[media] cec: fix off-by-one memset
[deliverable/linux.git] / arch / s390 / include / asm / pgtable.h
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <linux/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/page.h>
34
35 extern pgd_t swapper_pg_dir[];
36 extern void paging_init(void);
37 extern void vmem_map_init(void);
38 pmd_t *vmem_pmd_alloc(void);
39 pte_t *vmem_pte_alloc(void);
40
41 enum {
42 PG_DIRECT_MAP_4K = 0,
43 PG_DIRECT_MAP_1M,
44 PG_DIRECT_MAP_2G,
45 PG_DIRECT_MAP_MAX
46 };
47
48 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
49
50 static inline void update_page_count(int level, long count)
51 {
52 if (IS_ENABLED(CONFIG_PROC_FS))
53 atomic_long_add(count, &direct_pages_count[level]);
54 }
55
56 struct seq_file;
57 void arch_report_meminfo(struct seq_file *m);
58
59 /*
60 * The S390 doesn't have any external MMU info: the kernel page
61 * tables contain all the necessary information.
62 */
63 #define update_mmu_cache(vma, address, ptep) do { } while (0)
64 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
65
66 /*
67 * ZERO_PAGE is a global shared page that is always zero; used
68 * for zero-mapped memory areas etc..
69 */
70
71 extern unsigned long empty_zero_page;
72 extern unsigned long zero_page_mask;
73
74 #define ZERO_PAGE(vaddr) \
75 (virt_to_page((void *)(empty_zero_page + \
76 (((unsigned long)(vaddr)) &zero_page_mask))))
77 #define __HAVE_COLOR_ZERO_PAGE
78
79 /* TODO: s390 cannot support io_remap_pfn_range... */
80 #endif /* !__ASSEMBLY__ */
81
82 /*
83 * PMD_SHIFT determines the size of the area a second-level page
84 * table can map
85 * PGDIR_SHIFT determines what a third-level page table entry can map
86 */
87 #define PMD_SHIFT 20
88 #define PUD_SHIFT 31
89 #define PGDIR_SHIFT 42
90
91 #define PMD_SIZE (1UL << PMD_SHIFT)
92 #define PMD_MASK (~(PMD_SIZE-1))
93 #define PUD_SIZE (1UL << PUD_SHIFT)
94 #define PUD_MASK (~(PUD_SIZE-1))
95 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
96 #define PGDIR_MASK (~(PGDIR_SIZE-1))
97
98 /*
99 * entries per page directory level: the S390 is two-level, so
100 * we don't really have any PMD directory physically.
101 * for S390 segment-table entries are combined to one PGD
102 * that leads to 1024 pte per pgd
103 */
104 #define PTRS_PER_PTE 256
105 #define PTRS_PER_PMD 2048
106 #define PTRS_PER_PUD 2048
107 #define PTRS_PER_PGD 2048
108
109 #define FIRST_USER_ADDRESS 0UL
110
111 #define pte_ERROR(e) \
112 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
113 #define pmd_ERROR(e) \
114 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
115 #define pud_ERROR(e) \
116 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
117 #define pgd_ERROR(e) \
118 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
119
120 #ifndef __ASSEMBLY__
121 /*
122 * The vmalloc and module area will always be on the topmost area of the
123 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
124 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
125 * modules will reside. That makes sure that inter module branches always
126 * happen without trampolines and in addition the placement within a 2GB frame
127 * is branch prediction unit friendly.
