[PATCH] kprobes: enable booster on the preemptible kernel
[deliverable/linux.git] / arch / s390 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2006
19 *
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21 */
22
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <asm/cacheflush.h>
28 #include <asm/kdebug.h>
29 #include <asm/sections.h>
30 #include <asm/uaccess.h>
31 #include <linux/module.h>
32
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35
36 int __kprobes arch_prepare_kprobe(struct kprobe *p)
37 {
38 /* Make sure the probe isn't going on a difficult instruction */
39 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
40 return -EINVAL;
41
42 if ((unsigned long)p->addr & 0x01) {
43 printk("Attempt to register kprobe at an unaligned address\n");
44 return -EINVAL;
45 }
46
47 /* Use the get_insn_slot() facility for correctness */
48 if (!(p->ainsn.insn = get_insn_slot()))
49 return -ENOMEM;
50
51 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
52
53 get_instruction_type(&p->ainsn);
54 p->opcode = *p->addr;
55 return 0;
56 }
57
58 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
59 {
60 switch (*(__u8 *) instruction) {
61 case 0x0c: /* bassm */
62 case 0x0b: /* bsm */
63 case 0x83: /* diag */
64 case 0x44: /* ex */
65 return -EINVAL;
66 }
67 switch (*(__u16 *) instruction) {
68 case 0x0101: /* pr */
69 case 0xb25a: /* bsa */
70 case 0xb240: /* bakr */
71 case 0xb258: /* bsg */
72 case 0xb218: /* pc */
73 case 0xb228: /* pt */
74 return -EINVAL;
75 }
76 return 0;
77 }
78
79 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
80 {
81 /* default fixup method */
82 ainsn->fixup = FIXUP_PSW_NORMAL;
83
84 /* save r1 operand */
85 ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
86
87 /* save the instruction length (pop 5-5) in bytes */
88 switch (*(__u8 *) (ainsn->insn) >> 4) {
89 case 0:
90 ainsn->ilen = 2;
91 break;
92 case 1:
93 case 2:
94 ainsn->ilen = 4;
95 break;
96 case 3:
97 ainsn->ilen = 6;
98 break;
99 }
100
101 switch (*(__u8 *) ainsn->insn) {
102 case 0x05: /* balr */
103 case 0x0d: /* basr */
104 ainsn->fixup = FIXUP_RETURN_REGISTER;
105 /* if r2 = 0, no branch will be taken */
106 if ((*ainsn->insn & 0x0f) == 0)
107 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
108 break;
109 case 0x06: /* bctr */
110 case 0x07: /* bcr */
111 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
112 break;
113 case 0x45: /* bal */
114 case 0x4d: /* bas */
115 ainsn->fixup = FIXUP_RETURN_REGISTER;
116 break;
117 case 0x47: /* bc */
118 case 0x46: /* bct */
119 case 0x86: /* bxh */
120 case 0x87: /* bxle */
121 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
122 break;
123 case 0x82: /* lpsw */
124 ainsn->fixup = FIXUP_NOT_REQUIRED;
125 break;
126 case 0xb2: /* lpswe */
127 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
128 ainsn->fixup = FIXUP_NOT_REQUIRED;
129 }
130 break;
131 case 0xa7: /* bras */
132 if ((*ainsn->insn & 0x0f) == 0x05) {
133 ainsn->fixup |= FIXUP_RETURN_REGISTER;
134 }
135 break;
136 case 0xc0:
137 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */
138 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
139 ainsn->fixup |= FIXUP_RETURN_REGISTER;
140 break;
141 case 0xeb:
142 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */
143 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
144 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
145 }
146 break;
147 case 0xe3: /* bctg */
148 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
149 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
150 }
151 break;
152 }
153 }
154
155 static int __kprobes swap_instruction(void *aref)
156 {
157 struct ins_replace_args *args = aref;
158 int err = -EFAULT;
159
160 asm volatile(
161 "0: mvc 0(2,%2),0(%3)\n"
162 "1: la %0,0\n"
163 "2:\n"
164 EX_TABLE(0b,2b)
165 : "+d" (err), "=m" (*args->ptr)
166 : "a" (args->ptr), "a" (&args->new), "m" (args->new));
167 return err;
168 }
169
170 void __kprobes arch_arm_kprobe(struct kprobe *p)
171 {
172 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
173 unsigned long status = kcb->kprobe_status;
174 struct ins_replace_args args;
175
176 args.ptr = p->addr;
177 args.old = p->opcode;
178 args.new = BREAKPOINT_INSTRUCTION;
179
180 kcb->kprobe_status = KPROBE_SWAP_INST;
181 stop_machine_run(swap_instruction, &args, NR_CPUS);
182 kcb->kprobe_status = status;
183 }
184
185 void __kprobes arch_disarm_kprobe(struct kprobe *p)
186 {
187 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
