s390/sclp: unify basic sclp access by exposing "struct sclp"
[deliverable/linux.git] / arch / s390 / kernel / crash_dump.c
1 /*
2 * S390 kdump implementation
3 *
4 * Copyright IBM Corp. 2011
5 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6 */
7
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <linux/memblock.h>
17 #include <asm/os_info.h>
18 #include <asm/elf.h>
19 #include <asm/ipl.h>
20 #include <asm/sclp.h>
21
22 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
23 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
24 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
25
26 static struct memblock_region oldmem_region;
27
28 static struct memblock_type oldmem_type = {
29 .cnt = 1,
30 .max = 1,
31 .total_size = 0,
32 .regions = &oldmem_region,
33 };
34
35 #define for_each_dump_mem_range(i, nid, p_start, p_end, p_nid) \
36 for (i = 0, __next_mem_range(&i, nid, &memblock.physmem, \
37 &oldmem_type, p_start, \
38 p_end, p_nid); \
39 i != (u64)ULLONG_MAX; \
40 __next_mem_range(&i, nid, &memblock.physmem, \
41 &oldmem_type, \
42 p_start, p_end, p_nid))
43
44 struct dump_save_areas dump_save_areas;
45
46 /*
47 * Allocate and add a save area for a CPU
48 */
49 struct save_area_ext *dump_save_area_create(int cpu)
50 {
51 struct save_area_ext **save_areas, *save_area;
52
53 save_area = kmalloc(sizeof(*save_area), GFP_KERNEL);
54 if (!save_area)
55 return NULL;
56 if (cpu + 1 > dump_save_areas.count) {
57 dump_save_areas.count = cpu + 1;
58 save_areas = krealloc(dump_save_areas.areas,
59 dump_save_areas.count * sizeof(void *),
60 GFP_KERNEL | __GFP_ZERO);
61 if (!save_areas) {
62 kfree(save_area);
63 return NULL;
64 }
65 dump_save_areas.areas = save_areas;
66 }
67 dump_save_areas.areas[cpu] = save_area;
68 return save_area;
69 }
70
71 /*
72 * Return physical address for virtual address
73 */
74 static inline void *load_real_addr(void *addr)
75 {
76 unsigned long real_addr;
77
78 asm volatile(
79 " lra %0,0(%1)\n"
80 " jz 0f\n"
81 " la %0,0\n"
82 "0:"
83 : "=a" (real_addr) : "a" (addr) : "cc");
84 return (void *)real_addr;
85 }
86
87 /*
88 * Copy real to virtual or real memory
89 */
90 static int copy_from_realmem(void *dest, void *src, size_t count)
91 {
92 unsigned long size;
93
94 if (!count)
95 return 0;
96 if (!is_vmalloc_or_module_addr(dest))
97 return memcpy_real(dest, src, count);
98 do {
99 size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
100 if (memcpy_real(load_real_addr(dest), src, size))
101 return -EFAULT;
102 count -= size;
103 dest += size;
104 src += size;
105 } while (count);
106 return 0;
107 }
108
109 /*
110 * Pointer to ELF header in new kernel
111 */
112 static void *elfcorehdr_newmem;
113
114 /*
115 * Copy one page from zfcpdump "oldmem"
116 *
117 * For pages below HSA size memory from the HSA is copied. Otherwise
118 * real memory copy is used.