128 */
129 extern unsigned long VMALLOC_START;
130 extern unsigned long VMALLOC_END;
131 extern struct page *vmemmap;
132
133 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
134
135 extern unsigned long MODULES_VADDR;
136 extern unsigned long MODULES_END;
137 #define MODULES_VADDR MODULES_VADDR
138 #define MODULES_END MODULES_END
139 #define MODULES_LEN (1UL << 31)
140
141 static inline int is_module_addr(void *addr)
142 {
143 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
144 if (addr < (void *)MODULES_VADDR)
145 return 0;
146 if (addr > (void *)MODULES_END)
147 return 0;
148 return 1;
149 }
150
151 /*
152 * A 64 bit pagetable entry of S390 has following format:
153 * | PFRA |0IPC| OS |
154 * 0000000000111111111122222222223333333333444444444455555555556666
155 * 0123456789012345678901234567890123456789012345678901234567890123
156 *
157 * I Page-Invalid Bit: Page is not available for address-translation
158 * P Page-Protection Bit: Store access not possible for page
159 * C Change-bit override: HW is not required to set change bit
160 *
161 * A 64 bit segmenttable entry of S390 has following format:
162 * | P-table origin | TT
163 * 0000000000111111111122222222223333333333444444444455555555556666
164 * 0123456789012345678901234567890123456789012345678901234567890123
165 *
166 * I Segment-Invalid Bit: Segment is not available for address-translation
167 * C Common-Segment Bit: Segment is not private (PoP 3-30)
168 * P Page-Protection Bit: Store access not possible for page
169 * TT Type 00
170 *
171 * A 64 bit region table entry of S390 has following format:
172 * | S-table origin | TF TTTL
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
175 *
176 * I Segment-Invalid Bit: Segment is not available for address-translation
177 * TT Type 01
178 * TF
179 * TL Table length
180 *
181 * The 64 bit regiontable origin of S390 has following format:
182 * | region table origon | DTTL
183 * 0000000000111111111122222222223333333333444444444455555555556666
184 * 0123456789012345678901234567890123456789012345678901234567890123
185 *
186 * X Space-Switch event:
187 * G Segment-Invalid Bit:
188 * P Private-Space Bit:
189 * S Storage-Alteration:
190 * R Real space
191 * TL Table-Length:
192 *
193 * A storage key has the following format:
194 * | ACC |F|R|C|0|
195 * 0 3 4 5 6 7
196 * ACC: access key
197 * F : fetch protection bit
198 * R : referenced bit
199 * C : changed bit
200 */
201
202 /* Hardware bits in the page table entry */
203 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
204 #define _PAGE_INVALID 0x400 /* HW invalid bit */
205 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
206
207 /* Software bits in the page table entry */
208 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
209 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
210 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
211 #define _PAGE_READ 0x010 /* SW pte read bit */
212 #define _PAGE_WRITE 0x020 /* SW pte write bit */
213 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
214 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
215 #define __HAVE_ARCH_PTE_SPECIAL
216
217 #ifdef CONFIG_MEM_SOFT_DIRTY
218 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
219 #else
220 #define _PAGE_SOFT_DIRTY 0x000
221 #endif
222
223 /* Set of bits not changed in pte_modify */
224 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
225 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
226
227 /*
228 * handle_pte_fault uses pte_present and pte_none to find out the pte type
229 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
230 * distinguish present from not-present ptes. It is changed only with the page
231 * table lock held.
232 *
233 * The following table gives the different possible bit combinations for
234 * the pte hardware and software bits in the last 12 bits of a pte
235 * (. unassigned bit, x don't care, t swap type):
236 *
237 * 842100000000
238 * 000084210000
239 * 000000008421
240 * .IR.uswrdy.p
241 * empty .10.00000000
242 * swap .11..ttttt.0
243 * prot-none, clean, old .11.xx0000.1
244 * prot-none, clean, young .11.xx0001.1
245 * prot-none, dirty, old .10.xx0010.1
246 * prot-none, dirty, young .10.xx0011.1
247 * read-only, clean, old .11.xx0100.1
248 * read-only, clean, young .01.xx0101.1
249 * read-only, dirty, old .11.xx0110.1
250 * read-only, dirty, young .01.xx0111.1
251 * read-write, clean, old .11.xx1100.1
252 * read-write, clean, young .01.xx1101.1
253 * read-write, dirty, old .10.xx1110.1
254 * read-write, dirty, young .00.xx1111.1
255 * HW-bits: R read-only, I invalid
256 * SW-bits: p present, y young, d dirty, r read, w write, s special,
257 * u unused, l large
258 *
259 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
260 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
261 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
262 */
263
264 /* Bits in the segment/region table address-space-control-element */
265 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
266 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
267 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
268 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
269 #define _ASCE_REAL_SPACE 0x20 /* real space control */
270 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
271 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
272 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
273 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
274 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
275 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
276
277 /* Bits in the region table entry */
278 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
279 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
280 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
281 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
282 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
283 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
284 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
285 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
286
287 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
288 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
289 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
290 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
291 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
292 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
293
294 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
295 #define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
296
297 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
298 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
299 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
300 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
301 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
302
303 #ifdef CONFIG_MEM_SOFT_DIRTY
304 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
305 #else
306 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
307 #endif
308
309 #define _REGION_ENTRY_BITS 0xfffffffffffff227UL
310 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
311
312 /* Bits in the segment table entry */
313 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
314 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
315 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
316 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
317 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
318 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
319
320 #define _SEGMENT_ENTRY (0)
321 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
322
323 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
324 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
325 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
326 #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
327 #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
328
329 #ifdef CONFIG_MEM_SOFT_DIRTY
330 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
331 #else
332 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
333 #endif
334
335 /*
336 * Segment table and region3 table entry encoding
337 * (R = read-only, I = invalid, y = young bit):
338 * dy..R...I...rw
339 * prot-none, clean, old 00..1...1...00
340 * prot-none, clean, young 01..1...1...00
341 * prot-none, dirty, old 10..1...1...00
342 * prot-none, dirty, young 11..1...1...00
343 * read-only, clean, old 00..1...1...10
344 * read-only, clean, young 01..1...0...10
345 * read-only, dirty, old 10..1...1...10
346 * read-only, dirty, young 11..1...0...10
347 * read-write, clean, old 00..1...1...11
348 * read-write, clean, young 01..1...0...11
349 * read-write, dirty, old 10..0...1...11
350 * read-write, dirty, young 11..0...0...11
351 * The segment table origin is used to distinguish empty (origin==0) from
352 * read-write, old segment table entries (origin!=0)
353 * HW-bits: R read-only, I invalid
354 * SW-bits: y young, d dirty, r read, w write
355 */
356
357 /* Page status table bits for virtualization */
358 #define PGSTE_ACC_BITS 0xf000000000000000UL
359 #define PGSTE_FP_BIT 0x0800000000000000UL
360 #define PGSTE_PCL_BIT 0x0080000000000000UL
361 #define PGSTE_HR_BIT 0x0040000000000000UL
362 #define PGSTE_HC_BIT 0x0020000000000000UL
363 #define PGSTE_GR_BIT 0x0004000000000000UL
364 #define PGSTE_GC_BIT 0x0002000000000000UL
365 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
366 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
367
368 /* Guest Page State used for virtualization */
369 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
370 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
371 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
372 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
373
374 /*
375 * A user page table pointer has the space-switch-event bit, the
376 * private-space-control bit and the storage-alteration-event-control
377 * bit set. A kernel page table pointer doesn't need them.
