[S390] take mmap_sem when walking guest page table
[deliverable/linux.git] / arch / s390 / kernel / ptrace.c
1 /*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999,2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <trace/syscall.h>
24 #include <asm/compat.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_SYSTEM_CALL,
46 REGSET_GENERAL_EXTENDED,
47 };
48
49 void update_per_regs(struct task_struct *task)
50 {
51 struct pt_regs *regs = task_pt_regs(task);
52 struct thread_struct *thread = &task->thread;
53 struct per_regs old, new;
54
55 /* Copy user specified PER registers */
56 new.control = thread->per_user.control;
57 new.start = thread->per_user.start;
58 new.end = thread->per_user.end;
59
60 /* merge TIF_SINGLE_STEP into user specified PER registers. */
61 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
62 new.control |= PER_EVENT_IFETCH;
63 new.start = 0;
64 new.end = PSW_ADDR_INSN;
65 }
66
67 /* Take care of the PER enablement bit in the PSW. */
68 if (!(new.control & PER_EVENT_MASK)) {
69 regs->psw.mask &= ~PSW_MASK_PER;
70 return;
71 }
72 regs->psw.mask |= PSW_MASK_PER;
73 __ctl_store(old, 9, 11);
74 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
75 __ctl_load(new, 9, 11);
76 }
77
78 void user_enable_single_step(struct task_struct *task)
79 {
80 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
81 if (task == current)
82 update_per_regs(task);
83 }
84
85 void user_disable_single_step(struct task_struct *task)
86 {
87 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
88 if (task == current)
89 update_per_regs(task);
90 }
91
92 /*
93 * Called by kernel/ptrace.c when detaching..
94 *
95 * Clear all debugging related fields.
96 */
97 void ptrace_disable(struct task_struct *task)
98 {
99 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
100 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
101 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
102 clear_tsk_thread_flag(task, TIF_PER_TRAP);
103 }
104
105 #ifndef CONFIG_64BIT
106 # define __ADDR_MASK 3
107 #else
108 # define __ADDR_MASK 7
109 #endif
110
111 static inline unsigned long __peek_user_per(struct task_struct *child,
112 addr_t addr)
113 {
114 struct per_struct_kernel *dummy = NULL;
115
116 if (addr == (addr_t) &dummy->cr9)
117 /* Control bits of the active per set. */
118 return test_thread_flag(TIF_SINGLE_STEP) ?
119 PER_EVENT_IFETCH : child->thread.per_user.control;
120 else if (addr == (addr_t) &dummy->cr10)
121 /* Start address of the active per set. */
122 return test_thread_flag(TIF_SINGLE_STEP) ?
123 0 : child->thread.per_user.start;
124 else if (addr == (addr_t) &dummy->cr11)
125 /* End address of the active per set. */
126 return test_thread_flag(TIF_SINGLE_STEP) ?
127 PSW_ADDR_INSN : child->thread.per_user.end;
128 else if (addr == (addr_t) &dummy->bits)
129 /* Single-step bit. */
130 return test_thread_flag(TIF_SINGLE_STEP) ?
131 (1UL << (BITS_PER_LONG - 1)) : 0;
132 else if (addr == (addr_t) &dummy->starting_addr)
133 /* Start address of the user specified per set. */
134 return child->thread.per_user.start;
135 else if (addr == (addr_t) &dummy->ending_addr)
136 /* End address of the user specified per set. */
137 return child->thread.per_user.end;
138 else if (addr == (addr_t) &dummy->perc_atmid)
139 /* PER code, ATMID and AI of the last PER trap */
140 return (unsigned long)
141 child->thread.per_event.cause << (BITS_PER_LONG - 16);
142 else if (addr == (addr_t) &dummy->address)
143 /* Address of the last PER trap */
144 return child->thread.per_event.address;
145 else if (addr == (addr_t) &dummy->access_id)
146 /* Access id of the last PER trap */
147 return (unsigned long)
148 child->thread.per_event.paid << (BITS_PER_LONG - 8);
149 return 0;
150 }
151
152 /*
153 * Read the word at offset addr from the user area of a process. The
154 * trouble here is that the information is littered over different
155 * locations. The process registers are found on the kernel stack,
156 * the floating point stuff and the trace settings are stored in
157 * the task structure. In addition the different structures in
158 * struct user contain pad bytes that should be read as zeroes.
159 * Lovely...
