s390/sclp: unify basic sclp access by exposing "struct sclp"
[deliverable/linux.git] / arch / s390 / kernel / smp.c
1 /*
2 * SMP related functions
3 *
4 * Copyright IBM Corp. 1999, 2012
5 * Author(s): Denis Joseph Barrow,
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
7 * Heiko Carstens <heiko.carstens@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include <asm/idle.h>
49 #include "entry.h"
50
51 enum {
52 ec_schedule = 0,
53 ec_call_function_single,
54 ec_stop_cpu,
55 };
56
57 enum {
58 CPU_STATE_STANDBY,
59 CPU_STATE_CONFIGURED,
60 };
61
62 static DEFINE_PER_CPU(struct cpu *, cpu_device);
63
64 struct pcpu {
65 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */
66 unsigned long ec_mask; /* bit mask for ec_xxx functions */
67 signed char state; /* physical cpu state */
68 signed char polarization; /* physical polarization */
69 u16 address; /* physical cpu address */
70 };
71
72 static u8 boot_cpu_type;
73 static struct pcpu pcpu_devices[NR_CPUS];
74
75 unsigned int smp_cpu_mt_shift;
76 EXPORT_SYMBOL(smp_cpu_mt_shift);
77
78 unsigned int smp_cpu_mtid;
79 EXPORT_SYMBOL(smp_cpu_mtid);
80
81 static unsigned int smp_max_threads __initdata = -1U;
82
83 static int __init early_nosmt(char *s)
84 {
85 smp_max_threads = 1;
86 return 0;
87 }
88 early_param("nosmt", early_nosmt);
89
90 static int __init early_smt(char *s)
91 {
92 get_option(&s, &smp_max_threads);
93 return 0;
94 }
95 early_param("smt", early_smt);
96
97 /*
98 * The smp_cpu_state_mutex must be held when changing the state or polarization
99 * member of a pcpu data structure within the pcpu_devices arreay.
100 */
101 DEFINE_MUTEX(smp_cpu_state_mutex);
102
103 /*
104 * Signal processor helper functions.
105 */
106 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm,
107 u32 *status)
108 {
109 int cc;
110
111 while (1) {
112 cc = __pcpu_sigp(addr, order, parm, NULL);
113 if (cc != SIGP_CC_BUSY)
114 return cc;
115 cpu_relax();
116 }
117 }
118
119 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
120 {
121 int cc, retry;
122
123 for (retry = 0; ; retry++) {
124 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
125 if (cc != SIGP_CC_BUSY)
126 break;
127 if (retry >= 3)
128 udelay(10);
129 }
130 return cc;
131 }
132
133 static inline int pcpu_stopped(struct pcpu *pcpu)
134 {
135 u32 uninitialized_var(status);
136
137 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
138 0, &status) != SIGP_CC_STATUS_STORED)
139 return 0;
140 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
141 }
142
143 static inline int pcpu_running(struct pcpu *pcpu)
144 {
145 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
146 0, NULL) != SIGP_CC_STATUS_STORED)
147 return 1;
148 /* Status stored condition code is equivalent to cpu not running. */
149 return 0;
150 }
151
152 /*
153 * Find struct pcpu by cpu address.