378 */
379 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
380 _ASCE_ALT_EVENT)
381
382 /*
383 * Page protection definitions.
384 */
385 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
386 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
387 _PAGE_INVALID | _PAGE_PROTECT)
388 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
389 _PAGE_INVALID | _PAGE_PROTECT)
390
391 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
392 _PAGE_YOUNG | _PAGE_DIRTY)
393 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
394 _PAGE_YOUNG | _PAGE_DIRTY)
395 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
396 _PAGE_PROTECT)
397
398 /*
399 * On s390 the page table entry has an invalid bit and a read-only bit.
400 * Read permission implies execute permission and write permission
401 * implies read permission.
402 */
403 /*xwr*/
404 #define __P000 PAGE_NONE
405 #define __P001 PAGE_READ
406 #define __P010 PAGE_READ
407 #define __P011 PAGE_READ
408 #define __P100 PAGE_READ
409 #define __P101 PAGE_READ
410 #define __P110 PAGE_READ
411 #define __P111 PAGE_READ
412
413 #define __S000 PAGE_NONE
414 #define __S001 PAGE_READ
415 #define __S010 PAGE_WRITE
416 #define __S011 PAGE_WRITE
417 #define __S100 PAGE_READ
418 #define __S101 PAGE_READ
419 #define __S110 PAGE_WRITE
420 #define __S111 PAGE_WRITE
421
422 /*
423 * Segment entry (large page) protection definitions.
424 */
425 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
426 _SEGMENT_ENTRY_PROTECT)
427 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
428 _SEGMENT_ENTRY_READ)
429 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
430 _SEGMENT_ENTRY_WRITE)
431 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
432 _SEGMENT_ENTRY_LARGE | \
433 _SEGMENT_ENTRY_READ | \
434 _SEGMENT_ENTRY_WRITE | \
435 _SEGMENT_ENTRY_YOUNG | \
436 _SEGMENT_ENTRY_DIRTY)
437 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
438 _SEGMENT_ENTRY_LARGE | \
439 _SEGMENT_ENTRY_READ | \
440 _SEGMENT_ENTRY_YOUNG | \
441 _SEGMENT_ENTRY_PROTECT)
442
443 /*
444 * Region3 entry (large page) protection definitions.