160 */
161 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
162 {
163 struct user *dummy = NULL;
164 addr_t offset, tmp;
165
166 if (addr < (addr_t) &dummy->regs.acrs) {
167 /*
168 * psw and gprs are stored on the stack
169 */
170 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
171 if (addr == (addr_t) &dummy->regs.psw.mask)
172 /* Return a clean psw mask. */
173 tmp = psw_user_bits | (tmp & PSW_MASK_USER);
174
175 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
176 /*
177 * access registers are stored in the thread structure
178 */
179 offset = addr - (addr_t) &dummy->regs.acrs;
180 #ifdef CONFIG_64BIT
181 /*
182 * Very special case: old & broken 64 bit gdb reading
183 * from acrs[15]. Result is a 64 bit value. Read the
184 * 32 bit acrs[15] value and shift it by 32. Sick...
185 */
186 if (addr == (addr_t) &dummy->regs.acrs[15])
187 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
188 else
189 #endif
190 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
191
192 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
193 /*
194 * orig_gpr2 is stored on the kernel stack
195 */
196 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
197
198 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
199 /*
200 * prevent reads of padding hole between
201 * orig_gpr2 and fp_regs on s390.
202 */
203 tmp = 0;
204
205 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
206 /*
207 * floating point regs. are stored in the thread structure
208 */
209 offset = addr - (addr_t) &dummy->regs.fp_regs;
210 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
211 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
212 tmp &= (unsigned long) FPC_VALID_MASK
213 << (BITS_PER_LONG - 32);
214
215 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
216 /*
217 * Handle access to the per_info structure.
218 */
219 addr -= (addr_t) &dummy->regs.per_info;
220 tmp = __peek_user_per(child, addr);
221
222 } else
223 tmp = 0;
224
225 return tmp;
226 }
227
228 static int
229 peek_user(struct task_struct *child, addr_t addr, addr_t data)
230 {
231 addr_t tmp, mask;
232
233 /*
234 * Stupid gdb peeks/pokes the access registers in 64 bit with
235 * an alignment of 4. Programmers from hell...
236 */
237 mask = __ADDR_MASK;
238 #ifdef CONFIG_64BIT
239 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
240 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
241 mask = 3;
242 #endif
243 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
244 return -EIO;
245
246 tmp = __peek_user(child, addr);
247 return put_user(tmp, (addr_t __user *) data);
248 }
249
250 static inline void __poke_user_per(struct task_struct *child,
251 addr_t addr, addr_t data)
252 {
253 struct per_struct_kernel *dummy = NULL;
254
255 /*
256 * There are only three fields in the per_info struct that the
257 * debugger user can write to.
258 * 1) cr9: the debugger wants to set a new PER event mask
259 * 2) starting_addr: the debugger wants to set a new starting
260 * address to use with the PER event mask.
261 * 3) ending_addr: the debugger wants to set a new ending
262 * address to use with the PER event mask.
263 * The user specified PER event mask and the start and end
264 * addresses are used only if single stepping is not in effect.
265 * Writes to any other field in per_info are ignored.
266 */
267 if (addr == (addr_t) &dummy->cr9)
268 /* PER event mask of the user specified per set. */
269 child->thread.per_user.control =
270 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
271 else if (addr == (addr_t) &dummy->starting_addr)
272 /* Starting address of the user specified per set. */
273 child->thread.per_user.start = data;
274 else if (addr == (addr_t) &dummy->ending_addr)
275 /* Ending address of the user specified per set. */
276 child->thread.per_user.end = data;
277 }
278
279 /*
280 * Write a word to the user area of a process at location addr. This
281 * operation does have an additional problem compared to peek_user.
282 * Stores to the program status word and on the floating point
283 * control register needs to get checked for validity.
284 */
285 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
286 {
287 struct user *dummy = NULL;
288 addr_t offset;
289
290 if (addr < (addr_t) &dummy->regs.acrs) {
291 /*
292 * psw and gprs are stored on the stack
293 */
294 if (addr == (addr_t) &dummy->regs.psw.mask &&
295 ((data & ~PSW_MASK_USER) != psw_user_bits ||
296 ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))))
297 /* Invalid psw mask. */
298 return -EINVAL;
299 if (addr == (addr_t) &dummy->regs.psw.addr)
300 /*
301 * The debugger changed the instruction address,
302 * reset system call restart, see signal.c:do_signal
303 */
304 task_thread_info(child)->system_call = 0;
305
306 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
307
308 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
309 /*
310 * access registers are stored in the thread structure
311 */
312 offset = addr - (addr_t) &dummy->regs.acrs;
313 #ifdef CONFIG_64BIT
314 /*
315 * Very special case: old & broken 64 bit gdb writing
316 * to acrs[15] with a 64 bit value. Ignore the lower
317 * half of the value and write the upper 32 bit to
318 * acrs[15]. Sick...