154 */
155 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
156 {
157 int cpu;
158
159 for_each_cpu(cpu, mask)
160 if (pcpu_devices[cpu].address == address)
161 return pcpu_devices + cpu;
162 return NULL;
163 }
164
165 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
166 {
167 int order;
168
169 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
170 return;
171 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
172 pcpu_sigp_retry(pcpu, order, 0);
173 }
174
175 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
176 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
177
178 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
179 {
180 unsigned long async_stack, panic_stack;
181 struct _lowcore *lc;
182
183 if (pcpu != &pcpu_devices[0]) {
184 pcpu->lowcore = (struct _lowcore *)
185 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
186 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
187 panic_stack = __get_free_page(GFP_KERNEL);
188 if (!pcpu->lowcore || !panic_stack || !async_stack)
189 goto out;
190 } else {
191 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
192 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
193 }
194 lc = pcpu->lowcore;
195 memcpy(lc, &S390_lowcore, 512);
196 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
197 lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
198 lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
199 lc->cpu_nr = cpu;
200 lc->spinlock_lockval = arch_spin_lockval(cpu);
201 if (MACHINE_HAS_VX)
202 lc->vector_save_area_addr =
203 (unsigned long) &lc->vector_save_area;
204 if (vdso_alloc_per_cpu(lc))
205 goto out;
206 lowcore_ptr[cpu] = lc;
207 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
208 return 0;
209 out:
210 if (pcpu != &pcpu_devices[0]) {
211 free_page(panic_stack);
212 free_pages(async_stack, ASYNC_ORDER);
213 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
214 }
215 return -ENOMEM;
216 }
217
218 #ifdef CONFIG_HOTPLUG_CPU
219
220 static void pcpu_free_lowcore(struct pcpu *pcpu)
221 {
222 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
223 lowcore_ptr[pcpu - pcpu_devices] = NULL;
224 vdso_free_per_cpu(pcpu->lowcore);
225 if (pcpu == &pcpu_devices[0])
226 return;
227 free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
228 free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
229 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
230 }
231
232 #endif /* CONFIG_HOTPLUG_CPU */
233
234 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
235 {
236 struct _lowcore *lc = pcpu->lowcore;
237
238 if (MACHINE_HAS_TLB_LC)
239 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
240 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
241 atomic_inc(&init_mm.context.attach_count);
242 lc->cpu_nr = cpu;
243 lc->spinlock_lockval = arch_spin_lockval(cpu);
244 lc->percpu_offset = __per_cpu_offset[cpu];
245 lc->kernel_asce = S390_lowcore.kernel_asce;
246 lc->machine_flags = S390_lowcore.machine_flags;
247 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
248 __ctl_store(lc->cregs_save_area, 0, 15);
249 save_access_regs((unsigned int *) lc->access_regs_save_area);
250 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
251 MAX_FACILITY_BIT/8);
252 }
253
254 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
255 {
256 struct _lowcore *lc = pcpu->lowcore;
257 struct thread_info *ti = task_thread_info(tsk);
258
259 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
260 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
261 lc->thread_info = (unsigned long) task_thread_info(tsk);
262 lc->current_task = (unsigned long) tsk;
263 lc->user_timer = ti->user_timer;
264 lc->system_timer = ti->system_timer;
265 lc->steal_timer = 0;
266 }
267
268 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
269 {
270 struct _lowcore *lc = pcpu->lowcore;
271
272 lc->restart_stack = lc->kernel_stack;
273 lc->restart_fn = (unsigned long) func;
274 lc->restart_data = (unsigned long) data;
275 lc->restart_source = -1UL;
276 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
277 }
278
279 /*
280 * Call function via PSW restart on pcpu and stop the current cpu.
281 */
282 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
283 void *data, unsigned long stack)
284 {
285 struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
286 unsigned long source_cpu = stap();
287
288 __load_psw_mask(PSW_KERNEL_BITS);
289 if (pcpu->address == source_cpu)
290 func(data); /* should not return */
291 /* Stop target cpu (if func returns this stops the current cpu). */
292 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
293 /* Restart func on the target cpu and stop the current cpu. */
294 mem_assign_absolute(lc->restart_stack, stack);
295 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
296 mem_assign_absolute(lc->restart_data, (unsigned long) data);
297 mem_assign_absolute(lc->restart_source, source_cpu);
298 asm volatile(
299 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
300 " brc 2,0b # busy, try again\n"
301 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
302 " brc 2,1b # busy, try again\n"
303 : : "d" (pcpu->address), "d" (source_cpu),
304 "K" (SIGP_RESTART), "K" (SIGP_STOP)
305 : "0", "1", "cc");
306 for (;;) ;
307 }
308
309 /*
310 * Enable additional logical cpus for multi-threading.
311 */
312 static int pcpu_set_smt(unsigned int mtid)
313 {
314 register unsigned long reg1 asm ("1") = (unsigned long) mtid;
315 int cc;
316
317 if (smp_cpu_mtid == mtid)
318 return 0;
319 asm volatile(
320 " sigp %1,0,%2 # sigp set multi-threading\n"
321 " ipm %0\n"
322 " srl %0,28\n"
323 : "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
324 : "cc");
325 if (cc == 0) {
326 smp_cpu_mtid = mtid;
327 smp_cpu_mt_shift = 0;
328 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
329 smp_cpu_mt_shift++;
330 pcpu_devices[0].address = stap();
331 }
332 return cc;
333 }
334
335 /*
336 * Call function on an online CPU.
