indicate the page type.
1520 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1521 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1522 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1523 * plus 56 for the offset.
1524 * | offset |0110|o|type |00|
1525 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1526 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1527 */
1528 #ifndef CONFIG_64BIT
1529 #define __SWP_OFFSET_MASK (~0UL >> 12)
1530 #else
1531 #define __SWP_OFFSET_MASK (~0UL >> 11)
1532 #endif
1533 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1534 {
1535 pte_t pte;
1536 offset &= __SWP_OFFSET_MASK;
1537 pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1538 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1539 return pte;
1540 }
1541
1542 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1543 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1544 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1545
1546 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1547 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1548
1549 #ifndef CONFIG_64BIT
1550 # define PTE_FILE_MAX_BITS 26
1551 #else /* CONFIG_64BIT */
1552 # define PTE_FILE_MAX_BITS 59
1553 #endif /* CONFIG_64BIT */
1554
1555 #define pte_to_pgoff(__pte) \
1556 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1557
1558 #define pgoff_to_pte(__off) \
1559 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1560 | _PAGE_INVALID | _PAGE_PROTECT })
1561
1562 #endif /* !__ASSEMBLY__ */
1563
1564 #define kern_addr_valid(addr) (1)
1565
1566 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1567 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1568 extern int s390_enable_sie(void);
1569
1570 /*
1571 * No page table caches to initialise
1572 */
1573 static inline void pgtable_cache_init(void) { }
1574 static inline void check_pgt_cache(void) { }
1575
1576 #include <asm-generic/pgtable.h>
1577
1578 #endif /* _S390_PAGE_H */
This page took 0.073389 seconds and 4 git commands to generate.