319 */
320 if (addr == (addr_t) &dummy->regs.acrs[15])
321 child->thread.acrs[15] = (unsigned int) (data >> 32);
322 else
323 #endif
324 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
325
326 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
327 /*
328 * orig_gpr2 is stored on the kernel stack
329 */
330 task_pt_regs(child)->orig_gpr2 = data;
331
332 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
333 /*
334 * prevent writes of padding hole between
335 * orig_gpr2 and fp_regs on s390.
336 */
337 return 0;
338
339 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
340 /*
341 * floating point regs. are stored in the thread structure
342 */
343 if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
344 (data & ~((unsigned long) FPC_VALID_MASK
345 << (BITS_PER_LONG - 32))) != 0)
346 return -EINVAL;
347 offset = addr - (addr_t) &dummy->regs.fp_regs;
348 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
349
350 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
351 /*
352 * Handle access to the per_info structure.
353 */
354 addr -= (addr_t) &dummy->regs.per_info;
355 __poke_user_per(child, addr, data);
356
357 }
358
359 return 0;
360 }
361
362 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
363 {
364 addr_t mask;
365
366 /*
367 * Stupid gdb peeks/pokes the access registers in 64 bit with
368 * an alignment of 4. Programmers from hell indeed...
369 */
370 mask = __ADDR_MASK;
371 #ifdef CONFIG_64BIT
372 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
373 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
374 mask = 3;
375 #endif
376 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
377 return -EIO;
378
379 return __poke_user(child, addr, data);
380 }
381
382 long arch_ptrace(struct task_struct *child, long request,
383 unsigned long addr, unsigned long data)
384 {
385 ptrace_area parea;
386 int copied, ret;
387
388 switch (request) {
389 case PTRACE_PEEKUSR:
390 /* read the word at location addr in the USER area. */
391 return peek_user(child, addr, data);
392
393 case PTRACE_POKEUSR:
394 /* write the word at location addr in the USER area */
395 return poke_user(child, addr, data);
396
397 case PTRACE_PEEKUSR_AREA:
398 case PTRACE_POKEUSR_AREA:
399 if (copy_from_user(&parea, (void __force __user *) addr,
400 sizeof(parea)))
401 return -EFAULT;
402 addr = parea.kernel_addr;
403 data = parea.process_addr;
404 copied = 0;
405 while (copied < parea.len) {
406 if (request == PTRACE_PEEKUSR_AREA)
407 ret = peek_user(child, addr, data);
408 else {
409 addr_t utmp;
410 if (get_user(utmp,
411 (addr_t __force __user *) data))
412 return -EFAULT;
413 ret = poke_user(child, addr, utmp);
414 }
415 if (ret)
416 return ret;
417 addr += sizeof(unsigned long);
418 data += sizeof(unsigned long);
419 copied += sizeof(unsigned long);
420 }
421 return 0;
422 case PTRACE_GET_LAST_BREAK:
423 put_user(task_thread_info(child)->last_break,
424 (unsigned long __user *) data);
425 return 0;
426 default:
427 /* Removing high order bit from addr (only for 31 bit). */
428 addr &= PSW_ADDR_INSN;
429 return ptrace_request(child, request, addr, data);
430 }
431 }
432
433 #ifdef CONFIG_COMPAT
434 /*
435 * Now the fun part starts... a 31 bit program running in the
436 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
437 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
438 * to handle, the difference to the 64 bit versions of the requests
439 * is that the access is done in multiples of 4 byte instead of
440 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
441 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
442 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
443 * is a 31 bit program too, the content of struct user can be
444 * emulated. A 31 bit program peeking into the struct user of
445 * a 64 bit program is a no-no.
446 */
447
448 /*
449 * Same as peek_user_per but for a 31 bit program.
450 */
451 static inline __u32 __peek_user_per_compat(struct task_struct *child,
452 addr_t addr)
453 {
454 struct compat_per_struct_kernel *dummy32 = NULL;
455
456 if (addr == (addr_t) &dummy32->cr9)
457 /* Control bits of the active per set. */
458 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
459 PER_EVENT_IFETCH : child->thread.per_user.control;
460 else if (addr == (addr_t) &dummy32->cr10)
461 /* Start address of the active per set. */
462 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
463 0 : child->thread.per_user.start;
464 else if (addr == (addr_t) &dummy32->cr11)
465 /* End address of the active per set. */
466 return test_thread_flag(TIF_SINGLE_STEP) ?
