Merge remote-tracking branch 'spi/topic/rspi' into spi-pdata
[deliverable/linux.git] / arch / s390 / kernel / smp.c
1 /*
2 * SMP related functions
3 *
4 * Copyright IBM Corp. 1999, 2012
5 * Author(s): Denis Joseph Barrow,
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
7 * Heiko Carstens <heiko.carstens@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include "entry.h"
49
50 enum {
51 ec_schedule = 0,
52 ec_call_function_single,
53 ec_stop_cpu,
54 };
55
56 enum {
57 CPU_STATE_STANDBY,
58 CPU_STATE_CONFIGURED,
59 };
60
61 struct pcpu {
62 struct cpu cpu;
63 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */
64 unsigned long async_stack; /* async stack for the cpu */
65 unsigned long panic_stack; /* panic stack for the cpu */
66 unsigned long ec_mask; /* bit mask for ec_xxx functions */
67 int state; /* physical cpu state */
68 int polarization; /* physical polarization */
69 u16 address; /* physical cpu address */
70 };
71
72 static u8 boot_cpu_type;
73 static u16 boot_cpu_address;
74 static struct pcpu pcpu_devices[NR_CPUS];
75
76 /*
77 * The smp_cpu_state_mutex must be held when changing the state or polarization
78 * member of a pcpu data structure within the pcpu_devices arreay.
79 */
80 DEFINE_MUTEX(smp_cpu_state_mutex);
81
82 /*
83 * Signal processor helper functions.
84 */
85 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
86 {
87 register unsigned int reg1 asm ("1") = parm;
88 int cc;
89
90 asm volatile(
91 " sigp %1,%2,0(%3)\n"
92 " ipm %0\n"
93 " srl %0,28\n"
94 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
95 if (status && cc == 1)
96 *status = reg1;
97 return cc;
98 }
99
100 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
101 {
102 int cc;
103
104 while (1) {
105 cc = __pcpu_sigp(addr, order, parm, NULL);
106 if (cc != SIGP_CC_BUSY)
107 return cc;
108 cpu_relax();
109 }
110 }
111
112 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
113 {
114 int cc, retry;
115
116 for (retry = 0; ; retry++) {
117 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
118 if (cc != SIGP_CC_BUSY)
119 break;
120 if (retry >= 3)
121 udelay(10);
122 }
123 return cc;
124 }
125
126 static inline int pcpu_stopped(struct pcpu *pcpu)
127 {
128 u32 uninitialized_var(status);
129
130 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
131 0, &status) != SIGP_CC_STATUS_STORED)
132 return 0;
133 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
134 }
135
136 static inline int pcpu_running(struct pcpu *pcpu)
137 {
138 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
139 0, NULL) != SIGP_CC_STATUS_STORED)
140 return 1;
141 /* Status stored condition code is equivalent to cpu not running. */
142 return 0;
143 }
144
145 /*
146 * Find struct pcpu by cpu address.
147 */
148 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
149 {
150 int cpu;
151
152 for_each_cpu(cpu, mask)
153 if (pcpu_devices[cpu].address == address)
154 return pcpu_devices + cpu;
155 return NULL;
156 }
157
158 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
159 {
160 int order;
161
162 set_bit(ec_bit, &pcpu->ec_mask);
163 order = pcpu_running(pcpu) ?
