[S390] kdump backend code
[deliverable/linux.git] / arch / s390 / kernel / smp.c
1 /*
2 * arch/s390/kernel/smp.c
3 *
4 * Copyright IBM Corp. 1999, 2009
5 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 * Heiko Carstens (heiko.carstens@de.ibm.com)
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * We work with logical cpu numbering everywhere we can. The only
14 * functions using the real cpu address (got from STAP) are the sigp
15 * functions. For all other functions we use the identity mapping.
16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17 * used e.g. to find the idle task belonging to a logical cpu. Every array
18 * in the kernel is sorted by the logical cpu number and not by the physical
19 * one which is causing all the confusion with __cpu_logical_map and
20 * cpu_number_map in other architectures.
21 */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/workqueue.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/spinlock.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/delay.h>
34 #include <linux/cache.h>
35 #include <linux/interrupt.h>
36 #include <linux/irqflags.h>
37 #include <linux/cpu.h>
38 #include <linux/timex.h>
39 #include <linux/bootmem.h>
40 #include <linux/slab.h>
41 #include <linux/crash_dump.h>
42 #include <asm/asm-offsets.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/sigp.h>
46 #include <asm/pgalloc.h>
47 #include <asm/irq.h>
48 #include <asm/cpcmd.h>
49 #include <asm/tlbflush.h>
50 #include <asm/timer.h>
51 #include <asm/lowcore.h>
52 #include <asm/sclp.h>
53 #include <asm/cputime.h>
54 #include <asm/vdso.h>
55 #include <asm/cpu.h>
56 #include "entry.h"
57
58 /* logical cpu to cpu address */
59 unsigned short __cpu_logical_map[NR_CPUS];
60
61 static struct task_struct *current_set[NR_CPUS];
62
63 static u8 smp_cpu_type;
64 static int smp_use_sigp_detection;
65
66 enum s390_cpu_state {
67 CPU_STATE_STANDBY,
68 CPU_STATE_CONFIGURED,
69 };
70
71 DEFINE_MUTEX(smp_cpu_state_mutex);
72 int smp_cpu_polarization[NR_CPUS];
73 static int smp_cpu_state[NR_CPUS];
74 static int cpu_management;
75
76 static DEFINE_PER_CPU(struct cpu, cpu_devices);
77
78 static void smp_ext_bitcall(int, int);
79
80 static int raw_cpu_stopped(int cpu)
81 {
82 u32 status;
83
84 switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
85 case sigp_status_stored:
86 /* Check for stopped and check stop state */
87 if (status & 0x50)
88 return 1;
89 break;
90 default:
91 break;
92 }
93 return 0;
94 }
95
96 static inline int cpu_stopped(int cpu)
97 {
98 return raw_cpu_stopped(cpu_logical_map(cpu));
99 }
100
101 /*
102 * Ensure that PSW restart is done on an online CPU
103 */
104 void smp_restart_with_online_cpu(void)
105 {
106 int cpu;
107
108 for_each_online_cpu(cpu) {
109 if (stap() == __cpu_logical_map[cpu]) {
110 /* We are online: Enable DAT again and return */
111 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
112 return;
113 }
114 }
115 /* We are not online: Do PSW restart on an online CPU */
116 while (sigp(cpu, sigp_restart) == sigp_busy)
117 cpu_relax();
118 /* And stop ourself */
119 while (raw_sigp(stap(), sigp_stop) == sigp_busy)
120 cpu_relax();
121 for (;;);
122 }
123
124 void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
125 {
126 struct _lowcore *lc, *current_lc;
127 struct stack_frame *sf;
128 struct pt_regs *regs;
129 unsigned long sp;
130
131 if (smp_processor_id() == 0)
132 func(data);
133 __load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
134 /* Disable lowcore protection */
135 __ctl_clear_bit(0, 28);
136 current_lc = lowcore_ptr[smp_processor_id()];
137 lc = lowcore_ptr[0];
138 if (!lc)
139 lc = current_lc;
140 lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
141 lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
142 if (!cpu_online(0))
143 smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
144 while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
145 cpu_relax();
146 sp = lc->panic_stack;
147 sp -= sizeof(struct pt_regs);
148 regs = (struct pt_regs *) sp;
149 memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
150 regs->psw = lc->psw_save_area;
151 sp -= STACK_FRAME_OVERHEAD;
152 sf = (struct stack_frame *) sp;
153 sf->back_chain = regs->gprs[15];
154 smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
155 }
156
157 void smp_send_stop(void)
158 {
159 int cpu, rc;
160
161 /* Disable all interrupts/machine checks */
162 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
163 trace_hardirqs_off();
164
165 /* stop all processors */
166 for_each_online_cpu(cpu) {
167 if (cpu == smp_processor_id())
168 continue;
169 do {
170 rc = sigp(cpu, sigp_stop);
171 } while (rc == sigp_busy);
172
173 while (!cpu_stopped(cpu))
174 cpu_relax();
175 }
176 }
177
178 /*
179 * This is the main routine where commands issued by other
180 * cpus are handled.