467 PSW32_ADDR_INSN : child->thread.per_user.end;
468 else if (addr == (addr_t) &dummy32->bits)
469 /* Single-step bit. */
470 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
471 0x80000000 : 0;
472 else if (addr == (addr_t) &dummy32->starting_addr)
473 /* Start address of the user specified per set. */
474 return (__u32) child->thread.per_user.start;
475 else if (addr == (addr_t) &dummy32->ending_addr)
476 /* End address of the user specified per set. */
477 return (__u32) child->thread.per_user.end;
478 else if (addr == (addr_t) &dummy32->perc_atmid)
479 /* PER code, ATMID and AI of the last PER trap */
480 return (__u32) child->thread.per_event.cause << 16;
481 else if (addr == (addr_t) &dummy32->address)
482 /* Address of the last PER trap */
483 return (__u32) child->thread.per_event.address;
484 else if (addr == (addr_t) &dummy32->access_id)
485 /* Access id of the last PER trap */
486 return (__u32) child->thread.per_event.paid << 24;
487 return 0;
488 }
489
490 /*
491 * Same as peek_user but for a 31 bit program.
492 */
493 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
494 {
495 struct compat_user *dummy32 = NULL;
496 addr_t offset;
497 __u32 tmp;
498
499 if (addr < (addr_t) &dummy32->regs.acrs) {
500 struct pt_regs *regs = task_pt_regs(child);
501 /*
502 * psw and gprs are stored on the stack
503 */
504 if (addr == (addr_t) &dummy32->regs.psw.mask) {
505 /* Fake a 31 bit psw mask. */
506 tmp = (__u32)(regs->psw.mask >> 32);
507 tmp = psw32_user_bits | (tmp & PSW32_MASK_USER);
508 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
509 /* Fake a 31 bit psw address. */
510 tmp = (__u32) regs->psw.addr |
511 (__u32)(regs->psw.mask & PSW_MASK_BA);
512 } else {
513 /* gpr 0-15 */
514 tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
515 }
516 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
517 /*
518 * access registers are stored in the thread structure
519 */
520 offset = addr - (addr_t) &dummy32->regs.acrs;
521 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
522
523 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
524 /*
525 * orig_gpr2 is stored on the kernel stack
526 */
527 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
528
529 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
530 /*
531 * prevent reads of padding hole between
532 * orig_gpr2 and fp_regs on s390.
533 */
534 tmp = 0;
535
536 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
537 /*
538 * floating point regs. are stored in the thread structure
539 */
540 offset = addr - (addr_t) &dummy32->regs.fp_regs;
541 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
542
543 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
544 /*
545 * Handle access to the per_info structure.
546 */
547 addr -= (addr_t) &dummy32->regs.per_info;
548 tmp = __peek_user_per_compat(child, addr);
549
550 } else
551 tmp = 0;
552
553 return tmp;
554 }
555
556 static int peek_user_compat(struct task_struct *child,
557 addr_t addr, addr_t data)
558 {
559 __u32 tmp;
560
561 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
562 return -EIO;
563
564 tmp = __peek_user_compat(child, addr);
565 return put_user(tmp, (__u32 __user *) data);
566 }
567
568 /*
569 * Same as poke_user_per but for a 31 bit program.
570 */
571 static inline void __poke_user_per_compat(struct task_struct *child,
572 addr_t addr, __u32 data)
573 {
574 struct compat_per_struct_kernel *dummy32 = NULL;
575
576 if (addr == (addr_t) &dummy32->cr9)
577 /* PER event mask of the user specified per set. */
578 child->thread.per_user.control =
579 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
580 else if (addr == (addr_t) &dummy32->starting_addr)
581 /* Starting address of the user specified per set. */
582 child->thread.per_user.start = data;
583 else if (addr == (addr_t) &dummy32->ending_addr)
584 /* Ending address of the user specified per set. */
585 child->thread.per_user.end = data;
586 }
587
588 /*
589 * Same as poke_user but for a 31 bit program.
590 */
591 static int __poke_user_compat(struct task_struct *child,
592 addr_t addr, addr_t data)
593 {
594 struct compat_user *dummy32 = NULL;
595 __u32 tmp = (__u32) data;
596 addr_t offset;
597
598 if (addr < (addr_t) &dummy32->regs.acrs) {
599 struct pt_regs *regs = task_pt_regs(child);
600 /*
601 * psw, gprs, acrs and orig_gpr2 are stored on the stack
602 */
603 if (addr == (addr_t) &dummy32->regs.psw.mask) {
604 /* Build a 64 bit psw mask from 31 bit mask. */
605 if ((tmp & ~PSW32_MASK_USER) != psw32_user_bits)
606 /* Invalid psw mask. */
607 return -EINVAL;
608 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
609 (regs->psw.mask & PSW_MASK_BA) |
610 (__u64)(tmp & PSW32_MASK_USER) << 32;
611 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
612 /* Build a 64 bit psw address from 31 bit address. */
613 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
614 /* Transfer 31 bit amode bit to psw mask. */
615 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
616 (__u64)(tmp & PSW32_ADDR_AMODE);
617 /*
618 * The debugger changed the instruction address,
619 * reset system call restart, see signal.c:do_signal
620 */
621 task_thread_info(child)->system_call = 0;
622 } else {
623 /* gpr 0-15 */
624 *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
625 }
626 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
627 /*
628 * access registers are stored in the thread structure
629 */
630 offset = addr - (addr_t) &dummy32->regs.acrs;
631 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
632
633 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
634 /*
635 * orig_gpr2 is stored on the kernel stack
636 */
637 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
638
639 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
640 /*
641 * prevent writess of padding hole between
642 * orig_gpr2 and fp_regs on s390.