164 SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
165 pcpu_sigp_retry(pcpu, order, 0);
166 }
167
168 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
169 {
170 struct _lowcore *lc;
171
172 if (pcpu != &pcpu_devices[0]) {
173 pcpu->lowcore = (struct _lowcore *)
174 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
175 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
176 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
177 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
178 goto out;
179 }
180 lc = pcpu->lowcore;
181 memcpy(lc, &S390_lowcore, 512);
182 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
183 lc->async_stack = pcpu->async_stack + ASYNC_SIZE
184 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
185 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE
186 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
187 lc->cpu_nr = cpu;
188 #ifndef CONFIG_64BIT
189 if (MACHINE_HAS_IEEE) {
190 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
191 if (!lc->extended_save_area_addr)
192 goto out;
193 }
194 #else
195 if (vdso_alloc_per_cpu(lc))
196 goto out;
197 #endif
198 lowcore_ptr[cpu] = lc;
199 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
200 return 0;
201 out:
202 if (pcpu != &pcpu_devices[0]) {
203 free_page(pcpu->panic_stack);
204 free_pages(pcpu->async_stack, ASYNC_ORDER);
205 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
206 }
207 return -ENOMEM;
208 }
209
210 #ifdef CONFIG_HOTPLUG_CPU
211
212 static void pcpu_free_lowcore(struct pcpu *pcpu)
213 {
214 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
215 lowcore_ptr[pcpu - pcpu_devices] = NULL;
216 #ifndef CONFIG_64BIT
217 if (MACHINE_HAS_IEEE) {
218 struct _lowcore *lc = pcpu->lowcore;
219
220 free_page((unsigned long) lc->extended_save_area_addr);
221 lc->extended_save_area_addr = 0;
222 }
223 #else
224 vdso_free_per_cpu(pcpu->lowcore);
225 #endif
226 if (pcpu != &pcpu_devices[0]) {
227 free_page(pcpu->panic_stack);
228 free_pages(pcpu->async_stack, ASYNC_ORDER);
229 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
230 }
231 }
232
233 #endif /* CONFIG_HOTPLUG_CPU */
234
235 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
236 {
237 struct _lowcore *lc = pcpu->lowcore;
238
239 atomic_inc(&init_mm.context.attach_count);
240 lc->cpu_nr = cpu;
241 lc->percpu_offset = __per_cpu_offset[cpu];
242 lc->kernel_asce = S390_lowcore.kernel_asce;
243 lc->machine_flags = S390_lowcore.machine_flags;
244 lc->ftrace_func = S390_lowcore.ftrace_func;
245 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
246 __ctl_store(lc->cregs_save_area, 0, 15);
247 save_access_regs((unsigned int *) lc->access_regs_save_area);
248 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
249 MAX_FACILITY_BIT/8);
250 }
251
252 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
253 {
254 struct _lowcore *lc = pcpu->lowcore;
255 struct thread_info *ti = task_thread_info(tsk);
256
257 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
258 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
259 lc->thread_info = (unsigned long) task_thread_info(tsk);
260 lc->current_task = (unsigned long) tsk;
261 lc->user_timer = ti->user_timer;
262 lc->system_timer = ti->system_timer;
263 lc->steal_timer = 0;
264 }
265
266 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
267 {
268 struct _lowcore *lc = pcpu->lowcore;
269
270 lc->restart_stack = lc->kernel_stack;
271 lc->restart_fn = (unsigned long) func;
272 lc->restart_data = (unsigned long) data;
273 lc->restart_source = -1UL;
274 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
275 }
276
277 /*
278 * Call function via PSW restart on pcpu and stop the current cpu.
279 */
280 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
281 void *data, unsigned long stack)
282 {
283 struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
284 unsigned long source_cpu = stap();
285
286 __load_psw_mask(psw_kernel_bits);
287 if (pcpu->address == source_cpu)
288 func(data); /* should not return */
289 /* Stop target cpu (if func returns this stops the current cpu). */
290 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
291 /* Restart func on the target cpu and stop the current cpu. */
292 mem_assign_absolute(lc->restart_stack, stack);
293 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
294 mem_assign_absolute(lc->restart_data, (unsigned long) data);
295 mem_assign_absolute(lc->restart_source, source_cpu);
296 asm volatile(
297 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
298 " brc 2,0b # busy, try again\n"
299 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
300 " brc 2,1b # busy, try again\n"
301 : : "d" (pcpu->address), "d" (source_cpu),
302 "K" (SIGP_RESTART), "K" (SIGP_STOP)
303 : "0", "1", "cc");
304 for (;;) ;
305 }
306
307 /*
308 * Call function on an online CPU.
309 */
310 void smp_call_online_cpu(void (*func)(void *), void *data)
311 {
312 struct pcpu *pcpu;
313
314 /* Use the current cpu if it is online. */
315 pcpu = pcpu_find_address(cpu_online_mask, stap());
316 if (!pcpu)
317 /* Use the first online cpu. */
318 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
319 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
320 }
321
322 /*
323 * Call function on the ipl CPU.
