headers: utsname.h redux
[deliverable/linux.git] / arch / s390 / kernel / process.c
1 /*
2 * This file handles the architecture dependent parts of process handling.
3 *
4 * Copyright IBM Corp. 1999,2009
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 * Hartmut Penner <hp@de.ibm.com>,
7 * Denis Joseph Barrow,
8 */
9
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/fs.h>
17 #include <linux/smp.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/tick.h>
31 #include <linux/elfcore.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/syscalls.h>
34 #include <linux/compat.h>
35 #include <asm/compat.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/processor.h>
41 #include <asm/irq.h>
42 #include <asm/timer.h>
43 #include <asm/nmi.h>
44 #include "entry.h"
45
46 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
47
48 /*
49 * Return saved PC of a blocked thread. used in kernel/sched.
50 * resume in entry.S does not create a new stack frame, it
51 * just stores the registers %r6-%r15 to the frame given by
52 * schedule. We want to return the address of the caller of
53 * schedule, so we have to walk the backchain one time to
54 * find the frame schedule() store its return address.
55 */
56 unsigned long thread_saved_pc(struct task_struct *tsk)
57 {
58 struct stack_frame *sf, *low, *high;
59
60 if (!tsk || !task_stack_page(tsk))
61 return 0;
62 low = task_stack_page(tsk);
63 high = (struct stack_frame *) task_pt_regs(tsk);
64 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
65 if (sf <= low || sf > high)
66 return 0;
67 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
68 if (sf <= low || sf > high)
69 return 0;
70 return sf->gprs[8];
71 }
72
73 /*
74 * The idle loop on a S390...
75 */
76 static void default_idle(void)
77 {
78 /* CPU is going idle. */
79 local_irq_disable();
80 if (need_resched()) {
81 local_irq_enable();
82 return;
83 }
84 #ifdef CONFIG_HOTPLUG_CPU
85 if (cpu_is_offline(smp_processor_id())) {
86 preempt_enable_no_resched();
87 cpu_die();
88 }
89 #endif
90 local_mcck_disable();
91 if (test_thread_flag(TIF_MCCK_PENDING)) {
92 local_mcck_enable();
93 local_irq_enable();
94 s390_handle_mcck();
95 return;
96 }
97 trace_hardirqs_on();
98 /* Don't trace preempt off for idle. */
99 stop_critical_timings();
100 /* Stop virtual timer and halt the cpu. */
101 vtime_stop_cpu();
102 /* Reenable preemption tracer. */
103 start_critical_timings();
104 }
105
106 void cpu_idle(void)
107 {
108 for (;;) {
109 tick_nohz_stop_sched_tick(1);
110 while (!need_resched())
111 default_idle();
112 tick_nohz_restart_sched_tick();
113 preempt_enable_no_resched();
114 schedule();
115 preempt_disable();
116 }
117 }
118
119 extern void kernel_thread_starter(void);
120
121 asm(
122 ".align 4\n"
123 "kernel_thread_starter:\n"
124 " la 2,0(10)\n"
125 " basr 14,9\n"
126 " la 2,0\n"
127 " br 11\n");
128
129 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
130 {
131 struct pt_regs regs;
132
133 memset(&regs, 0, sizeof(regs));
134 regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
135 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
136 regs.gprs[9] = (unsigned long) fn;
137 regs.gprs[10] = (unsigned long) arg;
138 regs.gprs[11] = (unsigned long) do_exit;
139 regs.orig_gpr2 = -1;
140
141 /* Ok, create the new process.. */
142 return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
143 0, &regs, 0, NULL, NULL);
144 }
145 EXPORT_SYMBOL(kernel_thread);
146
147 /*
148 * Free current thread data structures etc..
149 */
150 void exit_thread(void)
151 {
152 }
153
154 void flush_thread(void)
155 {
156 clear_used_math();
157 clear_tsk_thread_flag(current, TIF_USEDFPU);
158 }
159
160 void release_thread(struct task_struct *dead_task)
161 {
162 }
163
164 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
165 unsigned long unused,
166 struct task_struct *p, struct pt_regs *regs)
167 {
168 struct thread_info *ti;
169 struct fake_frame
170 {
171 struct stack_frame sf;
172 struct pt_regs childregs;
173 } *frame;
174
175 frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
176 p->thread.ksp = (unsigned long) frame;
177 /* Store access registers to kernel stack of new process. */
178 frame->childregs = *regs;
179 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
180 frame->childregs.gprs[15] = new_stackp;
181 frame->sf.back_chain = 0;
182
183 /* new return point is ret_from_fork */
184 frame->sf.gprs[8] = (unsigned long) ret_from_fork;
185
186 /* fake return stack for resume(), don't go back to schedule */
187 frame->sf.gprs[9] = (unsigned long) frame;
188
189 /* Save access registers to new thread structure. */
190 save_access_regs(&p->thread.acrs[0]);
191
192 #ifndef CONFIG_64BIT
193 /*
194 * save fprs to current->thread.fp_regs to merge them with
195 * the emulated registers and then copy the result to the child.