181 */
182
183 static void do_ext_call_interrupt(unsigned int ext_int_code,
184 unsigned int param32, unsigned long param64)
185 {
186 unsigned long bits;
187
188 kstat_cpu(smp_processor_id()).irqs[EXTINT_IPI]++;
189 /*
190 * handle bit signal external calls
191 */
192 bits = xchg(&S390_lowcore.ext_call_fast, 0);
193
194 if (test_bit(ec_schedule, &bits))
195 scheduler_ipi();
196
197 if (test_bit(ec_call_function, &bits))
198 generic_smp_call_function_interrupt();
199
200 if (test_bit(ec_call_function_single, &bits))
201 generic_smp_call_function_single_interrupt();
202 }
203
204 /*
205 * Send an external call sigp to another cpu and return without waiting
206 * for its completion.
207 */
208 static void smp_ext_bitcall(int cpu, int sig)
209 {
210 /*
211 * Set signaling bit in lowcore of target cpu and kick it
212 */
213 set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
214 while (sigp(cpu, sigp_emergency_signal) == sigp_busy)
215 udelay(10);
216 }
217
218 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
219 {
220 int cpu;
221
222 for_each_cpu(cpu, mask)
223 smp_ext_bitcall(cpu, ec_call_function);
224 }
225
226 void arch_send_call_function_single_ipi(int cpu)
227 {
228 smp_ext_bitcall(cpu, ec_call_function_single);
229 }
230
231 #ifndef CONFIG_64BIT
232 /*
233 * this function sends a 'purge tlb' signal to another CPU.
234 */
235 static void smp_ptlb_callback(void *info)
236 {
237 __tlb_flush_local();
238 }
239
240 void smp_ptlb_all(void)
241 {
242 on_each_cpu(smp_ptlb_callback, NULL, 1);
243 }
244 EXPORT_SYMBOL(smp_ptlb_all);
245 #endif /* ! CONFIG_64BIT */
246
247 /*
248 * this function sends a 'reschedule' IPI to another CPU.
249 * it goes straight through and wastes no time serializing
250 * anything. Worst case is that we lose a reschedule ...
251 */
252 void smp_send_reschedule(int cpu)
253 {
254 smp_ext_bitcall(cpu, ec_schedule);
255 }
256
257 /*
258 * parameter area for the set/clear control bit callbacks
259 */
260 struct ec_creg_mask_parms {
261 unsigned long orvals[16];
262 unsigned long andvals[16];
263 };
264
265 /*
266 * callback for setting/clearing control bits
267 */
268 static void smp_ctl_bit_callback(void *info)
269 {
270 struct ec_creg_mask_parms *pp = info;
271 unsigned long cregs[16];
272 int i;
273
274 __ctl_store(cregs, 0, 15);
275 for (i = 0; i <= 15; i++)
276 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
277 __ctl_load(cregs, 0, 15);
278 }
279
280 /*
281 * Set a bit in a control register of all cpus
282 */
283 void smp_ctl_set_bit(int cr, int bit)
284 {
285 struct ec_creg_mask_parms parms;
286
287 memset(&parms.orvals, 0, sizeof(parms.orvals));
288 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
289 parms.orvals[cr] = 1UL << bit;
290 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
291 }
292 EXPORT_SYMBOL(smp_ctl_set_bit);
293
294 /*
295 * Clear a bit in a control register of all cpus
296 */
297 void smp_ctl_clear_bit(int cr, int bit)
298 {
299 struct ec_creg_mask_parms parms;
300
301 memset(&parms.orvals, 0, sizeof(parms.orvals));
302 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
303 parms.andvals[cr] = ~(1UL << bit);
304 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
305 }
306 EXPORT_SYMBOL(smp_ctl_clear_bit);
307
308 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
309
310 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
311 {
312 if (ipl_info.type != IPL_TYPE_FCP_DUMP && !OLDMEM_BASE)
313 return;
314 if (is_kdump_kernel())
315 return;
316 if (cpu >= NR_CPUS) {
317 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
318 "the dump\n", cpu, NR_CPUS - 1);
319 return;
320 }
321 zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
322 while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
323 cpu_relax();
324 memcpy_real(zfcpdump_save_areas[cpu],
325 (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
326 sizeof(struct save_area));
327 }
328
329 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
330 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
331
332 #else
333