119 */
120 static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
121 unsigned long src, int userbuf)
122 {
123 int rc;
124
125 if (src < sclp.hsa_size) {
126 rc = memcpy_hsa(buf, src, csize, userbuf);
127 } else {
128 if (userbuf)
129 rc = copy_to_user_real((void __force __user *) buf,
130 (void *) src, csize);
131 else
132 rc = memcpy_real(buf, (void *) src, csize);
133 }
134 return rc ? rc : csize;
135 }
136
137 /*
138 * Copy one page from kdump "oldmem"
139 *
140 * For the kdump reserved memory this functions performs a swap operation:
141 * - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
142 * - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
143 */
144 static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
145 unsigned long src, int userbuf)
146
147 {
148 int rc;
149
150 if (src < OLDMEM_SIZE)
151 src += OLDMEM_BASE;
152 else if (src > OLDMEM_BASE &&
153 src < OLDMEM_BASE + OLDMEM_SIZE)
154 src -= OLDMEM_BASE;
155 if (userbuf)
156 rc = copy_to_user_real((void __force __user *) buf,
157 (void *) src, csize);
158 else
159 rc = copy_from_realmem(buf, (void *) src, csize);
160 return (rc == 0) ? rc : csize;
161 }
162
163 /*
164 * Copy one page from "oldmem"
165 */
166 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
167 unsigned long offset, int userbuf)
168 {
169 unsigned long src;
170
171 if (!csize)
172 return 0;
173 src = (pfn << PAGE_SHIFT) + offset;
174 if (OLDMEM_BASE)
175 return copy_oldmem_page_kdump(buf, csize, src, userbuf);
176 else
177 return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
178 }
179
180 /*
181 * Remap "oldmem" for kdump
182 *
183 * For the kdump reserved memory this functions performs a swap operation:
184 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
185 */
186 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
187 unsigned long from, unsigned long pfn,
188 unsigned long size, pgprot_t prot)
189 {
190 unsigned long size_old;
191 int rc;
192
193 if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
194 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
195 rc = remap_pfn_range(vma, from,
196 pfn + (OLDMEM_BASE >> PAGE_SHIFT),
197 size_old, prot);
198 if (rc || size == size_old)
199 return rc;
200 size -= size_old;
201 from += size_old;
202 pfn += size_old >> PAGE_SHIFT;
203 }
204 return remap_pfn_range(vma, from, pfn, size, prot);
205 }
206
207 /*
208 * Remap "oldmem" for zfcpdump
209 *
210 * We only map available memory above HSA size. Memory below HSA size
211 * is read on demand using the copy_oldmem_page() function.
212 */
213 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
214 unsigned long from,
215 unsigned long pfn,
216 unsigned long size, pgprot_t prot)
217 {
218 unsigned long hsa_end = sclp.hsa_size;
219 unsigned long size_hsa;
220
221 if (pfn < hsa_end >> PAGE_SHIFT) {
222 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
223 if (size == size_hsa)
224 return 0;
225 size -= size_hsa;
226 from += size_hsa;
227 pfn += size_hsa >> PAGE_SHIFT;
228 }
229 return remap_pfn_range(vma, from, pfn, size, prot);
230 }
231
232 /*
233 * Remap "oldmem" for kdump or zfcpdump
234 */
235 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
236 unsigned long pfn, unsigned long size, pgprot_t prot)
237 {
238 if (OLDMEM_BASE)
239 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
240 else
241 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
242 prot);
243 }
244
245 /*
246 * Copy memory from old kernel
247 */
248 int copy_from_oldmem(void *dest, void *src, size_t count)
249 {
250 unsigned long copied = 0;
251 int rc;
252
253 if (OLDMEM_BASE) {
254 if ((unsigned long) src < OLDMEM_SIZE) {
255 copied = min(count, OLDMEM_SIZE - (unsigned long) src);
256 rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
257 if (rc)
258 return rc;
259 }
260 } else {