445 */
446
447 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
448 _REGION3_ENTRY_LARGE | \
449 _REGION3_ENTRY_READ | \
450 _REGION3_ENTRY_WRITE | \
451 _REGION3_ENTRY_YOUNG | \
452 _REGION3_ENTRY_DIRTY)
453 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
454 _REGION3_ENTRY_LARGE | \
455 _REGION3_ENTRY_READ | \
456 _REGION3_ENTRY_YOUNG | \
457 _REGION_ENTRY_PROTECT)
458
459 static inline int mm_has_pgste(struct mm_struct *mm)
460 {
461 #ifdef CONFIG_PGSTE
462 if (unlikely(mm->context.has_pgste))
463 return 1;
464 #endif
465 return 0;
466 }
467
468 static inline int mm_alloc_pgste(struct mm_struct *mm)
469 {
470 #ifdef CONFIG_PGSTE
471 if (unlikely(mm->context.alloc_pgste))
472 return 1;
473 #endif
474 return 0;
475 }
476
477 /*
478 * In the case that a guest uses storage keys
479 * faults should no longer be backed by zero pages
480 */
481 #define mm_forbids_zeropage mm_use_skey
482 static inline int mm_use_skey(struct mm_struct *mm)
483 {
484 #ifdef CONFIG_PGSTE
485 if (mm->context.use_skey)
486 return 1;
487 #endif
488 return 0;
489 }
490
491 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
492 {
493 register unsigned long reg2 asm("2") = old;
494 register unsigned long reg3 asm("3") = new;
495 unsigned long address = (unsigned long)ptr | 1;
496
497 asm volatile(
498 " csp %0,%3"
499 : "+d" (reg2), "+m" (*ptr)
500 : "d" (reg3), "d" (address)
501 : "cc");
502 }
503
504 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
505 {
506 register unsigned long reg2 asm("2") = old;
507 register unsigned long reg3 asm("3") = new;
508 unsigned long address = (unsigned long)ptr | 1;
509
510 asm volatile(
511 " .insn rre,0xb98a0000,%0,%3"
512 : "+d" (reg2), "+m" (*ptr)
513 : "d" (reg3), "d" (address)
514 : "cc");
515 }
516
517 #define CRDTE_DTT_PAGE 0x00UL
518 #define CRDTE_DTT_SEGMENT 0x10UL
519 #define CRDTE_DTT_REGION3 0x14UL
520 #define CRDTE_DTT_REGION2 0x18UL
521 #define CRDTE_DTT_REGION1 0x1cUL
522
523 static inline void crdte(unsigned long old, unsigned long new,
524 unsigned long table, unsigned long dtt,
525 unsigned long address, unsigned long asce)
526 {
527 register unsigned long reg2 asm("2") = old;
528 register unsigned long reg3 asm("3") = new;
529 register unsigned long reg4 asm("4") = table | dtt;
530 register unsigned long reg5 asm("5") = address;
531
532 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
533 : "+d" (reg2)
534 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
535 : "memory", "cc");
536 }
537
538 /*
539 * pgd/pmd/pte query functions
540 */
541 static inline int pgd_present(pgd_t pgd)
542 {
543 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
544 return 1;
545 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
546 }
547
548 static inline int pgd_none(pgd_t pgd)
549 {
550 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
551 return 0;
552 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
553 }
554
555 static inline int pgd_bad(pgd_t pgd)
556 {
557 /*
558 * With dynamic page table levels the pgd can be a region table
559 * entry or a segment table entry. Check for the bit that are
560 * invalid for either table entry.
561 */
562 unsigned long mask =
563 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
564 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
565 return (pgd_val(pgd) & mask) != 0;
566 }
567
568 static inline int pud_present(pud_t pud)
569 {
570 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
571 return 1;
572 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
573 }
574
575 static inline int pud_none(pud_t pud)
576 {
577 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
578 return 0;
579 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
580 }
581
582 static inline int pud_large(pud_t pud)
583 {
584 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
585 return 0;
586 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
587 }
588
589 static inline unsigned long pud_pfn(pud_t pud)
590 {
591 unsigned long origin_mask;
592
593 origin_mask = _REGION3_ENTRY_ORIGIN;
594 if (pud_large(pud))
595 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
596 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
597 }
598
599 static inline int pmd_large(pmd_t pmd)
600 {
601 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
602 }
603
604 static inline int pmd_bad(pmd_t pmd)
605 {
606 if (pmd_large(pmd))
607 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
608 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
609 }
610
611 static inline int pud_bad(pud_t pud)
612 {
613 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
614 return pmd_bad(__pmd(pud_val(pud)));
615 if (pud_large(pud))
616 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
617 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
618 }
619
620 static inline int pmd_present(pmd_t pmd)
621 {
622 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
623 }
624
625 static inline int pmd_none(pmd_t pmd)
626 {
627 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
628 }
629
630 static inline unsigned long pmd_pfn(pmd_t pmd)
631 {
632 unsigned long origin_mask;
633
634 origin_mask = _SEGMENT_ENTRY_ORIGIN;
635 if (pmd_large(pmd))
636 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
637 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
638 }
639
640 #define __HAVE_ARCH_PMD_WRITE
641 static inline int pmd_write(pmd_t pmd)
642 {
643 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