324 */
325 void smp_call_ipl_cpu(void (*func)(void *), void *data)
326 {
327 pcpu_delegate(&pcpu_devices[0], func, data,
328 pcpu_devices->panic_stack + PAGE_SIZE);
329 }
330
331 int smp_find_processor_id(u16 address)
332 {
333 int cpu;
334
335 for_each_present_cpu(cpu)
336 if (pcpu_devices[cpu].address == address)
337 return cpu;
338 return -1;
339 }
340
341 int smp_vcpu_scheduled(int cpu)
342 {
343 return pcpu_running(pcpu_devices + cpu);
344 }
345
346 void smp_yield(void)
347 {
348 if (MACHINE_HAS_DIAG44)
349 asm volatile("diag 0,0,0x44");
350 }
351
352 void smp_yield_cpu(int cpu)
353 {
354 if (MACHINE_HAS_DIAG9C)
355 asm volatile("diag %0,0,0x9c"
356 : : "d" (pcpu_devices[cpu].address));
357 else if (MACHINE_HAS_DIAG44)
358 asm volatile("diag 0,0,0x44");
359 }
360
361 /*
362 * Send cpus emergency shutdown signal. This gives the cpus the
363 * opportunity to complete outstanding interrupts.
364 */
365 void smp_emergency_stop(cpumask_t *cpumask)
366 {
367 u64 end;
368 int cpu;
369
370 end = get_tod_clock() + (1000000UL << 12);
371 for_each_cpu(cpu, cpumask) {
372 struct pcpu *pcpu = pcpu_devices + cpu;
373 set_bit(ec_stop_cpu, &pcpu->ec_mask);
374 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
375 0, NULL) == SIGP_CC_BUSY &&
376 get_tod_clock() < end)
377 cpu_relax();
378 }
379 while (get_tod_clock() < end) {
380 for_each_cpu(cpu, cpumask)
381 if (pcpu_stopped(pcpu_devices + cpu))
382 cpumask_clear_cpu(cpu, cpumask);
383 if (cpumask_empty(cpumask))
384 break;
385 cpu_relax();
386 }
387 }
388
389 /*
390 * Stop all cpus but the current one.
391 */
392 void smp_send_stop(void)
393 {
394 cpumask_t cpumask;
395 int cpu;
396
397 /* Disable all interrupts/machine checks */
398 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
399 trace_hardirqs_off();
400
401 debug_set_critical();
402 cpumask_copy(&cpumask, cpu_online_mask);
403 cpumask_clear_cpu(smp_processor_id(), &cpumask);
404
405 if (oops_in_progress)
406 smp_emergency_stop(&cpumask);
407
408 /* stop all processors */
409 for_each_cpu(cpu, &cpumask) {
410 struct pcpu *pcpu = pcpu_devices + cpu;
411 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
412 while (!pcpu_stopped(pcpu))
413 cpu_relax();
414 }
415 }
416
417 /*
418 * Stop the current cpu.
419 */
420 void smp_stop_cpu(void)
421 {
422 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
423 for (;;) ;
424 }
425
426 /*
427 * This is the main routine where commands issued by other
428 * cpus are handled.
429 */
430 static void smp_handle_ext_call(void)
431 {
432 unsigned long bits;
433
434 /* handle bit signal external calls */
435 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
436 if (test_bit(ec_stop_cpu, &bits))
437 smp_stop_cpu();
438 if (test_bit(ec_schedule, &bits))
439 scheduler_ipi();
440 if (test_bit(ec_call_function_single, &bits))
441 generic_smp_call_function_single_interrupt();
442 }
443
444 static void do_ext_call_interrupt(struct ext_code ext_code,
445 unsigned int param32, unsigned long param64)
446 {
447 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
448 smp_handle_ext_call();
449 }
450
451 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
452 {
453 int cpu;
454
455 for_each_cpu(cpu, mask)
456 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
457 }
458
459 void arch_send_call_function_single_ipi(int cpu)
460 {
461 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
462 }
463
464 #ifndef CONFIG_64BIT
465 /*
466 * this function sends a 'purge tlb' signal to another CPU.
467 */
468 static void smp_ptlb_callback(void *info)
469 {
470 __tlb_flush_local();
471 }
472
473 void smp_ptlb_all(void)
474 {
475 on_each_cpu(smp_ptlb_callback, NULL, 1);
476 }
477 EXPORT_SYMBOL(smp_ptlb_all);
478 #endif /* ! CONFIG_64BIT */
479
480 /*
481 * this function sends a 'reschedule' IPI to another CPU.
