s390/ptrace: add support for PTRACE_SINGLEBLOCK
[deliverable/linux.git] / arch / s390 / kernel / ptrace.c
1 /*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_TDB,
46 REGSET_SYSTEM_CALL,
47 REGSET_GENERAL_EXTENDED,
48 };
49
50 void update_cr_regs(struct task_struct *task)
51 {
52 struct pt_regs *regs = task_pt_regs(task);
53 struct thread_struct *thread = &task->thread;
54 struct per_regs old, new;
55
56 #ifdef CONFIG_64BIT
57 /* Take care of the enable/disable of transactional execution. */
58 if (MACHINE_HAS_TE) {
59 unsigned long cr, cr_new;
60
61 __ctl_store(cr, 0, 0);
62 /* Set or clear transaction execution TXC bit 8. */
63 cr_new = cr | (1UL << 55);
64 if (task->thread.per_flags & PER_FLAG_NO_TE)
65 cr_new &= ~(1UL << 55);
66 if (cr_new != cr)
67 __ctl_load(cr, 0, 0);
68 /* Set or clear transaction execution TDC bits 62 and 63. */
69 __ctl_store(cr, 2, 2);
70 cr_new = cr & ~3UL;
71 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
72 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
73 cr_new |= 1UL;
74 else
75 cr_new |= 2UL;
76 }
77 if (cr_new != cr)
78 __ctl_load(cr_new, 2, 2);
79 }
80 #endif
81 /* Copy user specified PER registers */
82 new.control = thread->per_user.control;
83 new.start = thread->per_user.start;
84 new.end = thread->per_user.end;
85
86 /* merge TIF_SINGLE_STEP into user specified PER registers. */
87 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
88 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
89 new.control |= PER_EVENT_BRANCH;
90 else
91 new.control |= PER_EVENT_IFETCH;
92 #ifdef CONFIG_64BIT
93 new.control |= PER_CONTROL_SUSPENSION;
94 new.control |= PER_EVENT_TRANSACTION_END;
95 #endif
96 new.start = 0;
97 new.end = PSW_ADDR_INSN;
98 }
99
100 /* Take care of the PER enablement bit in the PSW. */
101 if (!(new.control & PER_EVENT_MASK)) {
102 regs->psw.mask &= ~PSW_MASK_PER;
103 return;
104 }
105 regs->psw.mask |= PSW_MASK_PER;
106 __ctl_store(old, 9, 11);
107 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
108 __ctl_load(new, 9, 11);
109 }
110
111 void user_enable_single_step(struct task_struct *task)
112 {
113 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
114 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
115 }
116
117 void user_disable_single_step(struct task_struct *task)
118 {
119 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
121 }
122
123 void user_enable_block_step(struct task_struct *task)
124 {
125 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
126 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
127 }
128
129 /*
130 * Called by kernel/ptrace.c when detaching..
131 *
132 * Clear all debugging related fields.
133 */
134 void ptrace_disable(struct task_struct *task)
135 {
136 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
137 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
138 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
139 clear_tsk_thread_flag(task, TIF_PER_TRAP);
140 task->thread.per_flags = 0;
141 }
142
143 #ifndef CONFIG_64BIT
144 # define __ADDR_MASK 3
145 #else
146 # define __ADDR_MASK 7
147 #endif
148
149 static inline unsigned long __peek_user_per(struct task_struct *child,
150 addr_t addr)
151 {
152 struct per_struct_kernel *dummy = NULL;
153
154 if (addr == (addr_t) &dummy->cr9)
155 /* Control bits of the active per set. */
156 return test_thread_flag(TIF_SINGLE_STEP) ?
157 PER_EVENT_IFETCH : child->thread.per_user.control;
158 else if (addr == (addr_t) &dummy->cr10)
159 /* Start address of the active per set. */
160 return test_thread_flag(TIF_SINGLE_STEP) ?
161 0 : child->thread.per_user.start;
162 else if (addr == (addr_t) &dummy->cr11)
163 /* End address of the active per set. */
164 return test_thread_flag(TIF_SINGLE_STEP) ?
165 PSW_ADDR_INSN : child->thread.per_user.end;
166 else if (addr == (addr_t) &dummy->bits)
167 /* Single-step bit. */
168 return test_thread_flag(TIF_SINGLE_STEP) ?
169 (1UL << (BITS_PER_LONG - 1)) : 0;
170 else if (addr == (addr_t) &dummy->starting_addr)
171 /* Start address of the user specified per set. */
172 return child->thread.per_user.start;
173 else if (addr == (addr_t) &dummy->ending_addr)
174 /* End address of the user specified per set. */
175 return child->thread.per_user.end;
176 else if (addr == (addr_t) &dummy->perc_atmid)
177 /* PER code, ATMID and AI of the last PER trap */
178 return (unsigned long)
179 child->thread.per_event.cause << (BITS_PER_LONG - 16);
180 else if (addr == (addr_t) &dummy->address)
181 /* Address of the last PER trap */
182 return child->thread.per_event.address;
183 else if (addr == (addr_t) &dummy->access_id)
184 /* Access id of the last PER trap */
185 return (unsigned long)
186 child->thread.per_event.paid << (BITS_PER_LONG - 8);
187 return 0;
188 }
189
190 /*
191 * Read the word at offset addr from the user area of a process. The
192 * trouble here is that the information is littered over different
193 * locations. The process registers are found on the kernel stack,
194 * the floating point stuff and the trace settings are stored in
195 * the task structure. In addition the different structures in
196 * struct user contain pad bytes that should be read as zeroes.