261 unsigned long hsa_end = sclp.hsa_size;
262 if ((unsigned long) src < hsa_end) {
263 copied = min(count, hsa_end - (unsigned long) src);
264 rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
265 if (rc)
266 return rc;
267 }
268 }
269 return copy_from_realmem(dest + copied, src + copied, count - copied);
270 }
271
272 /*
273 * Alloc memory and panic in case of ENOMEM
274 */
275 static void *kzalloc_panic(int len)
276 {
277 void *rc;
278
279 rc = kzalloc(len, GFP_KERNEL);
280 if (!rc)
281 panic("s390 kdump kzalloc (%d) failed", len);
282 return rc;
283 }
284
285 /*
286 * Initialize ELF note
287 */
288 static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
289 const char *name)
290 {
291 Elf64_Nhdr *note;
292 u64 len;
293
294 note = (Elf64_Nhdr *)buf;
295 note->n_namesz = strlen(name) + 1;
296 note->n_descsz = d_len;
297 note->n_type = type;
298 len = sizeof(Elf64_Nhdr);
299
300 memcpy(buf + len, name, note->n_namesz);
301 len = roundup(len + note->n_namesz, 4);
302
303 memcpy(buf + len, desc, note->n_descsz);
304 len = roundup(len + note->n_descsz, 4);
305
306 return PTR_ADD(buf, len);
307 }
308
309 /*
310 * Initialize prstatus note
311 */
312 static void *nt_prstatus(void *ptr, struct save_area *sa)
313 {
314 struct elf_prstatus nt_prstatus;
315 static int cpu_nr = 1;
316
317 memset(&nt_prstatus, 0, sizeof(nt_prstatus));
318 memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
319 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
320 memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
321 nt_prstatus.pr_pid = cpu_nr;
322 cpu_nr++;
323
324 return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
325 "CORE");
326 }
327
328 /*
329 * Initialize fpregset (floating point) note
330 */
331 static void *nt_fpregset(void *ptr, struct save_area *sa)
332 {
333 elf_fpregset_t nt_fpregset;
334
335 memset(&nt_fpregset, 0, sizeof(nt_fpregset));
336 memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
337 memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
338
339 return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
340 "CORE");
341 }
342
343 /*
344 * Initialize timer note
345 */
346 static void *nt_s390_timer(void *ptr, struct save_area *sa)
347 {
348 return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
349 KEXEC_CORE_NOTE_NAME);
350 }
351
352 /*
353 * Initialize TOD clock comparator note
354 */
355 static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
356 {
357 return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
358 sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
359 }
360
361 /*
362 * Initialize TOD programmable register note
363 */
364 static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
365 {
366 return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
367 sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
368 }
369
370 /*
371 * Initialize control register note
372 */
373 static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
374 {
375 return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
376 sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
377 }
378
379 /*
380 * Initialize prefix register note
381 */
382 static void *nt_s390_prefix(void *ptr, struct save_area *sa)
383 {
384 return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
385 sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
386 }
387
388 /*
389 * Initialize vxrs high note (full 128 bit VX registers 16-31)
390 */
391 static void *nt_s390_vx_high(void *ptr, __vector128 *vx_regs)
392 {
393 return nt_init(ptr, NT_S390_VXRS_HIGH, &vx_regs[16],
394 16 * sizeof(__vector128), KEXEC_CORE_NOTE_NAME);
395 }
396
397 /*
398 * Initialize vxrs low note (lower halves of VX registers 0-15)
399 */
400 static void *nt_s390_vx_low(void *ptr, __vector128 *vx_regs)
401 {
402 Elf64_Nhdr *note;
403 u64 len;