643 */
644 return 0;
645
646 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
647 /*
648 * floating point regs. are stored in the thread structure
649 */
650 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
651 (tmp & ~FPC_VALID_MASK) != 0)
652 /* Invalid floating point control. */
653 return -EINVAL;
654 offset = addr - (addr_t) &dummy32->regs.fp_regs;
655 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
656
657 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
658 /*
659 * Handle access to the per_info structure.
660 */
661 addr -= (addr_t) &dummy32->regs.per_info;
662 __poke_user_per_compat(child, addr, data);
663 }
664
665 return 0;
666 }
667
668 static int poke_user_compat(struct task_struct *child,
669 addr_t addr, addr_t data)
670 {
671 if (!is_compat_task() || (addr & 3) ||
672 addr > sizeof(struct compat_user) - 3)
673 return -EIO;
674
675 return __poke_user_compat(child, addr, data);
676 }
677
678 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
679 compat_ulong_t caddr, compat_ulong_t cdata)
680 {
681 unsigned long addr = caddr;
682 unsigned long data = cdata;
683 compat_ptrace_area parea;
684 int copied, ret;
685
686 switch (request) {
687 case PTRACE_PEEKUSR:
688 /* read the word at location addr in the USER area. */
689 return peek_user_compat(child, addr, data);
690
691 case PTRACE_POKEUSR:
692 /* write the word at location addr in the USER area */
693 return poke_user_compat(child, addr, data);
694
695 case PTRACE_PEEKUSR_AREA:
696 case PTRACE_POKEUSR_AREA:
697 if (copy_from_user(&parea, (void __force __user *) addr,
698 sizeof(parea)))
699 return -EFAULT;
700 addr = parea.kernel_addr;
701 data = parea.process_addr;
702 copied = 0;
703 while (copied < parea.len) {
704 if (request == PTRACE_PEEKUSR_AREA)
705 ret = peek_user_compat(child, addr, data);
706 else {
707 __u32 utmp;
708 if (get_user(utmp,
709 (__u32 __force __user *) data))
710 return -EFAULT;
711 ret = poke_user_compat(child, addr, utmp);
712 }
713 if (ret)
714 return ret;
715 addr += sizeof(unsigned int);
716 data += sizeof(unsigned int);
717 copied += sizeof(unsigned int);
718 }
719 return 0;
720 case PTRACE_GET_LAST_BREAK:
721 put_user(task_thread_info(child)->last_break,
722 (unsigned int __user *) data);
723 return 0;
724 }
725 return compat_ptrace_request(child, request, addr, data);
726 }
727 #endif
728
729 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
730 {
731 long ret = 0;
732
733 /* Do the secure computing check first. */
734 secure_computing(regs->gprs[2]);
735
736 /*
737 * The sysc_tracesys code in entry.S stored the system
738 * call number to gprs[2].
739 */
740 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
741 (tracehook_report_syscall_entry(regs) ||
742 regs->gprs[2] >= NR_syscalls)) {
743 /*
744 * Tracing decided this syscall should not happen or the
745 * debugger stored an invalid system call number. Skip
746 * the system call and the system call restart handling.
747 */
748 clear_thread_flag(TIF_SYSCALL);
749 ret = -1;
750 }
751
752 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
753 trace_sys_enter(regs, regs->gprs[2]);
754
755 if (unlikely(current->audit_context))
756 audit_syscall_entry(is_compat_task() ?
757 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
758 regs->gprs[2], regs->orig_gpr2,
759 regs->gprs[3], regs->gprs[4],
760 regs->gprs[5]);
761 return ret ?: regs->gprs[2];
762 }
763
764 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
765 {
766 if (unlikely(current->audit_context))
767 audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
768 regs->gprs[2]);
769
770 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
771 trace_sys_exit(regs, regs->gprs[2]);
772
773 if (test_thread_flag(TIF_SYSCALL_TRACE))
774 tracehook_report_syscall_exit(regs, 0);
775 }
776
777 /*
778 * user_regset definitions.