197 * Lovely...
198 */
199 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
200 {
201 struct user *dummy = NULL;
202 addr_t offset, tmp;
203
204 if (addr < (addr_t) &dummy->regs.acrs) {
205 /*
206 * psw and gprs are stored on the stack
207 */
208 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
209 if (addr == (addr_t) &dummy->regs.psw.mask) {
210 /* Return a clean psw mask. */
211 tmp &= PSW_MASK_USER | PSW_MASK_RI;
212 tmp |= PSW_USER_BITS;
213 }
214
215 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
216 /*
217 * access registers are stored in the thread structure
218 */
219 offset = addr - (addr_t) &dummy->regs.acrs;
220 #ifdef CONFIG_64BIT
221 /*
222 * Very special case: old & broken 64 bit gdb reading
223 * from acrs[15]. Result is a 64 bit value. Read the
224 * 32 bit acrs[15] value and shift it by 32. Sick...
225 */
226 if (addr == (addr_t) &dummy->regs.acrs[15])
227 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
228 else
229 #endif
230 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
233 /*
234 * orig_gpr2 is stored on the kernel stack
235 */
236 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
239 /*
240 * prevent reads of padding hole between
241 * orig_gpr2 and fp_regs on s390.
242 */
243 tmp = 0;
244
245 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
246 /*
247 * floating point regs. are stored in the thread structure
248 */
249 offset = addr - (addr_t) &dummy->regs.fp_regs;
250 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
251 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
252 tmp <<= BITS_PER_LONG - 32;
253
254 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
255 /*
256 * Handle access to the per_info structure.
257 */
258 addr -= (addr_t) &dummy->regs.per_info;
259 tmp = __peek_user_per(child, addr);
260
261 } else
262 tmp = 0;
263
264 return tmp;
265 }
266
267 static int
268 peek_user(struct task_struct *child, addr_t addr, addr_t data)
269 {
270 addr_t tmp, mask;
271
272 /*
273 * Stupid gdb peeks/pokes the access registers in 64 bit with
274 * an alignment of 4. Programmers from hell...
275 */
276 mask = __ADDR_MASK;
277 #ifdef CONFIG_64BIT
278 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
279 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
280 mask = 3;
281 #endif
282 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
283 return -EIO;
284
285 tmp = __peek_user(child, addr);
286 return put_user(tmp, (addr_t __user *) data);
287 }
288
289 static inline void __poke_user_per(struct task_struct *child,
290 addr_t addr, addr_t data)
291 {
292 struct per_struct_kernel *dummy = NULL;
293
294 /*
295 * There are only three fields in the per_info struct that the
296 * debugger user can write to.
297 * 1) cr9: the debugger wants to set a new PER event mask
298 * 2) starting_addr: the debugger wants to set a new starting
299 * address to use with the PER event mask.
300 * 3) ending_addr: the debugger wants to set a new ending
301 * address to use with the PER event mask.
302 * The user specified PER event mask and the start and end
303 * addresses are used only if single stepping is not in effect.
304 * Writes to any other field in per_info are ignored.
305 */
306 if (addr == (addr_t) &dummy->cr9)
307 /* PER event mask of the user specified per set. */
308 child->thread.per_user.control =
309 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
310 else if (addr == (addr_t) &dummy->starting_addr)
311 /* Starting address of the user specified per set. */
312 child->thread.per_user.start = data;
313 else if (addr == (addr_t) &dummy->ending_addr)
314 /* Ending address of the user specified per set. */
315 child->thread.per_user.end = data;
316 }
317
318 /*
319 * Write a word to the user area of a process at location addr. This
320 * operation does have an additional problem compared to peek_user.
321 * Stores to the program status word and on the floating point
322 * control register needs to get checked for validity.
323 */
324 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
325 {
326 struct user *dummy = NULL;
327 addr_t offset;
328
329 if (addr < (addr_t) &dummy->regs.acrs) {
330 /*
331 * psw and gprs are stored on the stack
332 */
333 if (addr == (addr_t) &dummy->regs.psw.mask) {
334 unsigned long mask = PSW_MASK_USER;
335
336 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
337 if ((data & ~mask) != PSW_USER_BITS)
338 return -EINVAL;
339 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
340 return -EINVAL;
341 }
342 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
343
344 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
345 /*
346 * access registers are stored in the thread structure
347 */
348 offset = addr - (addr_t) &dummy->regs.acrs;
349 #ifdef CONFIG_64BIT
350 /*
351 * Very special case: old & broken 64 bit gdb writing
352 * to acrs[15] with a 64 bit value. Ignore the lower
353 * half of the value and write the upper 32 bit to
354 * acrs[15]. Sick...