337 */
338 void smp_call_online_cpu(void (*func)(void *), void *data)
339 {
340 struct pcpu *pcpu;
341
342 /* Use the current cpu if it is online. */
343 pcpu = pcpu_find_address(cpu_online_mask, stap());
344 if (!pcpu)
345 /* Use the first online cpu. */
346 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
347 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
348 }
349
350 /*
351 * Call function on the ipl CPU.
352 */
353 void smp_call_ipl_cpu(void (*func)(void *), void *data)
354 {
355 pcpu_delegate(&pcpu_devices[0], func, data,
356 pcpu_devices->lowcore->panic_stack -
357 PANIC_FRAME_OFFSET + PAGE_SIZE);
358 }
359
360 int smp_find_processor_id(u16 address)
361 {
362 int cpu;
363
364 for_each_present_cpu(cpu)
365 if (pcpu_devices[cpu].address == address)
366 return cpu;
367 return -1;
368 }
369
370 int smp_vcpu_scheduled(int cpu)
371 {
372 return pcpu_running(pcpu_devices + cpu);
373 }
374
375 void smp_yield_cpu(int cpu)
376 {
377 if (MACHINE_HAS_DIAG9C)
378 asm volatile("diag %0,0,0x9c"
379 : : "d" (pcpu_devices[cpu].address));
380 else if (MACHINE_HAS_DIAG44)
381 asm volatile("diag 0,0,0x44");
382 }
383
384 /*
385 * Send cpus emergency shutdown signal. This gives the cpus the
386 * opportunity to complete outstanding interrupts.
387 */
388 static void smp_emergency_stop(cpumask_t *cpumask)
389 {
390 u64 end;
391 int cpu;
392
393 end = get_tod_clock() + (1000000UL << 12);
394 for_each_cpu(cpu, cpumask) {
395 struct pcpu *pcpu = pcpu_devices + cpu;
396 set_bit(ec_stop_cpu, &pcpu->ec_mask);
397 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
398 0, NULL) == SIGP_CC_BUSY &&
399 get_tod_clock() < end)
400 cpu_relax();
401 }
402 while (get_tod_clock() < end) {
403 for_each_cpu(cpu, cpumask)
404 if (pcpu_stopped(pcpu_devices + cpu))
405 cpumask_clear_cpu(cpu, cpumask);
406 if (cpumask_empty(cpumask))
407 break;
408 cpu_relax();
409 }
410 }
411
412 /*
413 * Stop all cpus but the current one.
414 */
415 void smp_send_stop(void)
416 {
417 cpumask_t cpumask;
418 int cpu;
419
420 /* Disable all interrupts/machine checks */
421 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
422 trace_hardirqs_off();
423
424 debug_set_critical();
425 cpumask_copy(&cpumask, cpu_online_mask);
426 cpumask_clear_cpu(smp_processor_id(), &cpumask);
427
428 if (oops_in_progress)
429 smp_emergency_stop(&cpumask);
430
431 /* stop all processors */
432 for_each_cpu(cpu, &cpumask) {
433 struct pcpu *pcpu = pcpu_devices + cpu;
434 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
435 while (!pcpu_stopped(pcpu))
436 cpu_relax();
437 }
438 }
439
440 /*
441 * This is the main routine where commands issued by other
442 * cpus are handled.
443 */
444 static void smp_handle_ext_call(void)
445 {
446 unsigned long bits;
447
448 /* handle bit signal external calls */
449 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
450 if (test_bit(ec_stop_cpu, &bits))
451 smp_stop_cpu();
452 if (test_bit(ec_schedule, &bits))
453 scheduler_ipi();
454 if (test_bit(ec_call_function_single, &bits))
455 generic_smp_call_function_single_interrupt();
456 }
457
458 static void do_ext_call_interrupt(struct ext_code ext_code,
459 unsigned int param32, unsigned long param64)
460 {
461 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
462 smp_handle_ext_call();
463 }
464
465 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
466 {
467 int cpu;
468
469 for_each_cpu(cpu, mask)
470 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
471 }
472
473 void arch_send_call_function_single_ipi(int cpu)
474 {
475 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
476 }
477
478 /*
479 * this function sends a 'reschedule' IPI to another CPU.
480 * it goes straight through and wastes no time serializing
481 * anything. Worst case is that we lose a reschedule ...
