[S390] split/move machine check handler code
[deliverable/linux.git] / arch / s390 / kernel / process.c
1 /*
2 * This file handles the architecture dependent parts of process handling.
3 *
4 * Copyright IBM Corp. 1999,2009
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 * Hartmut Penner <hp@de.ibm.com>,
7 * Denis Joseph Barrow,
8 */
9
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/fs.h>
17 #include <linux/smp.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/utsname.h>
31 #include <linux/tick.h>
32 #include <linux/elfcore.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/syscalls.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/processor.h>
40 #include <asm/irq.h>
41 #include <asm/timer.h>
42 #include <asm/nmi.h>
43 #include "entry.h"
44
45 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
46
47 /*
48 * Return saved PC of a blocked thread. used in kernel/sched.
49 * resume in entry.S does not create a new stack frame, it
50 * just stores the registers %r6-%r15 to the frame given by
51 * schedule. We want to return the address of the caller of
52 * schedule, so we have to walk the backchain one time to
53 * find the frame schedule() store its return address.
54 */
55 unsigned long thread_saved_pc(struct task_struct *tsk)
56 {
57 struct stack_frame *sf, *low, *high;
58
59 if (!tsk || !task_stack_page(tsk))
60 return 0;
61 low = task_stack_page(tsk);
62 high = (struct stack_frame *) task_pt_regs(tsk);
63 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
64 if (sf <= low || sf > high)
65 return 0;
66 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
67 if (sf <= low || sf > high)
68 return 0;
69 return sf->gprs[8];
70 }
71
72 /*
73 * The idle loop on a S390...
74 */
75 static void default_idle(void)
76 {
77 /* CPU is going idle. */
78 local_irq_disable();
79 if (need_resched()) {
80 local_irq_enable();
81 return;
82 }
83 #ifdef CONFIG_HOTPLUG_CPU
84 if (cpu_is_offline(smp_processor_id())) {
85 preempt_enable_no_resched();
86 cpu_die();
87 }
88 #endif
89 local_mcck_disable();
90 if (test_thread_flag(TIF_MCCK_PENDING)) {
91 local_mcck_enable();
92 local_irq_enable();
93 s390_handle_mcck();
94 return;
95 }
96 trace_hardirqs_on();
97 /* Don't trace preempt off for idle. */
98 stop_critical_timings();
99 /* Stop virtual timer and halt the cpu. */
100 vtime_stop_cpu();
101 /* Reenable preemption tracer. */
102 start_critical_timings();
103 }
104
105 void cpu_idle(void)
106 {
107 for (;;) {
108 tick_nohz_stop_sched_tick(1);
109 while (!need_resched())
110 default_idle();
111 tick_nohz_restart_sched_tick();
112 preempt_enable_no_resched();
113 schedule();
114 preempt_disable();
115 }
116 }
117
118 extern void kernel_thread_starter(void);
119
120 asm(
121 ".align 4\n"
122 "kernel_thread_starter:\n"
123 " la 2,0(10)\n"
124 " basr 14,9\n"
125 " la 2,0\n"
126 " br 11\n");
127
128 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
129 {
130 struct pt_regs regs;
131
132 memset(&regs, 0, sizeof(regs));
133 regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
134 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
135 regs.gprs[9] = (unsigned long) fn;
136 regs.gprs[10] = (unsigned long) arg;
137 regs.gprs[11] = (unsigned long) do_exit;
138 regs.orig_gpr2 = -1;
139
140 /* Ok, create the new process.. */
141 return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
142 0, &regs, 0, NULL, NULL);
143 }
144
145 /*
146 * Free current thread data structures etc..
147 */
148 void exit_thread(void)
149 {
150 }
151
152 void flush_thread(void)
153 {
154 clear_used_math();
155 clear_tsk_thread_flag(current, TIF_USEDFPU);
156 }
157
158 void release_thread(struct task_struct *dead_task)
159 {
160 }
161
162 int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp,
163 unsigned long unused,
164 struct task_struct *p, struct pt_regs *regs)
165 {
166 struct thread_info *ti;
167 struct fake_frame
168 {
169 struct stack_frame sf;
170 struct pt_regs childregs;
171 } *frame;
172
173 frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
174 p->thread.ksp = (unsigned long) frame;
175 /* Store access registers to kernel stack of new process. */
176 frame->childregs = *regs;
177 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
178 frame->childregs.gprs[15] = new_stackp;
179 frame->sf.back_chain = 0;
180
181 /* new return point is ret_from_fork */
182 frame->sf.gprs[8] = (unsigned long) ret_from_fork;
183
184 /* fake return stack for resume(), don't go back to schedule */
185 frame->sf.gprs[9] = (unsigned long) frame;
186
187 /* Save access registers to new thread structure. */
188 save_access_regs(&p->thread.acrs[0]);
189
190 #ifndef CONFIG_64BIT
191 /*
192 * save fprs to current->thread.fp_regs to merge them with
193 * the emulated registers and then copy the result to the child.