355 */
356 if (addr == (addr_t) &dummy->regs.acrs[15])
357 child->thread.acrs[15] = (unsigned int) (data >> 32);
358 else
359 #endif
360 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
361
362 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
363 /*
364 * orig_gpr2 is stored on the kernel stack
365 */
366 task_pt_regs(child)->orig_gpr2 = data;
367
368 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
369 /*
370 * prevent writes of padding hole between
371 * orig_gpr2 and fp_regs on s390.
372 */
373 return 0;
374
375 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
376 /*
377 * floating point regs. are stored in the thread structure
378 */
379 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
380 if ((unsigned int) data != 0 ||
381 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
382 return -EINVAL;
383 offset = addr - (addr_t) &dummy->regs.fp_regs;
384 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
385
386 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
387 /*
388 * Handle access to the per_info structure.
389 */
390 addr -= (addr_t) &dummy->regs.per_info;
391 __poke_user_per(child, addr, data);
392
393 }
394
395 return 0;
396 }
397
398 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
399 {
400 addr_t mask;
401
402 /*
403 * Stupid gdb peeks/pokes the access registers in 64 bit with
404 * an alignment of 4. Programmers from hell indeed...
405 */
406 mask = __ADDR_MASK;
407 #ifdef CONFIG_64BIT
408 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
409 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
410 mask = 3;
411 #endif
412 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
413 return -EIO;
414
415 return __poke_user(child, addr, data);
416 }
417
418 long arch_ptrace(struct task_struct *child, long request,
419 unsigned long addr, unsigned long data)
420 {
421 ptrace_area parea;
422 int copied, ret;
423
424 switch (request) {
425 case PTRACE_PEEKUSR:
426 /* read the word at location addr in the USER area. */
427 return peek_user(child, addr, data);
428
429 case PTRACE_POKEUSR:
430 /* write the word at location addr in the USER area */
431 return poke_user(child, addr, data);
432
433 case PTRACE_PEEKUSR_AREA:
434 case PTRACE_POKEUSR_AREA:
435 if (copy_from_user(&parea, (void __force __user *) addr,
436 sizeof(parea)))
437 return -EFAULT;
438 addr = parea.kernel_addr;
439 data = parea.process_addr;
440 copied = 0;
441 while (copied < parea.len) {
442 if (request == PTRACE_PEEKUSR_AREA)
443 ret = peek_user(child, addr, data);
444 else {
445 addr_t utmp;
446 if (get_user(utmp,
447 (addr_t __force __user *) data))
448 return -EFAULT;
449 ret = poke_user(child, addr, utmp);
450 }
451 if (ret)
452 return ret;
453 addr += sizeof(unsigned long);
454 data += sizeof(unsigned long);
455 copied += sizeof(unsigned long);
456 }
457 return 0;
458 case PTRACE_GET_LAST_BREAK:
459 put_user(task_thread_info(child)->last_break,
460 (unsigned long __user *) data);
461 return 0;
462 case PTRACE_ENABLE_TE:
463 if (!MACHINE_HAS_TE)
464 return -EIO;
465 child->thread.per_flags &= ~PER_FLAG_NO_TE;
466 return 0;
467 case PTRACE_DISABLE_TE:
468 if (!MACHINE_HAS_TE)
469 return -EIO;
470 child->thread.per_flags |= PER_FLAG_NO_TE;
471 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
472 return 0;
473 case PTRACE_TE_ABORT_RAND:
474 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
475 return -EIO;
476 switch (data) {
477 case 0UL:
478 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
479 break;
480 case 1UL:
481 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
482 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
483 break;
484 case 2UL:
485 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
486 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
487 break;
488 default:
489 return -EINVAL;
490 }
491 return 0;
492 default:
493 /* Removing high order bit from addr (only for 31 bit). */
494 addr &= PSW_ADDR_INSN;
495 return ptrace_request(child, request, addr, data);
496 }
497 }
498
499 #ifdef CONFIG_COMPAT
500 /*
501 * Now the fun part starts... a 31 bit program running in the
502 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
503 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
504 * to handle, the difference to the 64 bit versions of the requests
505 * is that the access is done in multiples of 4 byte instead of
506 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
507 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
508 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
509 * is a 31 bit program too, the content of struct user can be
510 * emulated. A 31 bit program peeking into the struct user of
511 * a 64 bit program is a no-no.
512 */
513
514 /*
515 * Same as peek_user_per but for a 31 bit program.
516 */
517 static inline __u32 __peek_user_per_compat(struct task_struct *child,
518 addr_t addr)
519 {
520 struct compat_per_struct_kernel *dummy32 = NULL;
521
522 if (addr == (addr_t) &dummy32->cr9)
523 /* Control bits of the active per set. */
524 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
525 PER_EVENT_IFETCH : child->thread.per_user.control;
526 else if (addr == (addr_t) &dummy32->cr10)
527 /* Start address of the active per set. */
528 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
529 0 : child->thread.per_user.start;
530 else if (addr == (addr_t) &dummy32->cr11)
531 /* End address of the active per set. */
532 return test_thread_flag(TIF_SINGLE_STEP) ?