779 */
780
781 static int s390_regs_get(struct task_struct *target,
782 const struct user_regset *regset,
783 unsigned int pos, unsigned int count,
784 void *kbuf, void __user *ubuf)
785 {
786 if (target == current)
787 save_access_regs(target->thread.acrs);
788
789 if (kbuf) {
790 unsigned long *k = kbuf;
791 while (count > 0) {
792 *k++ = __peek_user(target, pos);
793 count -= sizeof(*k);
794 pos += sizeof(*k);
795 }
796 } else {
797 unsigned long __user *u = ubuf;
798 while (count > 0) {
799 if (__put_user(__peek_user(target, pos), u++))
800 return -EFAULT;
801 count -= sizeof(*u);
802 pos += sizeof(*u);
803 }
804 }
805 return 0;
806 }
807
808 static int s390_regs_set(struct task_struct *target,
809 const struct user_regset *regset,
810 unsigned int pos, unsigned int count,
811 const void *kbuf, const void __user *ubuf)
812 {
813 int rc = 0;
814
815 if (target == current)
816 save_access_regs(target->thread.acrs);
817
818 if (kbuf) {
819 const unsigned long *k = kbuf;
820 while (count > 0 && !rc) {
821 rc = __poke_user(target, pos, *k++);
822 count -= sizeof(*k);
823 pos += sizeof(*k);
824 }
825 } else {
826 const unsigned long __user *u = ubuf;
827 while (count > 0 && !rc) {
828 unsigned long word;
829 rc = __get_user(word, u++);
830 if (rc)
831 break;
832 rc = __poke_user(target, pos, word);
833 count -= sizeof(*u);
834 pos += sizeof(*u);
835 }
836 }
837
838 if (rc == 0 && target == current)
839 restore_access_regs(target->thread.acrs);
840
841 return rc;
842 }
843
844 static int s390_fpregs_get(struct task_struct *target,
845 const struct user_regset *regset, unsigned int pos,
846 unsigned int count, void *kbuf, void __user *ubuf)
847 {
848 if (target == current)
849 save_fp_regs(&target->thread.fp_regs);
850
851 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
852 &target->thread.fp_regs, 0, -1);
853 }
854
855 static int s390_fpregs_set(struct task_struct *target,
856 const struct user_regset *regset, unsigned int pos,
857 unsigned int count, const void *kbuf,
858 const void __user *ubuf)
859 {
860 int rc = 0;
861
862 if (target == current)
863 save_fp_regs(&target->thread.fp_regs);
864
865 /* If setting FPC, must validate it first. */
866 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
867 u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
868 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
869 0, offsetof(s390_fp_regs, fprs));
870 if (rc)
871 return rc;
872 if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
873 return -EINVAL;
874 target->thread.fp_regs.fpc = fpc[0];
875 }
876
877 if (rc == 0 && count > 0)
878 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
879 target->thread.fp_regs.fprs,
880 offsetof(s390_fp_regs, fprs), -1);
881
882 if (rc == 0 && target == current)
883 restore_fp_regs(&target->thread.fp_regs);
884
885 return rc;
886 }
887
888 #ifdef CONFIG_64BIT
889
890 static int s390_last_break_get(struct task_struct *target,
891 const struct user_regset *regset,
892 unsigned int pos, unsigned int count,
893 void *kbuf, void __user *ubuf)
894 {
895 if (count > 0) {
896 if (kbuf) {
897 unsigned long *k = kbuf;
898 *k = task_thread_info(target)->last_break;
899 } else {
900 unsigned long __user *u = ubuf;
901 if (__put_user(task_thread_info(target)->last_break, u))
902 return -EFAULT;
903 }
904 }
905 return 0;
906 }
907
908 #endif
909
910 static int s390_system_call_get(struct task_struct *target,
911 const struct user_regset *regset,
912 unsigned int pos, unsigned int count,
913 void *kbuf, void __user *ubuf)
914 {
915 unsigned int *data = &task_thread_info(target)->system_call;
916 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
917 data, 0, sizeof(unsigned int));
918 }
919
920 static int s390_system_call_set(struct task_struct *target,
921 const struct user_regset *regset,
922 unsigned int pos, unsigned int count,
923 const void *kbuf, const void __user *ubuf)
924 {
925 unsigned int *data = &task_thread_info(target)->system_call;
926 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
927 data, 0, sizeof(unsigned int));
928 }
929