644 }
645
646 static inline int pmd_dirty(pmd_t pmd)
647 {
648 int dirty = 1;
649 if (pmd_large(pmd))
650 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
651 return dirty;
652 }
653
654 static inline int pmd_young(pmd_t pmd)
655 {
656 int young = 1;
657 if (pmd_large(pmd))
658 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
659 return young;
660 }
661
662 static inline int pte_present(pte_t pte)
663 {
664 /* Bit pattern: (pte & 0x001) == 0x001 */
665 return (pte_val(pte) & _PAGE_PRESENT) != 0;
666 }
667
668 static inline int pte_none(pte_t pte)
669 {
670 /* Bit pattern: pte == 0x400 */
671 return pte_val(pte) == _PAGE_INVALID;
672 }
673
674 static inline int pte_swap(pte_t pte)
675 {
676 /* Bit pattern: (pte & 0x201) == 0x200 */
677 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
678 == _PAGE_PROTECT;
679 }
680
681 static inline int pte_special(pte_t pte)
682 {
683 return (pte_val(pte) & _PAGE_SPECIAL);
684 }
685
686 #define __HAVE_ARCH_PTE_SAME
687 static inline int pte_same(pte_t a, pte_t b)
688 {
689 return pte_val(a) == pte_val(b);
690 }
691
692 #ifdef CONFIG_NUMA_BALANCING
693 static inline int pte_protnone(pte_t pte)
694 {
695 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
696 }
697
698 static inline int pmd_protnone(pmd_t pmd)
699 {
700 /* pmd_large(pmd) implies pmd_present(pmd) */
701 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
702 }
703 #endif
704
705 static inline int pte_soft_dirty(pte_t pte)
706 {
707 return pte_val(pte) & _PAGE_SOFT_DIRTY;
708 }
709 #define pte_swp_soft_dirty pte_soft_dirty
710
711 static inline pte_t pte_mksoft_dirty(pte_t pte)
712 {
713 pte_val(pte) |= _PAGE_SOFT_DIRTY;
714 return pte;
715 }
716 #define pte_swp_mksoft_dirty pte_mksoft_dirty
717
718 static inline pte_t pte_clear_soft_dirty(pte_t pte)
719 {
720 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
721 return pte;
722 }
723 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
724
725 static inline int pmd_soft_dirty(pmd_t pmd)
726 {
727 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
728 }
729
730 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
731 {
732 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
733 return pmd;
734 }
735
736 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
737 {
738 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
739 return pmd;
740 }
741
742 /*
743 * query functions pte_write/pte_dirty/pte_young only work if
744 * pte_present() is true. Undefined behaviour if not..
745 */
746 static inline int pte_write(pte_t pte)
747 {
748 return (pte_val(pte) & _PAGE_WRITE) != 0;
749 }
750
751 static inline int pte_dirty(pte_t pte)
752 {
753 return (pte_val(pte) & _PAGE_DIRTY) != 0;
754 }
755
756 static inline int pte_young(pte_t pte)
757 {
758 return (pte_val(pte) & _PAGE_YOUNG) != 0;
759 }
760
761 #define __HAVE_ARCH_PTE_UNUSED
762 static inline int pte_unused(pte_t pte)
763 {
764 return pte_val(pte) & _PAGE_UNUSED;
765 }
766
767 /*
768 * pgd/pmd/pte modification functions
769 */
770
771 static inline void pgd_clear(pgd_t *pgd)
772 {
773 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
774 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
775 }
776
777 static inline void pud_clear(pud_t *pud)
778 {
779 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
780 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
781 }
782
783 static inline void pmd_clear(pmd_t *pmdp)
784 {
785 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
786 }
787
788 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
789 {
790 pte_val(*ptep) = _PAGE_INVALID;
791 }
792
793 /*
794 * The following pte modification functions only work if
795 * pte_present() is true. Undefined behaviour if not..
796 */
797 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
798 {
799 pte_val(pte) &= _PAGE_CHG_MASK;
800 pte_val(pte) |= pgprot_val(newprot);
801 /*
802 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
803 * invalid bit set, clear it again for readable, young pages
804 */
805 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
806 pte_val(pte) &= ~_PAGE_INVALID;
807 /*
808 * newprot for PAGE_READ and PAGE_WRITE has the page protection
809 * bit set, clear it again for writable, dirty pages
810 */
811 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
812 pte_val(pte) &= ~_PAGE_PROTECT;
813 return pte;
814 }
815
816 static inline pte_t pte_wrprotect(pte_t pte)
817 {
818 pte_val(pte) &= ~_PAGE_WRITE;
819 pte_val(pte) |= _PAGE_PROTECT;
820 return pte;
821 }
822
823 static inline pte_t pte_mkwrite(pte_t pte)
824 {
825 pte_val(pte) |= _PAGE_WRITE;
826 if (pte_val(pte) & _PAGE_DIRTY)
827 pte_val(pte) &= ~_PAGE_PROTECT;
828 return pte;
829 }
830
831 static inline pte_t pte_mkclean(pte_t pte)
832 {
833 pte_val(pte) &= ~_PAGE_DIRTY;
834 pte_val(pte) |= _PAGE_PROTECT;
835 return pte;
836 }
837
838 static inline pte_t pte_mkdirty(pte_t pte)
839 {
840 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
841 if (pte_val(pte) & _PAGE_WRITE)
842 pte_val(pte) &= ~_PAGE_PROTECT;
843 return pte;
844 }
845
846 static inline pte_t pte_mkold(pte_t pte)
847 {
848 pte_val(pte) &= ~_PAGE_YOUNG;
849 pte_val(pte) |= _PAGE_INVALID;
850 return pte;
851 }
852
853 static inline pte_t pte_mkyoung(pte_t pte)
854 {
855 pte_val(pte) |= _PAGE_YOUNG;
856 if (pte_val(pte) & _PAGE_READ)
857 pte_val(pte) &= ~_PAGE_INVALID;
858 return pte;
859 }
860
861 static inline pte_t pte_mkspecial(pte_t pte)