482 */
483 void smp_send_reschedule(int cpu)
484 {
485 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
486 }
487
488 /*
489 * parameter area for the set/clear control bit callbacks
490 */
491 struct ec_creg_mask_parms {
492 unsigned long orval;
493 unsigned long andval;
494 int cr;
495 };
496
497 /*
498 * callback for setting/clearing control bits
499 */
500 static void smp_ctl_bit_callback(void *info)
501 {
502 struct ec_creg_mask_parms *pp = info;
503 unsigned long cregs[16];
504
505 __ctl_store(cregs, 0, 15);
506 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
507 __ctl_load(cregs, 0, 15);
508 }
509
510 /*
511 * Set a bit in a control register of all cpus
512 */
513 void smp_ctl_set_bit(int cr, int bit)
514 {
515 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
516
517 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
518 }
519 EXPORT_SYMBOL(smp_ctl_set_bit);
520
521 /*
522 * Clear a bit in a control register of all cpus
523 */
524 void smp_ctl_clear_bit(int cr, int bit)
525 {
526 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
527
528 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
529 }
530 EXPORT_SYMBOL(smp_ctl_clear_bit);
531
532 #ifdef CONFIG_CRASH_DUMP
533
534 static inline void __smp_store_cpu_state(int cpu, u16 address, int is_boot_cpu)
535 {
536 void *lc = pcpu_devices[0].lowcore;
537 struct save_area_ext *sa_ext;
538 unsigned long vx_sa;
539
540 sa_ext = dump_save_area_create(cpu);
541 if (!sa_ext)
542 panic("could not allocate memory for save area\n");
543 if (is_boot_cpu) {
544 /* Copy the registers of the boot CPU. */
545 copy_oldmem_page(1, (void *) &sa_ext->sa, sizeof(sa_ext->sa),
546 SAVE_AREA_BASE - PAGE_SIZE, 0);
547 if (MACHINE_HAS_VX)
548 save_vx_regs_safe(sa_ext->vx_regs);
549 return;
550 }
551 /* Get the registers of a non-boot cpu. */
552 __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
553 memcpy_real(&sa_ext->sa, lc + SAVE_AREA_BASE, sizeof(sa_ext->sa));
554 if (!MACHINE_HAS_VX)
555 return;
556 /* Get the VX registers */
557 vx_sa = __get_free_page(GFP_KERNEL);
558 if (!vx_sa)
559 panic("could not allocate memory for VX save area\n");
560 __pcpu_sigp_relax(address, SIGP_STORE_ADDITIONAL_STATUS, vx_sa, NULL);
561 memcpy(sa_ext->vx_regs, (void *) vx_sa, sizeof(sa_ext->vx_regs));
562 free_page(vx_sa);
563 }
564
565 /*
566 * Collect CPU state of the previous, crashed system.
567 * There are four cases:
568 * 1) standard zfcp dump
569 * condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
570 * The state for all CPUs except the boot CPU needs to be collected
571 * with sigp stop-and-store-status. The boot CPU state is located in
572 * the absolute lowcore of the memory stored in the HSA. The zcore code
573 * will allocate the save area and copy the boot CPU state from the HSA.
574 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
575 * condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
576 * The state for all CPUs except the boot CPU needs to be collected
577 * with sigp stop-and-store-status. The firmware or the boot-loader
578 * stored the registers of the boot CPU in the absolute lowcore in the
579 * memory of the old system.
580 * 3) kdump and the old kernel did not store the CPU state,
581 * or stand-alone kdump for DASD
582 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
583 * The state for all CPUs except the boot CPU needs to be collected
584 * with sigp stop-and-store-status. The kexec code or the boot-loader
585 * stored the registers of the boot CPU in the memory of the old system.
586 * 4) kdump and the old kernel stored the CPU state
587 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
588 * The state of all CPUs is stored in ELF sections in the memory of the
589 * old system. The ELF sections are picked up by the crash_dump code
590 * via elfcorehdr_addr.