930 static const struct user_regset s390_regsets[] = {
931 [REGSET_GENERAL] = {
932 .core_note_type = NT_PRSTATUS,
933 .n = sizeof(s390_regs) / sizeof(long),
934 .size = sizeof(long),
935 .align = sizeof(long),
936 .get = s390_regs_get,
937 .set = s390_regs_set,
938 },
939 [REGSET_FP] = {
940 .core_note_type = NT_PRFPREG,
941 .n = sizeof(s390_fp_regs) / sizeof(long),
942 .size = sizeof(long),
943 .align = sizeof(long),
944 .get = s390_fpregs_get,
945 .set = s390_fpregs_set,
946 },
947 #ifdef CONFIG_64BIT
948 [REGSET_LAST_BREAK] = {
949 .core_note_type = NT_S390_LAST_BREAK,
950 .n = 1,
951 .size = sizeof(long),
952 .align = sizeof(long),
953 .get = s390_last_break_get,
954 },
955 #endif
956 [REGSET_SYSTEM_CALL] = {
957 .core_note_type = NT_S390_SYSTEM_CALL,
958 .n = 1,
959 .size = sizeof(unsigned int),
960 .align = sizeof(unsigned int),
961 .get = s390_system_call_get,
962 .set = s390_system_call_set,
963 },
964 };
965
966 static const struct user_regset_view user_s390_view = {
967 .name = UTS_MACHINE,
968 .e_machine = EM_S390,
969 .regsets = s390_regsets,
970 .n = ARRAY_SIZE(s390_regsets)
971 };
972
973 #ifdef CONFIG_COMPAT
974 static int s390_compat_regs_get(struct task_struct *target,
975 const struct user_regset *regset,
976 unsigned int pos, unsigned int count,
977 void *kbuf, void __user *ubuf)
978 {
979 if (target == current)
980 save_access_regs(target->thread.acrs);
981
982 if (kbuf) {
983 compat_ulong_t *k = kbuf;
984 while (count > 0) {
985 *k++ = __peek_user_compat(target, pos);
986 count -= sizeof(*k);
987 pos += sizeof(*k);
988 }
989 } else {
990 compat_ulong_t __user *u = ubuf;
991 while (count > 0) {
992 if (__put_user(__peek_user_compat(target, pos), u++))
993 return -EFAULT;
994 count -= sizeof(*u);
995 pos += sizeof(*u);
996 }
997 }
998 return 0;
999 }
1000
1001 static int s390_compat_regs_set(struct task_struct *target,
1002 const struct user_regset *regset,
1003 unsigned int pos, unsigned int count,
1004 const void *kbuf, const void __user *ubuf)
1005 {
1006 int rc = 0;
1007
1008 if (target == current)
1009 save_access_regs(target->thread.acrs);
1010
1011 if (kbuf) {
1012 const compat_ulong_t *k = kbuf;
1013 while (count > 0 && !rc) {
1014 rc = __poke_user_compat(target, pos, *k++);
1015 count -= sizeof(*k);
1016 pos += sizeof(*k);
1017 }
1018 } else {
1019 const compat_ulong_t __user *u = ubuf;
1020 while (count > 0 && !rc) {
1021 compat_ulong_t word;
1022 rc = __get_user(word, u++);
1023 if (rc)
1024 break;
1025 rc = __poke_user_compat(target, pos, word);
1026 count -= sizeof(*u);
1027 pos += sizeof(*u);
1028 }
1029 }
1030
1031 if (rc == 0 && target == current)
1032 restore_access_regs(target->thread.acrs);
1033
1034 return rc;
1035 }
1036
1037 static int s390_compat_regs_high_get(struct task_struct *target,
1038 const struct user_regset *regset,
1039 unsigned int pos, unsigned int count,
1040 void *kbuf, void __user *ubuf)
1041 {
1042 compat_ulong_t *gprs_high;
1043
1044 gprs_high = (compat_ulong_t *)
1045 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1046 if (kbuf) {
1047 compat_ulong_t *k = kbuf;
1048 while (count > 0) {
1049 *k++ = *gprs_high;
1050 gprs_high += 2;
1051 count -= sizeof(*k);
1052 }
1053 } else {
1054 compat_ulong_t __user *u = ubuf;
1055 while (count > 0) {
1056 if (__put_user(*gprs_high, u++))
1057 return -EFAULT;
1058 gprs_high += 2;
1059 count -= sizeof(*u);
1060 }
1061 }
1062 return 0;
1063 }
1064
1065 static int s390_compat_regs_high_set(struct task_struct *target,
1066 const struct user_regset *regset,
1067 unsigned int pos, unsigned int count,
1068 const void *kbuf, const void __user *ubuf)
1069 {
1070 compat_ulong_t *gprs_high;
1071 int rc = 0;
1072
1073 gprs_high = (compat_ulong_t *)
1074 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1075 if (kbuf) {
1076 const compat_ulong_t *k = kbuf;
1077 while (count > 0) {
1078 *gprs_high = *k++;
1079 *gprs_high += 2;
1080 count -= sizeof(*k);
1081 }
1082 } else {
1083 const compat_ulong_t __user *u = ubuf;
1084 while (count > 0 && !rc) {
1085 unsigned long word;
1086 rc = __get_user(word, u++);