862 {
863 pte_val(pte) |= _PAGE_SPECIAL;
864 return pte;
865 }
866
867 #ifdef CONFIG_HUGETLB_PAGE
868 static inline pte_t pte_mkhuge(pte_t pte)
869 {
870 pte_val(pte) |= _PAGE_LARGE;
871 return pte;
872 }
873 #endif
874
875 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
876 {
877 unsigned long pto = (unsigned long) ptep;
878
879 /* Invalidation + global TLB flush for the pte */
880 asm volatile(
881 " ipte %2,%3"
882 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
883 }
884
885 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
886 {
887 unsigned long pto = (unsigned long) ptep;
888
889 /* Invalidation + local TLB flush for the pte */
890 asm volatile(
891 " .insn rrf,0xb2210000,%2,%3,0,1"
892 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
893 }
894
895 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
896 {
897 unsigned long pto = (unsigned long) ptep;
898
899 /* Invalidate a range of ptes + global TLB flush of the ptes */
900 do {
901 asm volatile(
902 " .insn rrf,0xb2210000,%2,%0,%1,0"
903 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
904 } while (nr != 255);
905 }
906
907 /*
908 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
909 * both clear the TLB for the unmapped pte. The reason is that
910 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
911 * to modify an active pte. The sequence is
912 * 1) ptep_get_and_clear
913 * 2) set_pte_at
914 * 3) flush_tlb_range
915 * On s390 the tlb needs to get flushed with the modification of the pte
916 * if the pte is active. The only way how this can be implemented is to
917 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
918 * is a nop.
919 */
920 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
921 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
922
923 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
924 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
925 unsigned long addr, pte_t *ptep)
926 {
927 pte_t pte = *ptep;
928
929 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
930 return pte_young(pte);
931 }
932
933 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
934 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
935 unsigned long address, pte_t *ptep)
936 {
937 return ptep_test_and_clear_young(vma, address, ptep);
938 }
939
940 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
941 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
942 unsigned long addr, pte_t *ptep)
943 {
944 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
945 }
946
947 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
948 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
949 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
950
951 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
952 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
953 unsigned long addr, pte_t *ptep)
954 {
955 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
956 }
957
958 /*
959 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
960 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
961 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
962 * cannot be accessed while the batched unmap is running. In this case
963 * full==1 and a simple pte_clear is enough. See tlb.h.
964 */
965 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
966 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
967 unsigned long addr,
968 pte_t *ptep, int full)
969 {
970 if (full) {
971 pte_t pte = *ptep;
972 *ptep = __pte(_PAGE_INVALID);
973 return pte;
974 }
975 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
976 }
977
978 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
979 static inline void ptep_set_wrprotect(struct mm_struct *mm,
980 unsigned long addr, pte_t *ptep)
981 {
982 pte_t pte = *ptep;
983
984 if (pte_write(pte))
985 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
986 }
987
988 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
989 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
990 unsigned long addr, pte_t *ptep,
991 pte_t entry, int dirty)
992 {
993 if (pte_same(*ptep, entry))
994 return 0;
995 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
996 return 1;
997 }
998
999 /*
1000 * Additional functions to handle KVM guest page tables
1001 */
1002 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1003 pte_t *ptep, pte_t entry);
1004 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1005 void ptep_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1006 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1007 pte_t *ptep , int reset);
1008 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1009
1010 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1011 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1012 unsigned char key, bool nq);
1013 unsigned char get_guest_storage_key(struct mm_struct *mm, unsigned long addr);
1014
1015 /*
1016 * Certain architectures need to do special things when PTEs
1017 * within a page table are directly modified. Thus, the following
1018 * hook is made available.
1019 */
1020 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1021 pte_t *ptep, pte_t entry)
1022 {
1023 if (mm_has_pgste(mm))
1024 ptep_set_pte_at(mm, addr, ptep, entry);
1025 else
1026 *ptep = entry;
1027 }
1028
1029 /*
1030 * Conversion functions: convert a page and protection to a page entry,
1031 * and a page entry and page directory to the page they refer to.