334 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
335
336 #endif /* CONFIG_ZFCPDUMP */
337
338 static int cpu_known(int cpu_id)
339 {
340 int cpu;
341
342 for_each_present_cpu(cpu) {
343 if (__cpu_logical_map[cpu] == cpu_id)
344 return 1;
345 }
346 return 0;
347 }
348
349 static int smp_rescan_cpus_sigp(cpumask_t avail)
350 {
351 int cpu_id, logical_cpu;
352
353 logical_cpu = cpumask_first(&avail);
354 if (logical_cpu >= nr_cpu_ids)
355 return 0;
356 for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
357 if (cpu_known(cpu_id))
358 continue;
359 __cpu_logical_map[logical_cpu] = cpu_id;
360 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
361 if (!cpu_stopped(logical_cpu))
362 continue;
363 set_cpu_present(logical_cpu, true);
364 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
365 logical_cpu = cpumask_next(logical_cpu, &avail);
366 if (logical_cpu >= nr_cpu_ids)
367 break;
368 }
369 return 0;
370 }
371
372 static int smp_rescan_cpus_sclp(cpumask_t avail)
373 {
374 struct sclp_cpu_info *info;
375 int cpu_id, logical_cpu, cpu;
376 int rc;
377
378 logical_cpu = cpumask_first(&avail);
379 if (logical_cpu >= nr_cpu_ids)
380 return 0;
381 info = kmalloc(sizeof(*info), GFP_KERNEL);
382 if (!info)
383 return -ENOMEM;
384 rc = sclp_get_cpu_info(info);
385 if (rc)
386 goto out;
387 for (cpu = 0; cpu < info->combined; cpu++) {
388 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
389 continue;
390 cpu_id = info->cpu[cpu].address;
391 if (cpu_known(cpu_id))
392 continue;
393 __cpu_logical_map[logical_cpu] = cpu_id;
394 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
395 set_cpu_present(logical_cpu, true);
396 if (cpu >= info->configured)
397 smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
398 else
399 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
400 logical_cpu = cpumask_next(logical_cpu, &avail);
401 if (logical_cpu >= nr_cpu_ids)
402 break;
403 }
404 out:
405 kfree(info);
406 return rc;
407 }
408
409 static int __smp_rescan_cpus(void)
410 {
411 cpumask_t avail;
412
413 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
414 if (smp_use_sigp_detection)
415 return smp_rescan_cpus_sigp(avail);
416 else
417 return smp_rescan_cpus_sclp(avail);
418 }
419
420 static void __init smp_detect_cpus(void)
421 {
422 unsigned int cpu, c_cpus, s_cpus;
423 struct sclp_cpu_info *info;
424 u16 boot_cpu_addr, cpu_addr;
425
426 c_cpus = 1;
427 s_cpus = 0;
428 boot_cpu_addr = __cpu_logical_map[0];
429 info = kmalloc(sizeof(*info), GFP_KERNEL);
430 if (!info)
431 panic("smp_detect_cpus failed to allocate memory\n");
432 #ifdef CONFIG_CRASH_DUMP
433 if (OLDMEM_BASE && !is_kdump_kernel()) {
434 struct save_area *save_area;
435
436 save_area = kmalloc(sizeof(*save_area), GFP_KERNEL);
437 if (!save_area)
438 panic("could not allocate memory for save area\n");
439 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
440 0x200, 0);
441 zfcpdump_save_areas[0] = save_area;
442 }
443 #endif
444 /* Use sigp detection algorithm if sclp doesn't work. */
445 if (sclp_get_cpu_info(info)) {
446 smp_use_sigp_detection = 1;
447 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
448 if (cpu == boot_cpu_addr)
449 continue;
450 if (!raw_cpu_stopped(cpu))
451 continue;
452 smp_get_save_area(c_cpus, cpu);
453 c_cpus++;
454 }
455 goto out;
456 }
457
458 if (info->has_cpu_type) {
459 for (cpu = 0; cpu < info->combined; cpu++) {
460 if (info->cpu[cpu].address == boot_cpu_addr) {
461 smp_cpu_type = info->cpu[cpu].type;
462 break;
463 }
464 }
465 }
466
467 for (cpu = 0; cpu < info->combined; cpu++) {
468 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
469 continue;
470 cpu_addr = info->cpu[cpu].address;
471 if (cpu_addr == boot_cpu_addr)
472 continue;
473 if (!raw_cpu_stopped(cpu_addr)) {
474 s_cpus++;
475 continue;
476 }
477 smp_get_save_area(c_cpus, cpu_addr);
478 c_cpus++;
479 }
480 out:
481 kfree(info);
482 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
483 get_online_cpus();
484 __smp_rescan_cpus();
485 put_online_cpus();
486 }
487
488 /*
489 * Activate a secondary processor.