188 unsigned long status = kcb->kprobe_status;
189 struct ins_replace_args args;
190
191 args.ptr = p->addr;
192 args.old = BREAKPOINT_INSTRUCTION;
193 args.new = p->opcode;
194
195 kcb->kprobe_status = KPROBE_SWAP_INST;
196 stop_machine_run(swap_instruction, &args, NR_CPUS);
197 kcb->kprobe_status = status;
198 }
199
200 void __kprobes arch_remove_kprobe(struct kprobe *p)
201 {
202 mutex_lock(&kprobe_mutex);
203 free_insn_slot(p->ainsn.insn, 0);
204 mutex_unlock(&kprobe_mutex);
205 }
206
207 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
208 {
209 per_cr_bits kprobe_per_regs[1];
210
211 memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
212 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
213
214 /* Set up the per control reg info, will pass to lctl */
215 kprobe_per_regs[0].em_instruction_fetch = 1;
216 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
217 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
218
219 /* Set the PER control regs, turns on single step for this address */
220 __ctl_load(kprobe_per_regs, 9, 11);
221 regs->psw.mask |= PSW_MASK_PER;
222 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
223 }
224
225 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
226 {
227 kcb->prev_kprobe.kp = kprobe_running();
228 kcb->prev_kprobe.status = kcb->kprobe_status;
229 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
230 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
231 sizeof(kcb->kprobe_saved_ctl));
232 }
233
234 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
235 {
236 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
237 kcb->kprobe_status = kcb->prev_kprobe.status;
238 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
239 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
240 sizeof(kcb->kprobe_saved_ctl));
241 }
242
243 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
244 struct kprobe_ctlblk *kcb)
245 {
246 __get_cpu_var(current_kprobe) = p;
247 /* Save the interrupt and per flags */
248 kcb->kprobe_saved_imask = regs->psw.mask &
249 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
250 /* Save the control regs that govern PER */
251 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
252 }
253
254 /* Called with kretprobe_lock held */
255 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
256 struct pt_regs *regs)
257 {
258 struct kretprobe_instance *ri;
259
260 if ((ri = get_free_rp_inst(rp)) != NULL) {
261 ri->rp = rp;
262 ri->task = current;
263 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
264
265 /* Replace the return addr with trampoline addr */
266 regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
267
268 add_rp_inst(ri);
269 } else {
270 rp->nmissed++;
271 }
272 }
273
274 static int __kprobes kprobe_handler(struct pt_regs *regs)
275 {
276 struct kprobe *p;
277 int ret = 0;
278 unsigned long *addr = (unsigned long *)
279 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
280 struct kprobe_ctlblk *kcb;
281
282 /*
283 * We don't want to be preempted for the entire
284 * duration of kprobe processing
285 */
286 preempt_disable();
287 kcb = get_kprobe_ctlblk();
288
289 /* Check we're not actually recursing */
290 if (kprobe_running()) {
291 p = get_kprobe(addr);
292 if (p) {
293 if (kcb->kprobe_status == KPROBE_HIT_SS &&
294 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
295 regs->psw.mask &= ~PSW_MASK_PER;
296 regs->psw.mask |= kcb->kprobe_saved_imask;
297 goto no_kprobe;
298 }
299 /* We have reentered the kprobe_handler(), since
300 * another probe was hit while within the handler.
301 * We here save the original kprobes variables and
302 * just single step on the instruction of the new probe
303 * without calling any user handlers.
304 */
305 save_previous_kprobe(kcb);
306 set_current_kprobe(p, regs, kcb);
307 kprobes_inc_nmissed_count(p);
308 prepare_singlestep(p, regs);
309 kcb->kprobe_status = KPROBE_REENTER;
310 return 1;
311 } else {
312 p = __get_cpu_var(current_kprobe);
313 if (p->break_handler && p->break_handler(p, regs)) {
314 goto ss_probe;
315 }
316 }
317 goto no_kprobe;
318 }
319
320 p = get_kprobe(addr);
321 if (!p) {
322 if (*addr != BREAKPOINT_INSTRUCTION) {
323 /*
324 * The breakpoint instruction was removed right
325 * after we hit it. Another cpu has removed
326 * either a probepoint or a debugger breakpoint
327 * at this address. In either case, no further
328 * handling of this interrupt is appropriate.