591 */
592 static void __init smp_store_cpu_states(struct sclp_cpu_info *info)
593 {
594 unsigned int cpu, address, i, j;
595 int is_boot_cpu;
596
597 if (is_kdump_kernel())
598 /* Previous system stored the CPU states. Nothing to do. */
599 return;
600 if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
601 /* No previous system present, normal boot. */
602 return;
603 /* Set multi-threading state to the previous system. */
604 pcpu_set_smt(sclp.mtid_prev);
605 /* Collect CPU states. */
606 cpu = 0;
607 for (i = 0; i < info->configured; i++) {
608 /* Skip CPUs with different CPU type. */
609 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
610 continue;
611 for (j = 0; j <= smp_cpu_mtid; j++, cpu++) {
612 address = (info->cpu[i].core_id << smp_cpu_mt_shift) + j;
613 is_boot_cpu = (address == pcpu_devices[0].address);
614 if (is_boot_cpu && !OLDMEM_BASE)
615 /* Skip boot CPU for standard zfcp dump. */
616 continue;
617 /* Get state for this CPu. */
618 __smp_store_cpu_state(cpu, address, is_boot_cpu);
619 }
620 }
621 }
622
623 int smp_store_status(int cpu)
624 {
625 unsigned long vx_sa;
626 struct pcpu *pcpu;
627
628 pcpu = pcpu_devices + cpu;
629 if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
630 0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
631 return -EIO;
632 if (!MACHINE_HAS_VX)
633 return 0;
634 vx_sa = __pa(pcpu->lowcore->vector_save_area_addr);
635 __pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
636 vx_sa, NULL);
637 return 0;
638 }
639
640 #endif /* CONFIG_CRASH_DUMP */
641
642 void smp_cpu_set_polarization(int cpu, int val)
643 {
644 pcpu_devices[cpu].polarization = val;
645 }
646
647 int smp_cpu_get_polarization(int cpu)
648 {
649 return pcpu_devices[cpu].polarization;
650 }
651
652 static struct sclp_cpu_info *smp_get_cpu_info(void)
653 {
654 static int use_sigp_detection;
655 struct sclp_cpu_info *info;
656 int address;
657
658 info = kzalloc(sizeof(*info), GFP_KERNEL);
659 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
660 use_sigp_detection = 1;
661 for (address = 0; address <= MAX_CPU_ADDRESS;
662 address += (1U << smp_cpu_mt_shift)) {
663 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
664 SIGP_CC_NOT_OPERATIONAL)
665 continue;
666 info->cpu[info->configured].core_id =
667 address >> smp_cpu_mt_shift;
668 info->configured++;
669 }
670 info->combined = info->configured;
671 }
672 return info;
673 }
674
675 static int smp_add_present_cpu(int cpu);
676
677 static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add)
678 {
679 struct pcpu *pcpu;
680 cpumask_t avail;
681 int cpu, nr, i, j;
682 u16 address;
683
684 nr = 0;
685 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
686 cpu = cpumask_first(&avail);
687 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
688 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
689 continue;
690 address = info->cpu[i].core_id << smp_cpu_mt_shift;
691 for (j = 0; j <= smp_cpu_mtid; j++) {
692 if (pcpu_find_address(cpu_present_mask, address + j))
693 continue;
694 pcpu = pcpu_devices + cpu;
695 pcpu->address = address + j;
696 pcpu->state =
697 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
698 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
699 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
700 set_cpu_present(cpu, true);
701 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
702 set_cpu_present(cpu, false);
703 else
704 nr++;
705 cpu = cpumask_next(cpu, &avail);
706 if (cpu >= nr_cpu_ids)
707 break;
708 }
709 }
710 return nr;
711 }
712
713 static void __init smp_detect_cpus(void)
714 {
715 unsigned int cpu, mtid, c_cpus, s_cpus;
716 struct sclp_cpu_info *info;
717 u16 address;
718
719 /* Get CPU information */
720 info = smp_get_cpu_info();
721 if (!info)
722 panic("smp_detect_cpus failed to allocate memory\n");
723
724 /* Find boot CPU type */
725 if (info->has_cpu_type) {
726 address = stap();
727 for (cpu = 0; cpu < info->combined; cpu++)
728 if (info->cpu[cpu].core_id == address) {
729 /* The boot cpu dictates the cpu type. */
730 boot_cpu_type = info->cpu[cpu].type;
731 break;
732 }
733 if (cpu >= info->combined)
734 panic("Could not find boot CPU type");
735 }
736
737 #ifdef CONFIG_CRASH_DUMP
738 /* Collect CPU state of previous system */
739 smp_store_cpu_states(info);
740 #endif
741
742 /* Set multi-threading state for the current system */
743 mtid = sclp_get_mtid(boot_cpu_type);
744 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
745 pcpu_set_smt(mtid);
746
747 /* Print number of CPUs */
748 c_cpus = s_cpus = 0;
749 for (cpu = 0; cpu < info->combined; cpu++) {
750 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
751 continue;
752 if (cpu < info->configured)
753 c_cpus += smp_cpu_mtid + 1;
754 else
755 s_cpus += smp_cpu_mtid + 1;
756 }
757 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
758
759 /* Add CPUs present at boot */
760 get_online_cpus();
761 __smp_rescan_cpus(info, 0);
762 put_online_cpus();
763 kfree(info);
764 }
765
766 /*
767 * Activate a secondary processor.