482 * it goes straight through and wastes no time serializing
483 * anything. Worst case is that we lose a reschedule ...
484 */
485 void smp_send_reschedule(int cpu)
486 {
487 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
488 }
489
490 /*
491 * parameter area for the set/clear control bit callbacks
492 */
493 struct ec_creg_mask_parms {
494 unsigned long orval;
495 unsigned long andval;
496 int cr;
497 };
498
499 /*
500 * callback for setting/clearing control bits
501 */
502 static void smp_ctl_bit_callback(void *info)
503 {
504 struct ec_creg_mask_parms *pp = info;
505 unsigned long cregs[16];
506
507 __ctl_store(cregs, 0, 15);
508 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
509 __ctl_load(cregs, 0, 15);
510 }
511
512 /*
513 * Set a bit in a control register of all cpus
514 */
515 void smp_ctl_set_bit(int cr, int bit)
516 {
517 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
518
519 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
520 }
521 EXPORT_SYMBOL(smp_ctl_set_bit);
522
523 /*
524 * Clear a bit in a control register of all cpus
525 */
526 void smp_ctl_clear_bit(int cr, int bit)
527 {
528 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
529
530 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
531 }
532 EXPORT_SYMBOL(smp_ctl_clear_bit);
533
534 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
535
536 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
537 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
538
539 static void __init smp_get_save_area(int cpu, u16 address)
540 {
541 void *lc = pcpu_devices[0].lowcore;
542 struct save_area *save_area;
543
544 if (is_kdump_kernel())
545 return;
546 if (!OLDMEM_BASE && (address == boot_cpu_address ||
547 ipl_info.type != IPL_TYPE_FCP_DUMP))
548 return;
549 if (cpu >= NR_CPUS) {
550 pr_warning("CPU %i exceeds the maximum %i and is excluded "
551 "from the dump\n", cpu, NR_CPUS - 1);
552 return;
553 }
554 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
555 if (!save_area)
556 panic("could not allocate memory for save area\n");
557 zfcpdump_save_areas[cpu] = save_area;
558 #ifdef CONFIG_CRASH_DUMP
559 if (address == boot_cpu_address) {
560 /* Copy the registers of the boot cpu. */
561 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
562 SAVE_AREA_BASE - PAGE_SIZE, 0);
563 return;
564 }
565 #endif
566 /* Get the registers of a non-boot cpu. */
567 __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
568 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
569 }
570
571 int smp_store_status(int cpu)
572 {
573 struct pcpu *pcpu;
574
575 pcpu = pcpu_devices + cpu;
576 if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
577 0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
578 return -EIO;
579 return 0;
580 }
581
582 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
583
584 static inline void smp_get_save_area(int cpu, u16 address) { }
585
586 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
587
588 void smp_cpu_set_polarization(int cpu, int val)
589 {
590 pcpu_devices[cpu].polarization = val;
591 }
592
593 int smp_cpu_get_polarization(int cpu)
594 {
595 return pcpu_devices[cpu].polarization;
596 }
597
598 static struct sclp_cpu_info *smp_get_cpu_info(void)
599 {
600 static int use_sigp_detection;
601 struct sclp_cpu_info *info;
602 int address;
603
604 info = kzalloc(sizeof(*info), GFP_KERNEL);
605 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
606 use_sigp_detection = 1;
607 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
608 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
609 SIGP_CC_NOT_OPERATIONAL)
610 continue;
611 info->cpu[info->configured].address = address;
612 info->configured++;
613 }
614 info->combined = info->configured;
615 }
616 return info;
617 }
618
619 static int smp_add_present_cpu(int cpu);
620
621 static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add)
622 {
623 struct pcpu *pcpu;
624 cpumask_t avail;
625 int cpu, nr, i;
626
627 nr = 0;
628 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
629 cpu = cpumask_first(&avail);
630 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
631 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
632 continue;
633 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
634 continue;
635 pcpu = pcpu_devices + cpu;
636 pcpu->address = info->cpu[i].address;
637 pcpu->state = (i >= info->configured) ?