196 */
197 save_fp_regs(&current->thread.fp_regs);
198 memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
199 sizeof(s390_fp_regs));
200 /* Set a new TLS ? */
201 if (clone_flags & CLONE_SETTLS)
202 p->thread.acrs[0] = regs->gprs[6];
203 #else /* CONFIG_64BIT */
204 /* Save the fpu registers to new thread structure. */
205 save_fp_regs(&p->thread.fp_regs);
206 /* Set a new TLS ? */
207 if (clone_flags & CLONE_SETTLS) {
208 if (is_compat_task()) {
209 p->thread.acrs[0] = (unsigned int) regs->gprs[6];
210 } else {
211 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
212 p->thread.acrs[1] = (unsigned int) regs->gprs[6];
213 }
214 }
215 #endif /* CONFIG_64BIT */
216 /* start new process with ar4 pointing to the correct address space */
217 p->thread.mm_segment = get_fs();
218 /* Don't copy debug registers */
219 memset(&p->thread.per_info, 0, sizeof(p->thread.per_info));
220 /* Initialize per thread user and system timer values */
221 ti = task_thread_info(p);
222 ti->user_timer = 0;
223 ti->system_timer = 0;
224 return 0;
225 }
226
227 SYSCALL_DEFINE0(fork)
228 {
229 struct pt_regs *regs = task_pt_regs(current);
230 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
231 }
232
233 SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
234 int __user *, parent_tidptr, int __user *, child_tidptr)
235 {
236 struct pt_regs *regs = task_pt_regs(current);
237
238 if (!newsp)
239 newsp = regs->gprs[15];
240 return do_fork(clone_flags, newsp, regs, 0,
241 parent_tidptr, child_tidptr);
242 }
243
244 /*
245 * This is trivial, and on the face of it looks like it
246 * could equally well be done in user mode.
247 *
248 * Not so, for quite unobvious reasons - register pressure.
249 * In user mode vfork() cannot have a stack frame, and if
250 * done by calling the "clone()" system call directly, you
251 * do not have enough call-clobbered registers to hold all
252 * the information you need.
253 */
254 SYSCALL_DEFINE0(vfork)
255 {
256 struct pt_regs *regs = task_pt_regs(current);
257 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
258 regs->gprs[15], regs, 0, NULL, NULL);
259 }
260
261 asmlinkage void execve_tail(void)
262 {
263 current->thread.fp_regs.fpc = 0;
264 if (MACHINE_HAS_IEEE)
265 asm volatile("sfpc %0,%0" : : "d" (0));
266 }
267
268 /*
269 * sys_execve() executes a new program.
270 */
271 SYSCALL_DEFINE3(execve, char __user *, name, char __user * __user *, argv,
272 char __user * __user *, envp)
273 {
274 struct pt_regs *regs = task_pt_regs(current);
275 char *filename;
276 long rc;
277
278 filename = getname(name);
279 rc = PTR_ERR(filename);
280 if (IS_ERR(filename))
281 return rc;
282 rc = do_execve(filename, argv, envp, regs);
283 if (rc)
284 goto out;
285 execve_tail();
286 rc = regs->gprs[2];
287 out:
288 putname(filename);
289 return rc;
290 }
291
292 /*
293 * fill in the FPU structure for a core dump.
294 */
295 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
296 {
297 #ifndef CONFIG_64BIT
298 /*
299 * save fprs to current->thread.fp_regs to merge them with
300 * the emulated registers and then copy the result to the dump.
301 */
302 save_fp_regs(&current->thread.fp_regs);
303 memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
304 #else /* CONFIG_64BIT */
305 save_fp_regs(fpregs);
306 #endif /* CONFIG_64BIT */
307 return 1;
308 }
309 EXPORT_SYMBOL(dump_fpu);
310
311 unsigned long get_wchan(struct task_struct *p)
312 {
313 struct stack_frame *sf, *low, *high;
314 unsigned long return_address;
315 int count;
316
317 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
318 return 0;
319 low = task_stack_page(p);
320 high = (struct stack_frame *) task_pt_regs(p);
321 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
322 if (sf <= low || sf > high)
323 return 0;
324 for (count = 0; count < 16; count++) {
325 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
326 if (sf <= low || sf > high)
327 return 0;
328 return_address = sf->gprs[8] & PSW_ADDR_INSN;
329 if (!in_sched_functions(return_address))
330 return return_address;
331 }
332 return 0;
333 }
This page took 0.073857 seconds and 5 git commands to generate.