1087 if (rc)
1088 break;
1089 *gprs_high = word;
1090 *gprs_high += 2;
1091 count -= sizeof(*u);
1092 }
1093 }
1094
1095 return rc;
1096 }
1097
1098 static int s390_compat_last_break_get(struct task_struct *target,
1099 const struct user_regset *regset,
1100 unsigned int pos, unsigned int count,
1101 void *kbuf, void __user *ubuf)
1102 {
1103 compat_ulong_t last_break;
1104
1105 if (count > 0) {
1106 last_break = task_thread_info(target)->last_break;
1107 if (kbuf) {
1108 unsigned long *k = kbuf;
1109 *k = last_break;
1110 } else {
1111 unsigned long __user *u = ubuf;
1112 if (__put_user(last_break, u))
1113 return -EFAULT;
1114 }
1115 }
1116 return 0;
1117 }
1118
1119 static const struct user_regset s390_compat_regsets[] = {
1120 [REGSET_GENERAL] = {
1121 .core_note_type = NT_PRSTATUS,
1122 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1123 .size = sizeof(compat_long_t),
1124 .align = sizeof(compat_long_t),
1125 .get = s390_compat_regs_get,
1126 .set = s390_compat_regs_set,
1127 },
1128 [REGSET_FP] = {
1129 .core_note_type = NT_PRFPREG,
1130 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1131 .size = sizeof(compat_long_t),
1132 .align = sizeof(compat_long_t),
1133 .get = s390_fpregs_get,
1134 .set = s390_fpregs_set,
1135 },
1136 [REGSET_LAST_BREAK] = {
1137 .core_note_type = NT_S390_LAST_BREAK,
1138 .n = 1,
1139 .size = sizeof(long),
1140 .align = sizeof(long),
1141 .get = s390_compat_last_break_get,
1142 },
1143 [REGSET_SYSTEM_CALL] = {
1144 .core_note_type = NT_S390_SYSTEM_CALL,
1145 .n = 1,
1146 .size = sizeof(compat_uint_t),
1147 .align = sizeof(compat_uint_t),
1148 .get = s390_system_call_get,
1149 .set = s390_system_call_set,
1150 },
1151 [REGSET_GENERAL_EXTENDED] = {
1152 .core_note_type = NT_S390_HIGH_GPRS,
1153 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1154 .size = sizeof(compat_long_t),
1155 .align = sizeof(compat_long_t),
1156 .get = s390_compat_regs_high_get,
1157 .set = s390_compat_regs_high_set,
1158 },
1159 };
1160
1161 static const struct user_regset_view user_s390_compat_view = {
1162 .name = "s390",
1163 .e_machine = EM_S390,
1164 .regsets = s390_compat_regsets,
1165 .n = ARRAY_SIZE(s390_compat_regsets)
1166 };
1167 #endif
1168
1169 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1170 {
1171 #ifdef CONFIG_COMPAT
1172 if (test_tsk_thread_flag(task, TIF_31BIT))
1173 return &user_s390_compat_view;
1174 #endif
1175 return &user_s390_view;
1176 }
1177
1178 static const char *gpr_names[NUM_GPRS] = {
1179 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1180 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1181 };
1182
1183 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1184 {
1185 if (offset >= NUM_GPRS)
1186 return 0;
1187 return regs->gprs[offset];
1188 }
1189
1190 int regs_query_register_offset(const char *name)
1191 {
1192 unsigned long offset;
1193
1194 if (!name || *name != 'r')
1195 return -EINVAL;
1196 if (strict_strtoul(name + 1, 10, &offset))
1197 return -EINVAL;
1198 if (offset >= NUM_GPRS)
1199 return -EINVAL;
1200 return offset;
1201 }
1202
1203 const char *regs_query_register_name(unsigned int offset)
1204 {
1205 if (offset >= NUM_GPRS)
1206 return NULL;
1207 return gpr_names[offset];
1208 }
1209
1210 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1211 {
1212 unsigned long ksp = kernel_stack_pointer(regs);
1213
1214 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1215 }
1216
1217 /**
1218 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1219 * @regs:pt_regs which contains kernel stack pointer.
1220 * @n:stack entry number.
1221 *
1222 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1223 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1224 * this returns 0.
1225 */
1226 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1227 {
1228 unsigned long addr;
1229
1230 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1231 if (!regs_within_kernel_stack(regs, addr))
1232 return 0;
1233 return *(unsigned long *)addr;
1234 }
This page took 0.07333 seconds and 5 git commands to generate.