1032 */
1033 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1034 {
1035 pte_t __pte;
1036 pte_val(__pte) = physpage + pgprot_val(pgprot);
1037 return pte_mkyoung(__pte);
1038 }
1039
1040 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1041 {
1042 unsigned long physpage = page_to_phys(page);
1043 pte_t __pte = mk_pte_phys(physpage, pgprot);
1044
1045 if (pte_write(__pte) && PageDirty(page))
1046 __pte = pte_mkdirty(__pte);
1047 return __pte;
1048 }
1049
1050 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1051 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1052 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1053 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1054
1055 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1056 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1057
1058 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1059 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1060 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1061
1062 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1063 {
1064 pud_t *pud = (pud_t *) pgd;
1065 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1066 pud = (pud_t *) pgd_deref(*pgd);
1067 return pud + pud_index(address);
1068 }
1069
1070 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1071 {
1072 pmd_t *pmd = (pmd_t *) pud;
1073 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1074 pmd = (pmd_t *) pud_deref(*pud);
1075 return pmd + pmd_index(address);
1076 }
1077
1078 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1079 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1080 #define pte_page(x) pfn_to_page(pte_pfn(x))
1081
1082 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1083 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1084
1085 /* Find an entry in the lowest level page table.. */
1086 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1087 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1088 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1089 #define pte_unmap(pte) do { } while (0)
1090
1091 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1092 {
1093 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1094 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1095 return pmd;
1096 }
1097
1098 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1099 {
1100 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1101 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1102 return pmd;
1103 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1104 return pmd;
1105 }
1106
1107 static inline pmd_t pmd_mkclean(pmd_t pmd)
1108 {
1109 if (pmd_large(pmd)) {
1110 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1111 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1112 }
1113 return pmd;
1114 }
1115
1116 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1117 {
1118 if (pmd_large(pmd)) {
1119 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1120 _SEGMENT_ENTRY_SOFT_DIRTY;
1121 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1122 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1123 }
1124 return pmd;
1125 }
1126
1127 static inline pud_t pud_wrprotect(pud_t pud)
1128 {
1129 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1130 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1131 return pud;
1132 }
1133
1134 static inline pud_t pud_mkwrite(pud_t pud)
1135 {
1136 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1137 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1138 return pud;
1139 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1140 return pud;
1141 }
1142
1143 static inline pud_t pud_mkclean(pud_t pud)
1144 {
1145 if (pud_large(pud)) {
1146 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1147 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1148 }
1149 return pud;
1150 }
1151
1152 static inline pud_t pud_mkdirty(pud_t pud)
1153 {
1154 if (pud_large(pud)) {
1155 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1156 _REGION3_ENTRY_SOFT_DIRTY;
1157 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1158 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1159 }
1160 return pud;
1161 }
1162
1163 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1164 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1165 {
1166 /*
1167 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1168 * Convert to segment table entry format.
1169 */
1170 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1171 return pgprot_val(SEGMENT_NONE);
1172 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1173 return pgprot_val(SEGMENT_READ);
1174 return pgprot_val(SEGMENT_WRITE);
1175 }
1176
1177 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1178 {
1179 if (pmd_large(pmd)) {
1180 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1181 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1182 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1183 }
1184 return pmd;
1185 }
1186
1187 static inline pmd_t pmd_mkold(pmd_t pmd)
1188 {
1189 if (pmd_large(pmd)) {
1190 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1191 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1192 }
1193 return pmd;
1194 }
1195
1196 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1197 {
1198 if (pmd_large(pmd)) {
1199 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1200 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1201 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1202 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1203 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1204 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1205 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1206 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1207 return pmd;
1208 }
1209 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1210 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1211 return pmd;
1212 }
1213
1214 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1215 {
1216 pmd_t __pmd;
1217 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1218 return __pmd;
1219 }
1220
1221 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1222
1223 static inline void __pmdp_csp(pmd_t *pmdp)
1224 {
1225 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1226 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1227 }
1228
1229 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1230 {
1231 unsigned long sto;
1232
1233 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1234 asm volatile(
1235 " .insn rrf,0xb98e0000,%2,%3,0,0"
1236 : "=m" (*pmdp)
1237 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1238 : "cc" );
1239 }
1240
1241 static inline void __pudp_idte(unsigned long address, pud_t *pudp)
1242 {
1243 unsigned long r3o;
1244
1245 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1246 r3o |= _ASCE_TYPE_REGION3;
1247 asm volatile(
1248 " .insn rrf,0xb98e0000,%2,%3,0,0"
1249 : "=m" (*pudp)
1250 : "m" (*pudp), "a" (r3o), "a" ((address & PUD_MASK))
1251 : "cc");
1252 }
1253
1254 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1255 {
1256 unsigned long sto;
1257