490 */
491 int __cpuinit start_secondary(void *cpuvoid)
492 {
493 cpu_init();
494 preempt_disable();
495 init_cpu_timer();
496 init_cpu_vtimer();
497 pfault_init();
498
499 notify_cpu_starting(smp_processor_id());
500 ipi_call_lock();
501 set_cpu_online(smp_processor_id(), true);
502 ipi_call_unlock();
503 __ctl_clear_bit(0, 28); /* Disable lowcore protection */
504 S390_lowcore.restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
505 S390_lowcore.restart_psw.addr =
506 PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
507 __ctl_set_bit(0, 28); /* Enable lowcore protection */
508 /*
509 * Wait until the cpu which brought this one up marked it
510 * active before enabling interrupts.
511 */
512 while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask))
513 cpu_relax();
514 local_irq_enable();
515 /* cpu_idle will call schedule for us */
516 cpu_idle();
517 return 0;
518 }
519
520 struct create_idle {
521 struct work_struct work;
522 struct task_struct *idle;
523 struct completion done;
524 int cpu;
525 };
526
527 static void __cpuinit smp_fork_idle(struct work_struct *work)
528 {
529 struct create_idle *c_idle;
530
531 c_idle = container_of(work, struct create_idle, work);
532 c_idle->idle = fork_idle(c_idle->cpu);
533 complete(&c_idle->done);
534 }
535
536 static int __cpuinit smp_alloc_lowcore(int cpu)
537 {
538 unsigned long async_stack, panic_stack;
539 struct _lowcore *lowcore;
540
541 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
542 if (!lowcore)
543 return -ENOMEM;
544 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
545 panic_stack = __get_free_page(GFP_KERNEL);
546 if (!panic_stack || !async_stack)
547 goto out;
548 memcpy(lowcore, &S390_lowcore, 512);
549 memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
550 lowcore->async_stack = async_stack + ASYNC_SIZE;
551 lowcore->panic_stack = panic_stack + PAGE_SIZE;
552 lowcore->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
553 lowcore->restart_psw.addr =
554 PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
555 if (user_mode != HOME_SPACE_MODE)
556 lowcore->restart_psw.mask |= PSW_ASC_HOME;
557 #ifndef CONFIG_64BIT
558 if (MACHINE_HAS_IEEE) {
559 unsigned long save_area;
560
561 save_area = get_zeroed_page(GFP_KERNEL);
562 if (!save_area)
563 goto out;
564 lowcore->extended_save_area_addr = (u32) save_area;
565 }
566 #else
567 if (vdso_alloc_per_cpu(cpu, lowcore))
568 goto out;
569 #endif
570 lowcore_ptr[cpu] = lowcore;
571 return 0;
572
573 out:
574 free_page(panic_stack);
575 free_pages(async_stack, ASYNC_ORDER);
576 free_pages((unsigned long) lowcore, LC_ORDER);
577 return -ENOMEM;
578 }
579
580 static void smp_free_lowcore(int cpu)
581 {
582 struct _lowcore *lowcore;
583
584 lowcore = lowcore_ptr[cpu];
585 #ifndef CONFIG_64BIT
586 if (MACHINE_HAS_IEEE)
587 free_page((unsigned long) lowcore->extended_save_area_addr);
588 #else
589 vdso_free_per_cpu(cpu, lowcore);
590 #endif
591 free_page(lowcore->panic_stack - PAGE_SIZE);
592 free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
593 free_pages((unsigned long) lowcore, LC_ORDER);
594 lowcore_ptr[cpu] = NULL;
595 }
596
597 /* Upping and downing of CPUs */
598 int __cpuinit __cpu_up(unsigned int cpu)
599 {
600 struct _lowcore *cpu_lowcore;
601 struct create_idle c_idle;
602 struct task_struct *idle;
603 struct stack_frame *sf;
604 u32 lowcore;
605 int ccode;
606
607 if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
608 return -EIO;
609 idle = current_set[cpu];
610 if (!idle) {
611 c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
612 INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
613 c_idle.cpu = cpu;