533 PSW32_ADDR_INSN : child->thread.per_user.end;
534 else if (addr == (addr_t) &dummy32->bits)
535 /* Single-step bit. */
536 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
537 0x80000000 : 0;
538 else if (addr == (addr_t) &dummy32->starting_addr)
539 /* Start address of the user specified per set. */
540 return (__u32) child->thread.per_user.start;
541 else if (addr == (addr_t) &dummy32->ending_addr)
542 /* End address of the user specified per set. */
543 return (__u32) child->thread.per_user.end;
544 else if (addr == (addr_t) &dummy32->perc_atmid)
545 /* PER code, ATMID and AI of the last PER trap */
546 return (__u32) child->thread.per_event.cause << 16;
547 else if (addr == (addr_t) &dummy32->address)
548 /* Address of the last PER trap */
549 return (__u32) child->thread.per_event.address;
550 else if (addr == (addr_t) &dummy32->access_id)
551 /* Access id of the last PER trap */
552 return (__u32) child->thread.per_event.paid << 24;
553 return 0;
554 }
555
556 /*
557 * Same as peek_user but for a 31 bit program.
558 */
559 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
560 {
561 struct compat_user *dummy32 = NULL;
562 addr_t offset;
563 __u32 tmp;
564
565 if (addr < (addr_t) &dummy32->regs.acrs) {
566 struct pt_regs *regs = task_pt_regs(child);
567 /*
568 * psw and gprs are stored on the stack
569 */
570 if (addr == (addr_t) &dummy32->regs.psw.mask) {
571 /* Fake a 31 bit psw mask. */
572 tmp = (__u32)(regs->psw.mask >> 32);
573 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
574 tmp |= PSW32_USER_BITS;
575 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
576 /* Fake a 31 bit psw address. */
577 tmp = (__u32) regs->psw.addr |
578 (__u32)(regs->psw.mask & PSW_MASK_BA);
579 } else {
580 /* gpr 0-15 */
581 tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
582 }
583 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
584 /*
585 * access registers are stored in the thread structure
586 */
587 offset = addr - (addr_t) &dummy32->regs.acrs;
588 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
589
590 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
591 /*
592 * orig_gpr2 is stored on the kernel stack
593 */
594 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
595
596 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
597 /*
598 * prevent reads of padding hole between
599 * orig_gpr2 and fp_regs on s390.
600 */
601 tmp = 0;
602
603 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
604 /*
605 * floating point regs. are stored in the thread structure
606 */
607 offset = addr - (addr_t) &dummy32->regs.fp_regs;
608 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
609
610 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
611 /*
612 * Handle access to the per_info structure.
613 */
614 addr -= (addr_t) &dummy32->regs.per_info;
615 tmp = __peek_user_per_compat(child, addr);
616
617 } else
618 tmp = 0;
619
620 return tmp;
621 }
622
623 static int peek_user_compat(struct task_struct *child,
624 addr_t addr, addr_t data)
625 {
626 __u32 tmp;
627
628 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
629 return -EIO;
630
631 tmp = __peek_user_compat(child, addr);
632 return put_user(tmp, (__u32 __user *) data);
633 }
634
635 /*
636 * Same as poke_user_per but for a 31 bit program.
637 */
638 static inline void __poke_user_per_compat(struct task_struct *child,
639 addr_t addr, __u32 data)
640 {
641 struct compat_per_struct_kernel *dummy32 = NULL;
642
643 if (addr == (addr_t) &dummy32->cr9)
644 /* PER event mask of the user specified per set. */
645 child->thread.per_user.control =
646 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
647 else if (addr == (addr_t) &dummy32->starting_addr)
648 /* Starting address of the user specified per set. */
649 child->thread.per_user.start = data;
650 else if (addr == (addr_t) &dummy32->ending_addr)
651 /* Ending address of the user specified per set. */
652 child->thread.per_user.end = data;
653 }
654
655 /*
656 * Same as poke_user but for a 31 bit program.
657 */
658 static int __poke_user_compat(struct task_struct *child,
659 addr_t addr, addr_t data)
660 {
661 struct compat_user *dummy32 = NULL;
662 __u32 tmp = (__u32) data;
663 addr_t offset;
664
665 if (addr < (addr_t) &dummy32->regs.acrs) {
666 struct pt_regs *regs = task_pt_regs(child);
667 /*
668 * psw, gprs, acrs and orig_gpr2 are stored on the stack
669 */
670 if (addr == (addr_t) &dummy32->regs.psw.mask) {
671 __u32 mask = PSW32_MASK_USER;
672
673 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
674 /* Build a 64 bit psw mask from 31 bit mask. */
675 if ((tmp & ~mask) != PSW32_USER_BITS)
676 /* Invalid psw mask. */
677 return -EINVAL;
678 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
679 (regs->psw.mask & PSW_MASK_BA) |
680 (__u64)(tmp & mask) << 32;
681 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
682 /* Build a 64 bit psw address from 31 bit address. */
683 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
684 /* Transfer 31 bit amode bit to psw mask. */
685 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
686 (__u64)(tmp & PSW32_ADDR_AMODE);
687 } else {
688 /* gpr 0-15 */
689 *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
690 }
691 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
692 /*
693 * access registers are stored in the thread structure
694 */
695 offset = addr - (addr_t) &dummy32->regs.acrs;
696 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
697
698 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
699 /*
700 * orig_gpr2 is stored on the kernel stack
701 */
702 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
703
704 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
705 /*
706 * prevent writess of padding hole between
707 * orig_gpr2 and fp_regs on s390.