1258 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1259 asm volatile(
1260 " .insn rrf,0xb98e0000,%2,%3,0,1"
1261 : "=m" (*pmdp)
1262 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1263 : "cc" );
1264 }
1265
1266 static inline void __pudp_idte_local(unsigned long address, pud_t *pudp)
1267 {
1268 unsigned long r3o;
1269
1270 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1271 r3o |= _ASCE_TYPE_REGION3;
1272 asm volatile(
1273 " .insn rrf,0xb98e0000,%2,%3,0,1"
1274 : "=m" (*pudp)
1275 : "m" (*pudp), "a" (r3o), "a" ((address & PUD_MASK))
1276 : "cc");
1277 }
1278
1279 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1280 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1281 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1282
1283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1284
1285 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1286 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1287 pgtable_t pgtable);
1288
1289 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1290 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1291
1292 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1293 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1294 unsigned long addr, pmd_t *pmdp,
1295 pmd_t entry, int dirty)
1296 {
1297 VM_BUG_ON(addr & ~HPAGE_MASK);
1298
1299 entry = pmd_mkyoung(entry);
1300 if (dirty)
1301 entry = pmd_mkdirty(entry);
1302 if (pmd_val(*pmdp) == pmd_val(entry))
1303 return 0;
1304 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1305 return 1;
1306 }
1307
1308 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1309 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1310 unsigned long addr, pmd_t *pmdp)
1311 {
1312 pmd_t pmd = *pmdp;
1313
1314 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1315 return pmd_young(pmd);
1316 }
1317
1318 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1319 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1320 unsigned long addr, pmd_t *pmdp)
1321 {
1322 VM_BUG_ON(addr & ~HPAGE_MASK);
1323 return pmdp_test_and_clear_young(vma, addr, pmdp);
1324 }
1325
1326 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1327 pmd_t *pmdp, pmd_t entry)
1328 {
1329 *pmdp = entry;
1330 }
1331
1332 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1333 {
1334 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1335 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1336 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1337 return pmd;
1338 }
1339
1340 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1341 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1342 unsigned long addr, pmd_t *pmdp)
1343 {
1344 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1345 }
1346
1347 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1348 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1349 unsigned long addr,
1350 pmd_t *pmdp, int full)
1351 {
1352 if (full) {
1353 pmd_t pmd = *pmdp;
1354 *pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
1355 return pmd;
1356 }
1357 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1358 }
1359
1360 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1361 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1362 unsigned long addr, pmd_t *pmdp)
1363 {
1364 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1365 }
1366
1367 #define __HAVE_ARCH_PMDP_INVALIDATE
1368 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1369 unsigned long addr, pmd_t *pmdp)
1370 {
1371 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1372 }
1373
1374 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1375 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1376 unsigned long addr, pmd_t *pmdp)
1377 {
1378 pmd_t pmd = *pmdp;
1379
1380 if (pmd_write(pmd))
1381 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1382 }
1383
1384 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1385 unsigned long address,
1386 pmd_t *pmdp)
1387 {
1388 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1389 }
1390 #define pmdp_collapse_flush pmdp_collapse_flush
1391
1392 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1393 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1394
1395 static inline int pmd_trans_huge(pmd_t pmd)
1396 {
1397 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1398 }
1399
1400 #define has_transparent_hugepage has_transparent_hugepage
1401 static inline int has_transparent_hugepage(void)
1402 {
1403 return MACHINE_HAS_HPAGE ? 1 : 0;
1404 }
1405 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1406
1407 /*
1408 * 64 bit swap entry format:
1409 * A page-table entry has some bits we have to treat in a special way.
1410 * Bits 52 and bit 55 have to be zero, otherwise a specification
1411 * exception will occur instead of a page translation exception. The
1412 * specification exception has the bad habit not to store necessary
1413 * information in the lowcore.
1414 * Bits 54 and 63 are used to indicate the page type.
1415 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1416 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1417 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1418 * for the offset.
1419 * | offset |01100|type |00|
1420 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1421 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1422 */
1423
1424 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1425 #define __SWP_OFFSET_SHIFT 12
1426 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1427 #define __SWP_TYPE_SHIFT 2
1428
1429 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1430 {
1431 pte_t pte;
1432
1433 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1434 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1435 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1436 return pte;
1437 }
1438
1439 static inline unsigned long __swp_type(swp_entry_t entry)
1440 {
1441 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1442 }
1443
1444 static inline unsigned long __swp_offset(swp_entry_t entry)
1445 {
1446 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1447 }
1448
1449 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1450 {
1451 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1452 }
1453
1454 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1455 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1456
1457 #endif /* !__ASSEMBLY__ */
1458
1459 #define kern_addr_valid(addr) (1)
1460
1461 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1462 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1463 extern int s390_enable_sie(void);
1464 extern int s390_enable_skey(void);
1465 extern void s390_reset_cmma(struct mm_struct *mm);
1466
1467 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1468 #define HAVE_ARCH_UNMAPPED_AREA
1469 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1470
1471 /*
1472 * No page table caches to initialise
1473 */
1474 static inline void pgtable_cache_init(void) { }
1475 static inline void check_pgt_cache(void) { }
1476
1477 #include <asm-generic/pgtable.h>
1478
1479 #endif /* _S390_PAGE_H */
This page took 0.075234 seconds and 5 git commands to generate.