768 */
769 static void smp_start_secondary(void *cpuvoid)
770 {
771 S390_lowcore.last_update_clock = get_tod_clock();
772 S390_lowcore.restart_stack = (unsigned long) restart_stack;
773 S390_lowcore.restart_fn = (unsigned long) do_restart;
774 S390_lowcore.restart_data = 0;
775 S390_lowcore.restart_source = -1UL;
776 restore_access_regs(S390_lowcore.access_regs_save_area);
777 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
778 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
779 cpu_init();
780 preempt_disable();
781 init_cpu_timer();
782 vtime_init();
783 pfault_init();
784 notify_cpu_starting(smp_processor_id());
785 set_cpu_online(smp_processor_id(), true);
786 inc_irq_stat(CPU_RST);
787 local_irq_enable();
788 cpu_startup_entry(CPUHP_ONLINE);
789 }
790
791 /* Upping and downing of CPUs */
792 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
793 {
794 struct pcpu *pcpu;
795 int base, i, rc;
796
797 pcpu = pcpu_devices + cpu;
798 if (pcpu->state != CPU_STATE_CONFIGURED)
799 return -EIO;
800 base = cpu - (cpu % (smp_cpu_mtid + 1));
801 for (i = 0; i <= smp_cpu_mtid; i++) {
802 if (base + i < nr_cpu_ids)
803 if (cpu_online(base + i))
804 break;
805 }
806 /*
807 * If this is the first CPU of the core to get online
808 * do an initial CPU reset.
809 */
810 if (i > smp_cpu_mtid &&
811 pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
812 SIGP_CC_ORDER_CODE_ACCEPTED)
813 return -EIO;
814
815 rc = pcpu_alloc_lowcore(pcpu, cpu);
816 if (rc)
817 return rc;
818 pcpu_prepare_secondary(pcpu, cpu);
819 pcpu_attach_task(pcpu, tidle);
820 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
821 /* Wait until cpu puts itself in the online & active maps */
822 while (!cpu_online(cpu) || !cpu_active(cpu))
823 cpu_relax();
824 return 0;
825 }
826
827 static unsigned int setup_possible_cpus __initdata;
828
829 static int __init _setup_possible_cpus(char *s)
830 {
831 get_option(&s, &setup_possible_cpus);
832 return 0;
833 }
834 early_param("possible_cpus", _setup_possible_cpus);
835
836 #ifdef CONFIG_HOTPLUG_CPU
837
838 int __cpu_disable(void)
839 {
840 unsigned long cregs[16];
841
842 /* Handle possible pending IPIs */
843 smp_handle_ext_call();
844 set_cpu_online(smp_processor_id(), false);
845 /* Disable pseudo page faults on this cpu. */
846 pfault_fini();
847 /* Disable interrupt sources via control register. */
848 __ctl_store(cregs, 0, 15);
849 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
850 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
851 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
852 __ctl_load(cregs, 0, 15);
853 clear_cpu_flag(CIF_NOHZ_DELAY);
854 return 0;
855 }
856
857 void __cpu_die(unsigned int cpu)
858 {
859 struct pcpu *pcpu;
860
861 /* Wait until target cpu is down */
862 pcpu = pcpu_devices + cpu;
863 while (!pcpu_stopped(pcpu))
864 cpu_relax();
865 pcpu_free_lowcore(pcpu);
866 atomic_dec(&init_mm.context.attach_count);
867 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
868 if (MACHINE_HAS_TLB_LC)
869 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
870 }
871
872 void __noreturn cpu_die(void)
873 {
874 idle_task_exit();
875 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
876 for (;;) ;
877 }
878
879 #endif /* CONFIG_HOTPLUG_CPU */
880
881 void __init smp_fill_possible_mask(void)
882 {
883 unsigned int possible, sclp_max, cpu;
884
885 sclp_max = min(smp_max_threads, sclp_get_mtid_max() + 1);
886 sclp_max = sclp.max_cpu * sclp_max ?: nr_cpu_ids;
887 possible = setup_possible_cpus ?: nr_cpu_ids;
888 possible = min(possible, sclp_max);