708 */
709 return 0;
710
711 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
712 /*
713 * floating point regs. are stored in the thread structure
714 */
715 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
716 test_fp_ctl(tmp))
717 return -EINVAL;
718 offset = addr - (addr_t) &dummy32->regs.fp_regs;
719 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
720
721 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
722 /*
723 * Handle access to the per_info structure.
724 */
725 addr -= (addr_t) &dummy32->regs.per_info;
726 __poke_user_per_compat(child, addr, data);
727 }
728
729 return 0;
730 }
731
732 static int poke_user_compat(struct task_struct *child,
733 addr_t addr, addr_t data)
734 {
735 if (!is_compat_task() || (addr & 3) ||
736 addr > sizeof(struct compat_user) - 3)
737 return -EIO;
738
739 return __poke_user_compat(child, addr, data);
740 }
741
742 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
743 compat_ulong_t caddr, compat_ulong_t cdata)
744 {
745 unsigned long addr = caddr;
746 unsigned long data = cdata;
747 compat_ptrace_area parea;
748 int copied, ret;
749
750 switch (request) {
751 case PTRACE_PEEKUSR:
752 /* read the word at location addr in the USER area. */
753 return peek_user_compat(child, addr, data);
754
755 case PTRACE_POKEUSR:
756 /* write the word at location addr in the USER area */
757 return poke_user_compat(child, addr, data);
758
759 case PTRACE_PEEKUSR_AREA:
760 case PTRACE_POKEUSR_AREA:
761 if (copy_from_user(&parea, (void __force __user *) addr,
762 sizeof(parea)))
763 return -EFAULT;
764 addr = parea.kernel_addr;
765 data = parea.process_addr;
766 copied = 0;
767 while (copied < parea.len) {
768 if (request == PTRACE_PEEKUSR_AREA)
769 ret = peek_user_compat(child, addr, data);
770 else {
771 __u32 utmp;
772 if (get_user(utmp,
773 (__u32 __force __user *) data))
774 return -EFAULT;
775 ret = poke_user_compat(child, addr, utmp);
776 }
777 if (ret)
778 return ret;
779 addr += sizeof(unsigned int);
780 data += sizeof(unsigned int);
781 copied += sizeof(unsigned int);
782 }
783 return 0;
784 case PTRACE_GET_LAST_BREAK:
785 put_user(task_thread_info(child)->last_break,
786 (unsigned int __user *) data);
787 return 0;
788 }
789 return compat_ptrace_request(child, request, addr, data);
790 }
791 #endif
792
793 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
794 {
795 long ret = 0;
796
797 /* Do the secure computing check first. */
798 if (secure_computing(regs->gprs[2])) {
799 /* seccomp failures shouldn't expose any additional code. */
800 ret = -1;
801 goto out;
802 }
803
804 /*
805 * The sysc_tracesys code in entry.S stored the system
806 * call number to gprs[2].
807 */
808 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
809 (tracehook_report_syscall_entry(regs) ||
810 regs->gprs[2] >= NR_syscalls)) {
811 /*
812 * Tracing decided this syscall should not happen or the
813 * debugger stored an invalid system call number. Skip
814 * the system call and the system call restart handling.
815 */
816 clear_thread_flag(TIF_SYSCALL);
817 ret = -1;
818 }
819
820 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
821 trace_sys_enter(regs, regs->gprs[2]);
822
823 audit_syscall_entry(is_compat_task() ?
824 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
825 regs->gprs[2], regs->orig_gpr2,
826 regs->gprs[3], regs->gprs[4],
827 regs->gprs[5]);
828 out:
829 return ret ?: regs->gprs[2];
830 }
831
832 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
833 {
834 audit_syscall_exit(regs);
835
836 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
837 trace_sys_exit(regs, regs->gprs[2]);
838
839 if (test_thread_flag(TIF_SYSCALL_TRACE))
840 tracehook_report_syscall_exit(regs, 0);
841 }
842
843 /*
844 * user_regset definitions.