404 int i;
405
406 note = (Elf64_Nhdr *)ptr;
407 note->n_namesz = strlen(KEXEC_CORE_NOTE_NAME) + 1;
408 note->n_descsz = 16 * 8;
409 note->n_type = NT_S390_VXRS_LOW;
410 len = sizeof(Elf64_Nhdr);
411
412 memcpy(ptr + len, KEXEC_CORE_NOTE_NAME, note->n_namesz);
413 len = roundup(len + note->n_namesz, 4);
414
415 ptr += len;
416 /* Copy lower halves of SIMD registers 0-15 */
417 for (i = 0; i < 16; i++) {
418 memcpy(ptr, &vx_regs[i], 8);
419 ptr += 8;
420 }
421 return ptr;
422 }
423
424 /*
425 * Fill ELF notes for one CPU with save area registers
426 */
427 void *fill_cpu_elf_notes(void *ptr, struct save_area *sa, __vector128 *vx_regs)
428 {
429 ptr = nt_prstatus(ptr, sa);
430 ptr = nt_fpregset(ptr, sa);
431 ptr = nt_s390_timer(ptr, sa);
432 ptr = nt_s390_tod_cmp(ptr, sa);
433 ptr = nt_s390_tod_preg(ptr, sa);
434 ptr = nt_s390_ctrs(ptr, sa);
435 ptr = nt_s390_prefix(ptr, sa);
436 if (MACHINE_HAS_VX && vx_regs) {
437 ptr = nt_s390_vx_low(ptr, vx_regs);
438 ptr = nt_s390_vx_high(ptr, vx_regs);
439 }
440 return ptr;
441 }
442
443 /*
444 * Initialize prpsinfo note (new kernel)
445 */
446 static void *nt_prpsinfo(void *ptr)
447 {
448 struct elf_prpsinfo prpsinfo;
449
450 memset(&prpsinfo, 0, sizeof(prpsinfo));
451 prpsinfo.pr_sname = 'R';
452 strcpy(prpsinfo.pr_fname, "vmlinux");
453 return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
454 KEXEC_CORE_NOTE_NAME);
455 }
456
457 /*
458 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
459 */
460 static void *get_vmcoreinfo_old(unsigned long *size)
461 {
462 char nt_name[11], *vmcoreinfo;
463 Elf64_Nhdr note;
464 void *addr;
465
466 if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
467 return NULL;
468 memset(nt_name, 0, sizeof(nt_name));
469 if (copy_from_oldmem(&note, addr, sizeof(note)))
470 return NULL;
471 if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
472 return NULL;
473 if (strcmp(nt_name, "VMCOREINFO") != 0)
474 return NULL;
475 vmcoreinfo = kzalloc_panic(note.n_descsz);
476 if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
477 return NULL;
478 *size = note.n_descsz;
479 return vmcoreinfo;
480 }
481
482 /*
483 * Initialize vmcoreinfo note (new kernel)
484 */
485 static void *nt_vmcoreinfo(void *ptr)
486 {
487 unsigned long size;
488 void *vmcoreinfo;
489
490 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
491 if (!vmcoreinfo)
492 vmcoreinfo = get_vmcoreinfo_old(&size);
493 if (!vmcoreinfo)
494 return ptr;
495 return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
496 }
497
498 /*
499 * Initialize ELF header (new kernel)
500 */
501 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
502 {
503 memset(ehdr, 0, sizeof(*ehdr));
504 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
505 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
506 ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
507 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
508 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
509 ehdr->e_type = ET_CORE;
510 ehdr->e_machine = EM_S390;
511 ehdr->e_version = EV_CURRENT;
512 ehdr->e_phoff = sizeof(Elf64_Ehdr);
513 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
514 ehdr->e_phentsize = sizeof(Elf64_Phdr);
515 ehdr->e_phnum = mem_chunk_cnt + 1;
516 return ehdr + 1;
517 }
518
519 /*
520 * Return CPU count for ELF header (new kernel)
521 */
522 static int get_cpu_cnt(void)
523 {
524 int i, cpus = 0;
525
526 for (i = 0; i < dump_save_areas.count; i++) {
527 if (dump_save_areas.areas[i]->sa.pref_reg == 0)
528 continue;
529 cpus++;
530 }
531 return cpus;
532 }
533
534 /*
535 * Return memory chunk count for ELF header (new kernel)
536 */
537 static int get_mem_chunk_cnt(void)
538 {
539 int cnt = 0;
540 u64 idx;
541
542 for_each_dump_mem_range(idx, NUMA_NO_NODE, NULL, NULL, NULL)
543 cnt++;
544 return cnt;
545 }