194 */
195 save_fp_regs(&current->thread.fp_regs);
196 memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
197 sizeof(s390_fp_regs));
198 /* Set a new TLS ? */
199 if (clone_flags & CLONE_SETTLS)
200 p->thread.acrs[0] = regs->gprs[6];
201 #else /* CONFIG_64BIT */
202 /* Save the fpu registers to new thread structure. */
203 save_fp_regs(&p->thread.fp_regs);
204 /* Set a new TLS ? */
205 if (clone_flags & CLONE_SETTLS) {
206 if (test_thread_flag(TIF_31BIT)) {
207 p->thread.acrs[0] = (unsigned int) regs->gprs[6];
208 } else {
209 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
210 p->thread.acrs[1] = (unsigned int) regs->gprs[6];
211 }
212 }
213 #endif /* CONFIG_64BIT */
214 /* start new process with ar4 pointing to the correct address space */
215 p->thread.mm_segment = get_fs();
216 /* Don't copy debug registers */
217 memset(&p->thread.per_info, 0, sizeof(p->thread.per_info));
218 /* Initialize per thread user and system timer values */
219 ti = task_thread_info(p);
220 ti->user_timer = 0;
221 ti->system_timer = 0;
222 return 0;
223 }
224
225 SYSCALL_DEFINE0(fork)
226 {
227 struct pt_regs *regs = task_pt_regs(current);
228 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
229 }
230
231 SYSCALL_DEFINE0(clone)
232 {
233 struct pt_regs *regs = task_pt_regs(current);
234 unsigned long clone_flags;
235 unsigned long newsp;
236 int __user *parent_tidptr, *child_tidptr;
237
238 clone_flags = regs->gprs[3];
239 newsp = regs->orig_gpr2;
240 parent_tidptr = (int __user *) regs->gprs[4];
241 child_tidptr = (int __user *) regs->gprs[5];
242 if (!newsp)
243 newsp = regs->gprs[15];
244 return do_fork(clone_flags, newsp, regs, 0,
245 parent_tidptr, child_tidptr);
246 }
247
248 /*
249 * This is trivial, and on the face of it looks like it
250 * could equally well be done in user mode.
251 *
252 * Not so, for quite unobvious reasons - register pressure.
253 * In user mode vfork() cannot have a stack frame, and if
254 * done by calling the "clone()" system call directly, you
255 * do not have enough call-clobbered registers to hold all
256 * the information you need.
257 */
258 SYSCALL_DEFINE0(vfork)
259 {
260 struct pt_regs *regs = task_pt_regs(current);
261 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
262 regs->gprs[15], regs, 0, NULL, NULL);
263 }
264
265 asmlinkage void execve_tail(void)
266 {
267 task_lock(current);
268 current->ptrace &= ~PT_DTRACE;
269 task_unlock(current);
270 current->thread.fp_regs.fpc = 0;
271 if (MACHINE_HAS_IEEE)
272 asm volatile("sfpc %0,%0" : : "d" (0));
273 }
274
275 /*
276 * sys_execve() executes a new program.
277 */
278 SYSCALL_DEFINE0(execve)
279 {
280 struct pt_regs *regs = task_pt_regs(current);
281 char *filename;
282 unsigned long result;
283 int rc;
284
285 filename = getname((char __user *) regs->orig_gpr2);
286 if (IS_ERR(filename)) {
287 result = PTR_ERR(filename);
288 goto out;
289 }
290 rc = do_execve(filename, (char __user * __user *) regs->gprs[3],
291 (char __user * __user *) regs->gprs[4], regs);
292 if (rc) {
293 result = rc;
294 goto out_putname;
295 }
296 execve_tail();
297 result = regs->gprs[2];
298 out_putname:
299 putname(filename);
300 out:
301 return result;
302 }
303
304 /*
305 * fill in the FPU structure for a core dump.
306 */
307 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
308 {
309 #ifndef CONFIG_64BIT
310 /*
311 * save fprs to current->thread.fp_regs to merge them with
312 * the emulated registers and then copy the result to the dump.
313 */
314 save_fp_regs(&current->thread.fp_regs);
315 memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
316 #else /* CONFIG_64BIT */
317 save_fp_regs(fpregs);
318 #endif /* CONFIG_64BIT */
319 return 1;
320 }
321
322 unsigned long get_wchan(struct task_struct *p)
323 {
324 struct stack_frame *sf, *low, *high;
325 unsigned long return_address;
326 int count;
327
328 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
329 return 0;
330 low = task_stack_page(p);
331 high = (struct stack_frame *) task_pt_regs(p);
332 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
333 if (sf <= low || sf > high)
334 return 0;
335 for (count = 0; count < 16; count++) {
336 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
337 if (sf <= low || sf > high)
338 return 0;
339 return_address = sf->gprs[8] & PSW_ADDR_INSN;
340 if (!in_sched_functions(return_address))
341 return return_address;
342 }
343 return 0;
344 }
This page took 0.044633 seconds and 5 git commands to generate.