638 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
639 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
640 set_cpu_present(cpu, true);
641 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
642 set_cpu_present(cpu, false);
643 else
644 nr++;
645 cpu = cpumask_next(cpu, &avail);
646 }
647 return nr;
648 }
649
650 static void __init smp_detect_cpus(void)
651 {
652 unsigned int cpu, c_cpus, s_cpus;
653 struct sclp_cpu_info *info;
654
655 info = smp_get_cpu_info();
656 if (!info)
657 panic("smp_detect_cpus failed to allocate memory\n");
658 if (info->has_cpu_type) {
659 for (cpu = 0; cpu < info->combined; cpu++) {
660 if (info->cpu[cpu].address != boot_cpu_address)
661 continue;
662 /* The boot cpu dictates the cpu type. */
663 boot_cpu_type = info->cpu[cpu].type;
664 break;
665 }
666 }
667 c_cpus = s_cpus = 0;
668 for (cpu = 0; cpu < info->combined; cpu++) {
669 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
670 continue;
671 if (cpu < info->configured) {
672 smp_get_save_area(c_cpus, info->cpu[cpu].address);
673 c_cpus++;
674 } else
675 s_cpus++;
676 }
677 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
678 get_online_cpus();
679 __smp_rescan_cpus(info, 0);
680 put_online_cpus();
681 kfree(info);
682 }
683
684 /*
685 * Activate a secondary processor.
686 */
687 static void smp_start_secondary(void *cpuvoid)
688 {
689 S390_lowcore.last_update_clock = get_tod_clock();
690 S390_lowcore.restart_stack = (unsigned long) restart_stack;
691 S390_lowcore.restart_fn = (unsigned long) do_restart;
692 S390_lowcore.restart_data = 0;
693 S390_lowcore.restart_source = -1UL;
694 restore_access_regs(S390_lowcore.access_regs_save_area);
695 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
696 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
697 cpu_init();
698 preempt_disable();
699 init_cpu_timer();
700 init_cpu_vtimer();
701 pfault_init();
702 notify_cpu_starting(smp_processor_id());
703 set_cpu_online(smp_processor_id(), true);
704 inc_irq_stat(CPU_RST);
705 local_irq_enable();
706 cpu_startup_entry(CPUHP_ONLINE);
707 }
708
709 /* Upping and downing of CPUs */
710 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
711 {
712 struct pcpu *pcpu;
713 int rc;
714
715 pcpu = pcpu_devices + cpu;
716 if (pcpu->state != CPU_STATE_CONFIGURED)
717 return -EIO;
718 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
719 SIGP_CC_ORDER_CODE_ACCEPTED)
720 return -EIO;
721
722 rc = pcpu_alloc_lowcore(pcpu, cpu);
723 if (rc)
724 return rc;
725 pcpu_prepare_secondary(pcpu, cpu);
726 pcpu_attach_task(pcpu, tidle);
727 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
728 while (!cpu_online(cpu))
729 cpu_relax();
730 return 0;
731 }
732
733 static int __init setup_possible_cpus(char *s)
734 {
735 int max, cpu;
736
737 if (kstrtoint(s, 0, &max) < 0)
738 return 0;
739 init_cpu_possible(cpumask_of(0));
740 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
741 set_cpu_possible(cpu, true);
742 return 0;
743 }
744 early_param("possible_cpus", setup_possible_cpus);
745
746 #ifdef CONFIG_HOTPLUG_CPU
747
748 int __cpu_disable(void)
749 {
750 unsigned long cregs[16];
751
752 /* Handle possible pending IPIs */
753 smp_handle_ext_call();
754 set_cpu_online(smp_processor_id(), false);
755 /* Disable pseudo page faults on this cpu. */
756 pfault_fini();
757 /* Disable interrupt sources via control register. */
758 __ctl_store(cregs, 0, 15);
759 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
760 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
761 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
762 __ctl_load(cregs, 0, 15);
763 return 0;
764 }
765
766 void __cpu_die(unsigned int cpu)
767 {
768 struct pcpu *pcpu;
769
770 /* Wait until target cpu is down */
771 pcpu = pcpu_devices + cpu;
772 while (!pcpu_stopped(pcpu))
773 cpu_relax();
774 pcpu_free_lowcore(pcpu);
775 atomic_dec(&init_mm.context.attach_count);
776 }
777
778 void __noreturn cpu_die(void)
779 {
780 idle_task_exit();
781 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
782 for (;;) ;
783 }
784
785 #endif /* CONFIG_HOTPLUG_CPU */
786
787 void __init smp_prepare_cpus(unsigned int max_cpus)
788 {
789 /* request the 0x1201 emergency signal external interrupt */
790 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
791 panic("Couldn't request external interrupt 0x1201");
792 /* request the 0x1202 external call external interrupt */
793 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
794 panic("Couldn't request external interrupt 0x1202");
795 smp_detect_cpus();
796 }
797
798 void __init smp_prepare_boot_cpu(void)
799 {
800 struct pcpu *pcpu = pcpu_devices;
801
802 boot_cpu_address = stap();
803 pcpu->state = CPU_STATE_CONFIGURED;
804 pcpu->address = boot_cpu_address;
805 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
806 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE
807 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
808 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE
809 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
810 S390_lowcore.percpu_offset = __per_cpu_offset[0];
811 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
812 set_cpu_present(0, true);
813 set_cpu_online(0, true);
814 }
815
816 void __init smp_cpus_done(unsigned int max_cpus)
817 {
818 }
819
820 void __init smp_setup_processor_id(void)
821 {
822 S390_lowcore.cpu_nr = 0;
823 }
824
825 /*
826 * the frequency of the profiling timer can be changed
827 * by writing a multiplier value into /proc/profile.