329 *
330 */
331 ret = 1;
332 }
333 /* Not one of ours: let kernel handle it */
334 goto no_kprobe;
335 }
336
337 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
338 set_current_kprobe(p, regs, kcb);
339 if (p->pre_handler && p->pre_handler(p, regs))
340 /* handler has already set things up, so skip ss setup */
341 return 1;
342
343 ss_probe:
344 prepare_singlestep(p, regs);
345 kcb->kprobe_status = KPROBE_HIT_SS;
346 return 1;
347
348 no_kprobe:
349 preempt_enable_no_resched();
350 return ret;
351 }
352
353 /*
354 * Function return probe trampoline:
355 * - init_kprobes() establishes a probepoint here
356 * - When the probed function returns, this probe
357 * causes the handlers to fire
358 */
359 void __kprobes kretprobe_trampoline_holder(void)
360 {
361 asm volatile(".global kretprobe_trampoline\n"
362 "kretprobe_trampoline: bcr 0,0\n");
363 }
364
365 /*
366 * Called when the probe at kretprobe trampoline is hit
367 */
368 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
369 {
370 struct kretprobe_instance *ri = NULL;
371 struct hlist_head *head, empty_rp;
372 struct hlist_node *node, *tmp;
373 unsigned long flags, orig_ret_address = 0;
374 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
375
376 INIT_HLIST_HEAD(&empty_rp);
377 spin_lock_irqsave(&kretprobe_lock, flags);
378 head = kretprobe_inst_table_head(current);
379
380 /*
381 * It is possible to have multiple instances associated with a given
382 * task either because an multiple functions in the call path
383 * have a return probe installed on them, and/or more then one return
384 * return probe was registered for a target function.
385 *
386 * We can handle this because:
387 * - instances are always inserted at the head of the list
388 * - when multiple return probes are registered for the same
389 * function, the first instance's ret_addr will point to the
390 * real return address, and all the rest will point to
391 * kretprobe_trampoline
392 */
393 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
394 if (ri->task != current)
395 /* another task is sharing our hash bucket */
396 continue;
397
398 if (ri->rp && ri->rp->handler)
399 ri->rp->handler(ri, regs);
400
401 orig_ret_address = (unsigned long)ri->ret_addr;
402 recycle_rp_inst(ri, &empty_rp);
403
404 if (orig_ret_address != trampoline_address) {
405 /*
406 * This is the real return address. Any other
407 * instances associated with this task are for
408 * other calls deeper on the call stack
409 */
410 break;
411 }
412 }
413 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
414 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
415
416 reset_current_kprobe();
417 spin_unlock_irqrestore(&kretprobe_lock, flags);
418 preempt_enable_no_resched();
419
420 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
421 hlist_del(&ri->hlist);
422 kfree(ri);
423 }
424 /*
425 * By returning a non-zero value, we are telling
426 * kprobe_handler() that we don't want the post_handler
427 * to run (and have re-enabled preemption)
428 */
429 return 1;
430 }
431
432 /*
433 * Called after single-stepping. p->addr is the address of the
434 * instruction whose first byte has been replaced by the "breakpoint"
435 * instruction. To avoid the SMP problems that can occur when we
436 * temporarily put back the original opcode to single-step, we
437 * single-stepped a copy of the instruction. The address of this
438 * copy is p->ainsn.insn.
439 */
440 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
441 {
442 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
443
444 regs->psw.addr &= PSW_ADDR_INSN;
445
446 if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
447 regs->psw.addr = (unsigned long)p->addr +
448 ((unsigned long)regs->psw.addr -
449 (unsigned long)p->ainsn.insn);
450
451 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
452 if ((unsigned long)regs->psw.addr -
453 (unsigned long)p->ainsn.insn == p->ainsn.ilen)
454 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
455
456 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
457 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
458 (regs->gprs[p->ainsn.reg] -
459 (unsigned long)p->ainsn.insn))
460 | PSW_ADDR_AMODE;
461
462 regs->psw.addr |= PSW_ADDR_AMODE;
463 /* turn off PER mode */
464 regs->psw.mask &= ~PSW_MASK_PER;
465 /* Restore the original per control regs */
466 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
467 regs->psw.mask |= kcb->kprobe_saved_imask;
468 }
469
470 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
471 {
472 struct kprobe *cur = kprobe_running();
473 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
474
475 if (!cur)
476 return 0;
477
478 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
479 kcb->kprobe_status = KPROBE_HIT_SSDONE;
480 cur->post_handler(cur, regs, 0);
481 }
482
483 resume_execution(cur, regs);
484
485 /*Restore back the original saved kprobes variables and continue. */
486 if (kcb->kprobe_status == KPROBE_REENTER) {
487 restore_previous_kprobe(kcb);
488 goto out;
489 }
490 reset_current_kprobe();
491 out:
492 preempt_enable_no_resched();
493
494 /*
495 * if somebody else is singlestepping across a probe point, psw mask
496 * will have PER set, in which case, continue the remaining processing
497 * of do_single_step, as if this is not a probe hit.