845 */
846
847 static int s390_regs_get(struct task_struct *target,
848 const struct user_regset *regset,
849 unsigned int pos, unsigned int count,
850 void *kbuf, void __user *ubuf)
851 {
852 if (target == current)
853 save_access_regs(target->thread.acrs);
854
855 if (kbuf) {
856 unsigned long *k = kbuf;
857 while (count > 0) {
858 *k++ = __peek_user(target, pos);
859 count -= sizeof(*k);
860 pos += sizeof(*k);
861 }
862 } else {
863 unsigned long __user *u = ubuf;
864 while (count > 0) {
865 if (__put_user(__peek_user(target, pos), u++))
866 return -EFAULT;
867 count -= sizeof(*u);
868 pos += sizeof(*u);
869 }
870 }
871 return 0;
872 }
873
874 static int s390_regs_set(struct task_struct *target,
875 const struct user_regset *regset,
876 unsigned int pos, unsigned int count,
877 const void *kbuf, const void __user *ubuf)
878 {
879 int rc = 0;
880
881 if (target == current)
882 save_access_regs(target->thread.acrs);
883
884 if (kbuf) {
885 const unsigned long *k = kbuf;
886 while (count > 0 && !rc) {
887 rc = __poke_user(target, pos, *k++);
888 count -= sizeof(*k);
889 pos += sizeof(*k);
890 }
891 } else {
892 const unsigned long __user *u = ubuf;
893 while (count > 0 && !rc) {
894 unsigned long word;
895 rc = __get_user(word, u++);
896 if (rc)
897 break;
898 rc = __poke_user(target, pos, word);
899 count -= sizeof(*u);
900 pos += sizeof(*u);
901 }
902 }
903
904 if (rc == 0 && target == current)
905 restore_access_regs(target->thread.acrs);
906
907 return rc;
908 }
909
910 static int s390_fpregs_get(struct task_struct *target,
911 const struct user_regset *regset, unsigned int pos,
912 unsigned int count, void *kbuf, void __user *ubuf)
913 {
914 if (target == current) {
915 save_fp_ctl(&target->thread.fp_regs.fpc);
916 save_fp_regs(target->thread.fp_regs.fprs);
917 }
918
919 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
920 &target->thread.fp_regs, 0, -1);
921 }
922
923 static int s390_fpregs_set(struct task_struct *target,
924 const struct user_regset *regset, unsigned int pos,
925 unsigned int count, const void *kbuf,
926 const void __user *ubuf)
927 {
928 int rc = 0;
929
930 if (target == current) {
931 save_fp_ctl(&target->thread.fp_regs.fpc);
932 save_fp_regs(target->thread.fp_regs.fprs);
933 }
934
935 /* If setting FPC, must validate it first. */
936 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
937 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
938 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
939 0, offsetof(s390_fp_regs, fprs));
940 if (rc)
941 return rc;
942 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
943 return -EINVAL;
944 target->thread.fp_regs.fpc = ufpc[0];
945 }
946
947 if (rc == 0 && count > 0)
948 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
949 target->thread.fp_regs.fprs,
950 offsetof(s390_fp_regs, fprs), -1);
951
952 if (rc == 0 && target == current) {
953 restore_fp_ctl(&target->thread.fp_regs.fpc);
954 restore_fp_regs(target->thread.fp_regs.fprs);
955 }
956
957 return rc;
958 }
959
960 #ifdef CONFIG_64BIT
961
962 static int s390_last_break_get(struct task_struct *target,
963 const struct user_regset *regset,
964 unsigned int pos, unsigned int count,
965 void *kbuf, void __user *ubuf)
966 {
967 if (count > 0) {
968 if (kbuf) {
969 unsigned long *k = kbuf;
970 *k = task_thread_info(target)->last_break;
971 } else {
972 unsigned long __user *u = ubuf;
973 if (__put_user(task_thread_info(target)->last_break, u))
974 return -EFAULT;
975 }
976 }
977 return 0;
978 }
979
980 static int s390_last_break_set(struct task_struct *target,
981 const struct user_regset *regset,
982 unsigned int pos, unsigned int count,
983 const void *kbuf, const void __user *ubuf)
984 {
985 return 0;
986 }
987
988 static int s390_tdb_get(struct task_struct *target,
989 const struct user_regset *regset,
990 unsigned int pos, unsigned int count,
991 void *kbuf, void __user *ubuf)
992 {
993 struct pt_regs *regs = task_pt_regs(target);
994 unsigned char *data;
995
996 if (!(regs->int_code & 0x200))
997 return -ENODATA;
998 data = target->thread.trap_tdb;
999 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1000 }
1001
1002 static int s390_tdb_set(struct task_struct *target,
1003 const struct user_regset *regset,
1004 unsigned int pos, unsigned int count,
1005 const void *kbuf, const void __user *ubuf)
1006 {
1007 return 0;
1008 }
1009
1010 #endif
1011
1012 static int s390_system_call_get(struct task_struct *target,
1013 const struct user_regset *regset,
1014 unsigned int pos, unsigned int count,
1015 void *kbuf, void __user *ubuf)
1016 {
1017 unsigned int *data = &task_thread_info(target)->system_call;