828 *
829 * usually you want to run this on all CPUs ;)
830 */
831 int setup_profiling_timer(unsigned int multiplier)
832 {
833 return 0;
834 }
835
836 #ifdef CONFIG_HOTPLUG_CPU
837 static ssize_t cpu_configure_show(struct device *dev,
838 struct device_attribute *attr, char *buf)
839 {
840 ssize_t count;
841
842 mutex_lock(&smp_cpu_state_mutex);
843 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
844 mutex_unlock(&smp_cpu_state_mutex);
845 return count;
846 }
847
848 static ssize_t cpu_configure_store(struct device *dev,
849 struct device_attribute *attr,
850 const char *buf, size_t count)
851 {
852 struct pcpu *pcpu;
853 int cpu, val, rc;
854 char delim;
855
856 if (sscanf(buf, "%d %c", &val, &delim) != 1)
857 return -EINVAL;
858 if (val != 0 && val != 1)
859 return -EINVAL;
860 get_online_cpus();
861 mutex_lock(&smp_cpu_state_mutex);
862 rc = -EBUSY;
863 /* disallow configuration changes of online cpus and cpu 0 */
864 cpu = dev->id;
865 if (cpu_online(cpu) || cpu == 0)
866 goto out;
867 pcpu = pcpu_devices + cpu;
868 rc = 0;
869 switch (val) {
870 case 0:
871 if (pcpu->state != CPU_STATE_CONFIGURED)
872 break;
873 rc = sclp_cpu_deconfigure(pcpu->address);
874 if (rc)
875 break;
876 pcpu->state = CPU_STATE_STANDBY;
877 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
878 topology_expect_change();
879 break;
880 case 1:
881 if (pcpu->state != CPU_STATE_STANDBY)
882 break;
883 rc = sclp_cpu_configure(pcpu->address);
884 if (rc)
885 break;
886 pcpu->state = CPU_STATE_CONFIGURED;
887 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
888 topology_expect_change();
889 break;
890 default:
891 break;
892 }
893 out:
894 mutex_unlock(&smp_cpu_state_mutex);
895 put_online_cpus();
896 return rc ? rc : count;
897 }
898 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
899 #endif /* CONFIG_HOTPLUG_CPU */
900
901 static ssize_t show_cpu_address(struct device *dev,
902 struct device_attribute *attr, char *buf)
903 {
904 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
905 }
906 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
907
908 static struct attribute *cpu_common_attrs[] = {
909 #ifdef CONFIG_HOTPLUG_CPU
910 &dev_attr_configure.attr,
911 #endif
912 &dev_attr_address.attr,
913 NULL,
914 };
915
916 static struct attribute_group cpu_common_attr_group = {
917 .attrs = cpu_common_attrs,
918 };
919
920 static ssize_t show_idle_count(struct device *dev,
921 struct device_attribute *attr, char *buf)
922 {
923 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
924 unsigned long long idle_count;
925 unsigned int sequence;
926
927 do {
928 sequence = ACCESS_ONCE(idle->sequence);
929 idle_count = ACCESS_ONCE(idle->idle_count);
930 if (ACCESS_ONCE(idle->clock_idle_enter))
931 idle_count++;
932 } while ((sequence & 1) || (idle->sequence != sequence));
933 return sprintf(buf, "%llu\n", idle_count);
934 }
935 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
936
937 static ssize_t show_idle_time(struct device *dev,
938 struct device_attribute *attr, char *buf)
939 {
940 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
941 unsigned long long now, idle_time, idle_enter, idle_exit;
942 unsigned int sequence;
943
944 do {
945 now = get_tod_clock();
946 sequence = ACCESS_ONCE(idle->sequence);