498 */
499 if (regs->psw.mask & PSW_MASK_PER) {
500 return 0;
501 }
502
503 return 1;
504 }
505
506 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
507 {
508 struct kprobe *cur = kprobe_running();
509 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
510 const struct exception_table_entry *entry;
511
512 switch(kcb->kprobe_status) {
513 case KPROBE_SWAP_INST:
514 /* We are here because the instruction replacement failed */
515 return 0;
516 case KPROBE_HIT_SS:
517 case KPROBE_REENTER:
518 /*
519 * We are here because the instruction being single
520 * stepped caused a page fault. We reset the current
521 * kprobe and the nip points back to the probe address
522 * and allow the page fault handler to continue as a
523 * normal page fault.
524 */
525 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
526 regs->psw.mask &= ~PSW_MASK_PER;
527 regs->psw.mask |= kcb->kprobe_saved_imask;
528 if (kcb->kprobe_status == KPROBE_REENTER)
529 restore_previous_kprobe(kcb);
530 else
531 reset_current_kprobe();
532 preempt_enable_no_resched();
533 break;
534 case KPROBE_HIT_ACTIVE:
535 case KPROBE_HIT_SSDONE:
536 /*
537 * We increment the nmissed count for accounting,
538 * we can also use npre/npostfault count for accouting
539 * these specific fault cases.
540 */
541 kprobes_inc_nmissed_count(cur);
542
543 /*
544 * We come here because instructions in the pre/post
545 * handler caused the page_fault, this could happen
546 * if handler tries to access user space by
547 * copy_from_user(), get_user() etc. Let the
548 * user-specified handler try to fix it first.
549 */
550 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
551 return 1;
552
553 /*
554 * In case the user-specified fault handler returned
555 * zero, try to fix up.
556 */
557 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
558 if (entry) {
559 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
560 return 1;
561 }
562
563 /*
564 * fixup_exception() could not handle it,
565 * Let do_page_fault() fix it.
566 */
567 break;
568 default:
569 break;
570 }
571 return 0;
572 }
573
574 /*
575 * Wrapper routine to for handling exceptions.
576 */
577 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
578 unsigned long val, void *data)
579 {
580 struct die_args *args = (struct die_args *)data;
581 int ret = NOTIFY_DONE;
582
583 switch (val) {
584 case DIE_BPT:
585 if (kprobe_handler(args->regs))
586 ret = NOTIFY_STOP;
587 break;
588 case DIE_SSTEP:
589 if (post_kprobe_handler(args->regs))
590 ret = NOTIFY_STOP;
591 break;
592 case DIE_TRAP:
593 case DIE_PAGE_FAULT:
594 /* kprobe_running() needs smp_processor_id() */
595 preempt_disable();
596 if (kprobe_running() &&
597 kprobe_fault_handler(args->regs, args->trapnr))
598 ret = NOTIFY_STOP;
599 preempt_enable();
600 break;
601 default:
602 break;
603 }
604 return ret;
605 }
606
607 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
608 {
609 struct jprobe *jp = container_of(p, struct jprobe, kp);
610 unsigned long addr;
611 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
612
613 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
614
615 /* setup return addr to the jprobe handler routine */
616 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
617
618 /* r14 is the function return address */
619 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
620 /* r15 is the stack pointer */
621 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
622 addr = (unsigned long)kcb->jprobe_saved_r15;
623
624 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
625 MIN_STACK_SIZE(addr));
626 return 1;
627 }
628
629 void __kprobes jprobe_return(void)
630 {
631 asm volatile(".word 0x0002");
632 }
633
634 void __kprobes jprobe_return_end(void)
635 {
636 asm volatile("bcr 0,0");
637 }
638
639 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
640 {
641 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
642 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
643
644 /* Put the regs back */
645 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
646 /* put the stack back */
647 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
648 MIN_STACK_SIZE(stack_addr));
649 preempt_enable_no_resched();
650 return 1;
651 }
652
653 static struct kprobe trampoline_p = {
654 .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
655 .pre_handler = trampoline_probe_handler
656 };
657
658 int __init arch_init_kprobes(void)
659 {
660 return register_kprobe(&trampoline_p);
661 }
This page took 0.059109 seconds and 5 git commands to generate.