889 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
890 set_cpu_possible(cpu, true);
891 }
892
893 void __init smp_prepare_cpus(unsigned int max_cpus)
894 {
895 /* request the 0x1201 emergency signal external interrupt */
896 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
897 panic("Couldn't request external interrupt 0x1201");
898 /* request the 0x1202 external call external interrupt */
899 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
900 panic("Couldn't request external interrupt 0x1202");
901 smp_detect_cpus();
902 }
903
904 void __init smp_prepare_boot_cpu(void)
905 {
906 struct pcpu *pcpu = pcpu_devices;
907
908 pcpu->state = CPU_STATE_CONFIGURED;
909 pcpu->address = stap();
910 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
911 S390_lowcore.percpu_offset = __per_cpu_offset[0];
912 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
913 set_cpu_present(0, true);
914 set_cpu_online(0, true);
915 }
916
917 void __init smp_cpus_done(unsigned int max_cpus)
918 {
919 }
920
921 void __init smp_setup_processor_id(void)
922 {
923 S390_lowcore.cpu_nr = 0;
924 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
925 }
926
927 /*
928 * the frequency of the profiling timer can be changed
929 * by writing a multiplier value into /proc/profile.
930 *
931 * usually you want to run this on all CPUs ;)
932 */
933 int setup_profiling_timer(unsigned int multiplier)
934 {
935 return 0;
936 }
937
938 #ifdef CONFIG_HOTPLUG_CPU
939 static ssize_t cpu_configure_show(struct device *dev,
940 struct device_attribute *attr, char *buf)
941 {
942 ssize_t count;
943
944 mutex_lock(&smp_cpu_state_mutex);
945 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
946 mutex_unlock(&smp_cpu_state_mutex);
947 return count;
948 }
949
950 static ssize_t cpu_configure_store(struct device *dev,
951 struct device_attribute *attr,
952 const char *buf, size_t count)
953 {
954 struct pcpu *pcpu;
955 int cpu, val, rc, i;
956 char delim;
957
958 if (sscanf(buf, "%d %c", &val, &delim) != 1)
959 return -EINVAL;
960 if (val != 0 && val != 1)
961 return -EINVAL;
962 get_online_cpus();
963 mutex_lock(&smp_cpu_state_mutex);
964 rc = -EBUSY;
965 /* disallow configuration changes of online cpus and cpu 0 */
966 cpu = dev->id;
967 cpu -= cpu % (smp_cpu_mtid + 1);
968 if (cpu == 0)
969 goto out;
970 for (i = 0; i <= smp_cpu_mtid; i++)
971 if (cpu_online(cpu + i))
972 goto out;
973 pcpu = pcpu_devices + cpu;
974 rc = 0;
975 switch (val) {
976 case 0:
977 if (pcpu->state != CPU_STATE_CONFIGURED)
978 break;
979 rc = sclp_cpu_deconfigure(pcpu->address >> smp_cpu_mt_shift);
980 if (rc)
981 break;
982 for (i = 0; i <= smp_cpu_mtid; i++) {
983 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
984 continue;
985 pcpu[i].state = CPU_STATE_STANDBY;
986 smp_cpu_set_polarization(cpu + i,
987 POLARIZATION_UNKNOWN);
988 }
989 topology_expect_change();
990 break;
991 case 1:
992 if (pcpu->state != CPU_STATE_STANDBY)
993 break;
994 rc = sclp_cpu_configure(pcpu->address >> smp_cpu_mt_shift);
995 if (rc)
996 break;
997 for (i = 0; i <= smp_cpu_mtid; i++) {
998 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
999 continue;
1000 pcpu[i].state = CPU_STATE_CONFIGURED;
1001 smp_cpu_set_polarization(cpu + i,
1002 POLARIZATION_UNKNOWN);
1003 }
1004 topology_expect_change();
1005 break;
1006 default:
1007 break;
1008 }
1009 out:
1010 mutex_unlock(&smp_cpu_state_mutex);
1011 put_online_cpus();
1012 return rc ? rc : count;
1013 }
1014 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1015 #endif /* CONFIG_HOTPLUG_CPU */