947 idle_time = ACCESS_ONCE(idle->idle_time);
948 idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
949 idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
950 } while ((sequence & 1) || (idle->sequence != sequence));
951 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
952 return sprintf(buf, "%llu\n", idle_time >> 12);
953 }
954 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
955
956 static struct attribute *cpu_online_attrs[] = {
957 &dev_attr_idle_count.attr,
958 &dev_attr_idle_time_us.attr,
959 NULL,
960 };
961
962 static struct attribute_group cpu_online_attr_group = {
963 .attrs = cpu_online_attrs,
964 };
965
966 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
967 void *hcpu)
968 {
969 unsigned int cpu = (unsigned int)(long)hcpu;
970 struct cpu *c = &pcpu_devices[cpu].cpu;
971 struct device *s = &c->dev;
972 int err = 0;
973
974 switch (action & ~CPU_TASKS_FROZEN) {
975 case CPU_ONLINE:
976 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
977 break;
978 case CPU_DEAD:
979 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
980 break;
981 }
982 return notifier_from_errno(err);
983 }
984
985 static int smp_add_present_cpu(int cpu)
986 {
987 struct cpu *c = &pcpu_devices[cpu].cpu;
988 struct device *s = &c->dev;
989 int rc;
990
991 c->hotpluggable = 1;
992 rc = register_cpu(c, cpu);
993 if (rc)
994 goto out;
995 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
996 if (rc)
997 goto out_cpu;
998 if (cpu_online(cpu)) {
999 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1000 if (rc)
1001 goto out_online;
1002 }
1003 rc = topology_cpu_init(c);
1004 if (rc)
1005 goto out_topology;
1006 return 0;
1007
1008 out_topology:
1009 if (cpu_online(cpu))
1010 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1011 out_online:
1012 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1013 out_cpu:
1014 #ifdef CONFIG_HOTPLUG_CPU
1015 unregister_cpu(c);
1016 #endif
1017 out:
1018 return rc;
1019 }
1020
1021 #ifdef CONFIG_HOTPLUG_CPU
1022
1023 int __ref smp_rescan_cpus(void)
1024 {
1025 struct sclp_cpu_info *info;
1026 int nr;
1027
1028 info = smp_get_cpu_info();
1029 if (!info)
1030 return -ENOMEM;
1031 get_online_cpus();
1032 mutex_lock(&smp_cpu_state_mutex);
1033 nr = __smp_rescan_cpus(info, 1);
1034 mutex_unlock(&smp_cpu_state_mutex);
1035 put_online_cpus();
1036 kfree(info);
1037 if (nr)
1038 topology_schedule_update();
1039 return 0;
1040 }
1041
1042 static ssize_t __ref rescan_store(struct device *dev,
1043 struct device_attribute *attr,
1044 const char *buf,
1045 size_t count)
1046 {
1047 int rc;
1048
1049 rc = smp_rescan_cpus();
1050 return rc ? rc : count;
1051 }
1052 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1053 #endif /* CONFIG_HOTPLUG_CPU */
1054
1055 static int __init s390_smp_init(void)
1056 {
1057 int cpu, rc;
1058
1059 hotcpu_notifier(smp_cpu_notify, 0);
1060 #ifdef CONFIG_HOTPLUG_CPU
1061 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1062 if (rc)
1063 return rc;
1064 #endif
1065 for_each_present_cpu(cpu) {
1066 rc = smp_add_present_cpu(cpu);
1067 if (rc)
1068 return rc;
1069 }
1070 return 0;
1071 }
1072 subsys_initcall(s390_smp_init);
This page took 0.054298 seconds and 5 git commands to generate.