1018 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1019 data, 0, sizeof(unsigned int));
1020 }
1021
1022 static int s390_system_call_set(struct task_struct *target,
1023 const struct user_regset *regset,
1024 unsigned int pos, unsigned int count,
1025 const void *kbuf, const void __user *ubuf)
1026 {
1027 unsigned int *data = &task_thread_info(target)->system_call;
1028 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1029 data, 0, sizeof(unsigned int));
1030 }
1031
1032 static const struct user_regset s390_regsets[] = {
1033 [REGSET_GENERAL] = {
1034 .core_note_type = NT_PRSTATUS,
1035 .n = sizeof(s390_regs) / sizeof(long),
1036 .size = sizeof(long),
1037 .align = sizeof(long),
1038 .get = s390_regs_get,
1039 .set = s390_regs_set,
1040 },
1041 [REGSET_FP] = {
1042 .core_note_type = NT_PRFPREG,
1043 .n = sizeof(s390_fp_regs) / sizeof(long),
1044 .size = sizeof(long),
1045 .align = sizeof(long),
1046 .get = s390_fpregs_get,
1047 .set = s390_fpregs_set,
1048 },
1049 #ifdef CONFIG_64BIT
1050 [REGSET_LAST_BREAK] = {
1051 .core_note_type = NT_S390_LAST_BREAK,
1052 .n = 1,
1053 .size = sizeof(long),
1054 .align = sizeof(long),
1055 .get = s390_last_break_get,
1056 .set = s390_last_break_set,
1057 },
1058 [REGSET_TDB] = {
1059 .core_note_type = NT_S390_TDB,
1060 .n = 1,
1061 .size = 256,
1062 .align = 1,
1063 .get = s390_tdb_get,
1064 .set = s390_tdb_set,
1065 },
1066 #endif
1067 [REGSET_SYSTEM_CALL] = {
1068 .core_note_type = NT_S390_SYSTEM_CALL,
1069 .n = 1,
1070 .size = sizeof(unsigned int),
1071 .align = sizeof(unsigned int),
1072 .get = s390_system_call_get,
1073 .set = s390_system_call_set,
1074 },
1075 };
1076
1077 static const struct user_regset_view user_s390_view = {
1078 .name = UTS_MACHINE,
1079 .e_machine = EM_S390,
1080 .regsets = s390_regsets,
1081 .n = ARRAY_SIZE(s390_regsets)
1082 };
1083
1084 #ifdef CONFIG_COMPAT
1085 static int s390_compat_regs_get(struct task_struct *target,
1086 const struct user_regset *regset,
1087 unsigned int pos, unsigned int count,
1088 void *kbuf, void __user *ubuf)
1089 {
1090 if (target == current)
1091 save_access_regs(target->thread.acrs);
1092
1093 if (kbuf) {
1094 compat_ulong_t *k = kbuf;
1095 while (count > 0) {
1096 *k++ = __peek_user_compat(target, pos);
1097 count -= sizeof(*k);
1098 pos += sizeof(*k);
1099 }
1100 } else {
1101 compat_ulong_t __user *u = ubuf;
1102 while (count > 0) {
1103 if (__put_user(__peek_user_compat(target, pos), u++))
1104 return -EFAULT;
1105 count -= sizeof(*u);
1106 pos += sizeof(*u);
1107 }
1108 }
1109 return 0;
1110 }
1111
1112 static int s390_compat_regs_set(struct task_struct *target,
1113 const struct user_regset *regset,
1114 unsigned int pos, unsigned int count,
1115 const void *kbuf, const void __user *ubuf)
1116 {
1117 int rc = 0;
1118
1119 if (target == current)
1120 save_access_regs(target->thread.acrs);
1121
1122 if (kbuf) {
1123 const compat_ulong_t *k = kbuf;
1124 while (count > 0 && !rc) {
1125 rc = __poke_user_compat(target, pos, *k++);
1126 count -= sizeof(*k);
1127 pos += sizeof(*k);
1128 }
1129 } else {
1130 const compat_ulong_t __user *u = ubuf;
1131 while (count > 0 && !rc) {
1132 compat_ulong_t word;
1133 rc = __get_user(word, u++);
1134 if (rc)
1135 break;
1136 rc = __poke_user_compat(target, pos, word);
1137 count -= sizeof(*u);
1138 pos += sizeof(*u);
1139 }
1140 }
1141
1142 if (rc == 0 && target == current)
1143 restore_access_regs(target->thread.acrs);
1144
1145 return rc;
1146 }
1147
1148 static int s390_compat_regs_high_get(struct task_struct *target,
1149 const struct user_regset *regset,
1150 unsigned int pos, unsigned int count,
1151 void *kbuf, void __user *ubuf)
1152 {
1153 compat_ulong_t *gprs_high;
1154
1155 gprs_high = (compat_ulong_t *)
1156 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1157 if (kbuf) {
1158 compat_ulong_t *k = kbuf;
1159 while (count > 0) {
1160 *k++ = *gprs_high;
1161 gprs_high += 2;
1162 count -= sizeof(*k);
1163 }
1164 } else {
1165 compat_ulong_t __user *u = ubuf;
1166 while (count > 0) {
1167 if (__put_user(*gprs_high, u++))
1168 return -EFAULT;
1169 gprs_high += 2;
1170 count -= sizeof(*u);
1171 }
1172 }
1173 return 0;
1174 }
1175
1176 static int s390_compat_regs_high_set(struct task_struct *target,
1177 const struct user_regset *regset,
1178 unsigned int pos, unsigned int count,
1179 const void *kbuf, const void __user *ubuf)
1180 {
1181 compat_ulong_t *gprs_high;
1182 int rc = 0;
1183
1184 gprs_high = (compat_ulong_t *)
1185 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1186 if (kbuf) {
1187 const compat_ulong_t *k = kbuf;
1188 while (count > 0) {
1189 *gprs_high = *k++;
1190 *gprs_high += 2;
1191 count -= sizeof(*k);