546
547 /*
548 * Initialize ELF loads (new kernel)
549 */
550 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
551 {
552 phys_addr_t start, end;
553 u64 idx;
554
555 for_each_dump_mem_range(idx, NUMA_NO_NODE, &start, &end, NULL) {
556 phdr->p_filesz = end - start;
557 phdr->p_type = PT_LOAD;
558 phdr->p_offset = start;
559 phdr->p_vaddr = start;
560 phdr->p_paddr = start;
561 phdr->p_memsz = end - start;
562 phdr->p_flags = PF_R | PF_W | PF_X;
563 phdr->p_align = PAGE_SIZE;
564 phdr++;
565 }
566 }
567
568 /*
569 * Initialize notes (new kernel)
570 */
571 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
572 {
573 struct save_area_ext *sa_ext;
574 void *ptr_start = ptr;
575 int i;
576
577 ptr = nt_prpsinfo(ptr);
578
579 for (i = 0; i < dump_save_areas.count; i++) {
580 sa_ext = dump_save_areas.areas[i];
581 if (sa_ext->sa.pref_reg == 0)
582 continue;
583 ptr = fill_cpu_elf_notes(ptr, &sa_ext->sa, sa_ext->vx_regs);
584 }
585 ptr = nt_vmcoreinfo(ptr);
586 memset(phdr, 0, sizeof(*phdr));
587 phdr->p_type = PT_NOTE;
588 phdr->p_offset = notes_offset;
589 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
590 phdr->p_memsz = phdr->p_filesz;
591 return ptr;
592 }
593
594 /*
595 * Create ELF core header (new kernel)
596 */
597 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
598 {
599 Elf64_Phdr *phdr_notes, *phdr_loads;
600 int mem_chunk_cnt;
601 void *ptr, *hdr;
602 u32 alloc_size;
603 u64 hdr_off;
604
605 /* If we are not in kdump or zfcpdump mode return */
606 if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
607 return 0;
608 /* If elfcorehdr= has been passed via cmdline, we use that one */
609 if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
610 return 0;
611 /* If we cannot get HSA size for zfcpdump return error */
612 if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
613 return -ENODEV;
614
615 /* For kdump, exclude previous crashkernel memory */
616 if (OLDMEM_BASE) {
617 oldmem_region.base = OLDMEM_BASE;
618 oldmem_region.size = OLDMEM_SIZE;
619 oldmem_type.total_size = OLDMEM_SIZE;
620 }
621
622 mem_chunk_cnt = get_mem_chunk_cnt();
623
624 alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
625 mem_chunk_cnt * sizeof(Elf64_Phdr);
626 hdr = kzalloc_panic(alloc_size);
627 /* Init elf header */
628 ptr = ehdr_init(hdr, mem_chunk_cnt);
629 /* Init program headers */
630 phdr_notes = ptr;
631 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
632 phdr_loads = ptr;
633 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
634 /* Init notes */
635 hdr_off = PTR_DIFF(ptr, hdr);
636 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
637 /* Init loads */
638 hdr_off = PTR_DIFF(ptr, hdr);
639 loads_init(phdr_loads, hdr_off);
640 *addr = (unsigned long long) hdr;
641 elfcorehdr_newmem = hdr;
642 *size = (unsigned long long) hdr_off;
643 BUG_ON(elfcorehdr_size > alloc_size);
644 return 0;
645 }
646
647 /*
648 * Free ELF core header (new kernel)
649 */
650 void elfcorehdr_free(unsigned long long addr)
651 {
652 if (!elfcorehdr_newmem)
653 return;
654 kfree((void *)(unsigned long)addr);
655 }
656
657 /*
658 * Read from ELF header
659 */
660 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
661 {
662 void *src = (void *)(unsigned long)*ppos;
663
664 src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
665 memcpy(buf, src, count);
666 *ppos += count;
667 return count;
668 }
669
670 /*
671 * Read from ELF notes data
672 */
673 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
674 {
675 void *src = (void *)(unsigned long)*ppos;
676 int rc;
677
678 if (elfcorehdr_newmem) {
679 memcpy(buf, src, count);
680 } else {
681 rc = copy_from_oldmem(buf, src, count);
682 if (rc)
683 return rc;
684 }
685 *ppos += count;
686 return count;
687 }
This page took 0.049452 seconds and 5 git commands to generate.