1016
1017 static ssize_t show_cpu_address(struct device *dev,
1018 struct device_attribute *attr, char *buf)
1019 {
1020 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1021 }
1022 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1023
1024 static struct attribute *cpu_common_attrs[] = {
1025 #ifdef CONFIG_HOTPLUG_CPU
1026 &dev_attr_configure.attr,
1027 #endif
1028 &dev_attr_address.attr,
1029 NULL,
1030 };
1031
1032 static struct attribute_group cpu_common_attr_group = {
1033 .attrs = cpu_common_attrs,
1034 };
1035
1036 static struct attribute *cpu_online_attrs[] = {
1037 &dev_attr_idle_count.attr,
1038 &dev_attr_idle_time_us.attr,
1039 NULL,
1040 };
1041
1042 static struct attribute_group cpu_online_attr_group = {
1043 .attrs = cpu_online_attrs,
1044 };
1045
1046 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1047 void *hcpu)
1048 {
1049 unsigned int cpu = (unsigned int)(long)hcpu;
1050 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1051 int err = 0;
1052
1053 switch (action & ~CPU_TASKS_FROZEN) {
1054 case CPU_ONLINE:
1055 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1056 break;
1057 case CPU_DEAD:
1058 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1059 break;
1060 }
1061 return notifier_from_errno(err);
1062 }
1063
1064 static int smp_add_present_cpu(int cpu)
1065 {
1066 struct device *s;
1067 struct cpu *c;
1068 int rc;
1069
1070 c = kzalloc(sizeof(*c), GFP_KERNEL);
1071 if (!c)
1072 return -ENOMEM;
1073 per_cpu(cpu_device, cpu) = c;
1074 s = &c->dev;
1075 c->hotpluggable = 1;
1076 rc = register_cpu(c, cpu);
1077 if (rc)
1078 goto out;
1079 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1080 if (rc)
1081 goto out_cpu;
1082 if (cpu_online(cpu)) {
1083 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1084 if (rc)
1085 goto out_online;
1086 }
1087 rc = topology_cpu_init(c);
1088 if (rc)
1089 goto out_topology;
1090 return 0;
1091
1092 out_topology:
1093 if (cpu_online(cpu))
1094 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1095 out_online:
1096 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1097 out_cpu:
1098 #ifdef CONFIG_HOTPLUG_CPU
1099 unregister_cpu(c);
1100 #endif
1101 out:
1102 return rc;
1103 }
1104
1105 #ifdef CONFIG_HOTPLUG_CPU
1106
1107 int __ref smp_rescan_cpus(void)
1108 {
1109 struct sclp_cpu_info *info;
1110 int nr;
1111
1112 info = smp_get_cpu_info();
1113 if (!info)
1114 return -ENOMEM;
1115 get_online_cpus();
1116 mutex_lock(&smp_cpu_state_mutex);
1117 nr = __smp_rescan_cpus(info, 1);
1118 mutex_unlock(&smp_cpu_state_mutex);
1119 put_online_cpus();
1120 kfree(info);
1121 if (nr)
1122 topology_schedule_update();
1123 return 0;
1124 }
1125
1126 static ssize_t __ref rescan_store(struct device *dev,
1127 struct device_attribute *attr,
1128 const char *buf,
1129 size_t count)
1130 {
1131 int rc;
1132
1133 rc = smp_rescan_cpus();
1134 return rc ? rc : count;
1135 }
1136 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1137 #endif /* CONFIG_HOTPLUG_CPU */
1138
1139 static int __init s390_smp_init(void)
1140 {
1141 int cpu, rc = 0;
1142
1143 #ifdef CONFIG_HOTPLUG_CPU
1144 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1145 if (rc)
1146 return rc;
1147 #endif
1148 cpu_notifier_register_begin();
1149 for_each_present_cpu(cpu) {
1150 rc = smp_add_present_cpu(cpu);
1151 if (rc)
1152 goto out;
1153 }
1154
1155 __hotcpu_notifier(smp_cpu_notify, 0);
1156
1157 out:
1158 cpu_notifier_register_done();
1159 return rc;
1160 }
1161 subsys_initcall(s390_smp_init);
This page took 0.068641 seconds and 5 git commands to generate.