1192 }
1193 } else {
1194 const compat_ulong_t __user *u = ubuf;
1195 while (count > 0 && !rc) {
1196 unsigned long word;
1197 rc = __get_user(word, u++);
1198 if (rc)
1199 break;
1200 *gprs_high = word;
1201 *gprs_high += 2;
1202 count -= sizeof(*u);
1203 }
1204 }
1205
1206 return rc;
1207 }
1208
1209 static int s390_compat_last_break_get(struct task_struct *target,
1210 const struct user_regset *regset,
1211 unsigned int pos, unsigned int count,
1212 void *kbuf, void __user *ubuf)
1213 {
1214 compat_ulong_t last_break;
1215
1216 if (count > 0) {
1217 last_break = task_thread_info(target)->last_break;
1218 if (kbuf) {
1219 unsigned long *k = kbuf;
1220 *k = last_break;
1221 } else {
1222 unsigned long __user *u = ubuf;
1223 if (__put_user(last_break, u))
1224 return -EFAULT;
1225 }
1226 }
1227 return 0;
1228 }
1229
1230 static int s390_compat_last_break_set(struct task_struct *target,
1231 const struct user_regset *regset,
1232 unsigned int pos, unsigned int count,
1233 const void *kbuf, const void __user *ubuf)
1234 {
1235 return 0;
1236 }
1237
1238 static const struct user_regset s390_compat_regsets[] = {
1239 [REGSET_GENERAL] = {
1240 .core_note_type = NT_PRSTATUS,
1241 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1242 .size = sizeof(compat_long_t),
1243 .align = sizeof(compat_long_t),
1244 .get = s390_compat_regs_get,
1245 .set = s390_compat_regs_set,
1246 },
1247 [REGSET_FP] = {
1248 .core_note_type = NT_PRFPREG,
1249 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1250 .size = sizeof(compat_long_t),
1251 .align = sizeof(compat_long_t),
1252 .get = s390_fpregs_get,
1253 .set = s390_fpregs_set,
1254 },
1255 [REGSET_LAST_BREAK] = {
1256 .core_note_type = NT_S390_LAST_BREAK,
1257 .n = 1,
1258 .size = sizeof(long),
1259 .align = sizeof(long),
1260 .get = s390_compat_last_break_get,
1261 .set = s390_compat_last_break_set,
1262 },
1263 [REGSET_TDB] = {
1264 .core_note_type = NT_S390_TDB,
1265 .n = 1,
1266 .size = 256,
1267 .align = 1,
1268 .get = s390_tdb_get,
1269 .set = s390_tdb_set,
1270 },
1271 [REGSET_SYSTEM_CALL] = {
1272 .core_note_type = NT_S390_SYSTEM_CALL,
1273 .n = 1,
1274 .size = sizeof(compat_uint_t),
1275 .align = sizeof(compat_uint_t),
1276 .get = s390_system_call_get,
1277 .set = s390_system_call_set,
1278 },
1279 [REGSET_GENERAL_EXTENDED] = {
1280 .core_note_type = NT_S390_HIGH_GPRS,
1281 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1282 .size = sizeof(compat_long_t),
1283 .align = sizeof(compat_long_t),
1284 .get = s390_compat_regs_high_get,
1285 .set = s390_compat_regs_high_set,
1286 },
1287 };
1288
1289 static const struct user_regset_view user_s390_compat_view = {
1290 .name = "s390",
1291 .e_machine = EM_S390,
1292 .regsets = s390_compat_regsets,
1293 .n = ARRAY_SIZE(s390_compat_regsets)
1294 };
1295 #endif
1296
1297 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1298 {
1299 #ifdef CONFIG_COMPAT
1300 if (test_tsk_thread_flag(task, TIF_31BIT))
1301 return &user_s390_compat_view;
1302 #endif
1303 return &user_s390_view;
1304 }
1305
1306 static const char *gpr_names[NUM_GPRS] = {
1307 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1308 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1309 };
1310
1311 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1312 {
1313 if (offset >= NUM_GPRS)
1314 return 0;
1315 return regs->gprs[offset];
1316 }
1317
1318 int regs_query_register_offset(const char *name)
1319 {
1320 unsigned long offset;
1321
1322 if (!name || *name != 'r')
1323 return -EINVAL;
1324 if (kstrtoul(name + 1, 10, &offset))
1325 return -EINVAL;
1326 if (offset >= NUM_GPRS)
1327 return -EINVAL;
1328 return offset;
1329 }
1330
1331 const char *regs_query_register_name(unsigned int offset)
1332 {
1333 if (offset >= NUM_GPRS)
1334 return NULL;
1335 return gpr_names[offset];
1336 }
1337
1338 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1339 {
1340 unsigned long ksp = kernel_stack_pointer(regs);
1341
1342 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1343 }
1344
1345 /**
1346 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1347 * @regs:pt_regs which contains kernel stack pointer.
1348 * @n:stack entry number.
1349 *
1350 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1351 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1352 * this returns 0.
1353 */
1354 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1355 {
1356 unsigned long addr;
1357
1358 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1359 if (!regs_within_kernel_stack(regs, addr))
1360 return 0;
1361 return *(unsigned long *)addr;
1362 }
This page took 0.090172 seconds and 5 git commands to generate.