614 schedule_work(&c_idle.work);
615 wait_for_completion(&c_idle.done);
616 if (IS_ERR(c_idle.idle))
617 return PTR_ERR(c_idle.idle);
618 idle = c_idle.idle;
619 current_set[cpu] = c_idle.idle;
620 }
621 init_idle(idle, cpu);
622 if (smp_alloc_lowcore(cpu))
623 return -ENOMEM;
624 do {
625 ccode = sigp(cpu, sigp_initial_cpu_reset);
626 if (ccode == sigp_busy)
627 udelay(10);
628 if (ccode == sigp_not_operational)
629 goto err_out;
630 } while (ccode == sigp_busy);
631
632 lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
633 while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
634 udelay(10);
635
636 cpu_lowcore = lowcore_ptr[cpu];
637 cpu_lowcore->kernel_stack = (unsigned long)
638 task_stack_page(idle) + THREAD_SIZE;
639 cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
640 sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
641 - sizeof(struct pt_regs)
642 - sizeof(struct stack_frame));
643 memset(sf, 0, sizeof(struct stack_frame));
644 sf->gprs[9] = (unsigned long) sf;
645 cpu_lowcore->save_area[15] = (unsigned long) sf;
646 __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
647 atomic_inc(&init_mm.context.attach_count);
648 asm volatile(
649 " stam 0,15,0(%0)"
650 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
651 cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
652 cpu_lowcore->current_task = (unsigned long) idle;
653 cpu_lowcore->cpu_nr = cpu;
654 cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
655 cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
656 cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
657 memcpy(cpu_lowcore->stfle_fac_list, S390_lowcore.stfle_fac_list,
658 MAX_FACILITY_BIT/8);
659 eieio();
660
661 while (sigp(cpu, sigp_restart) == sigp_busy)
662 udelay(10);
663
664 while (!cpu_online(cpu))
665 cpu_relax();
666 return 0;
667
668 err_out:
669 smp_free_lowcore(cpu);
670 return -EIO;
671 }
672
673 static int __init setup_possible_cpus(char *s)
674 {
675 int pcpus, cpu;
676
677 pcpus = simple_strtoul(s, NULL, 0);
678 init_cpu_possible(cpumask_of(0));
679 for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
680 set_cpu_possible(cpu, true);
681 return 0;
682 }
683 early_param("possible_cpus", setup_possible_cpus);
684
685 #ifdef CONFIG_HOTPLUG_CPU
686
687 int __cpu_disable(void)
688 {
689 struct ec_creg_mask_parms cr_parms;
690 int cpu = smp_processor_id();
691
692 set_cpu_online(cpu, false);
693
694 /* Disable pfault pseudo page faults on this cpu. */
695 pfault_fini();
696
697 memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
698 memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
699
700 /* disable all external interrupts */
701 cr_parms.orvals[0] = 0;
702 cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 11 |
703 1 << 10 | 1 << 9 | 1 << 6 | 1 << 5 |
704 1 << 4);
705 /* disable all I/O interrupts */
706 cr_parms.orvals[6] = 0;
707 cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
708 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
709 /* disable most machine checks */
710 cr_parms.orvals[14] = 0;
711 cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
712 1 << 25 | 1 << 24);
713
714 smp_ctl_bit_callback(&cr_parms);
715
716 return 0;
717 }
718
719 void __cpu_die(unsigned int cpu)
720 {
721 /* Wait until target cpu is down */
722 while (!cpu_stopped(cpu))
723 cpu_relax();
724 while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
725 udelay(10);
726 smp_free_lowcore(cpu);
727 atomic_dec(&init_mm.context.attach_count);
728 }
729
730 void __noreturn cpu_die(void)
731 {
732 idle_task_exit();
733 while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
734 cpu_relax();
735 for (;;);
736 }
737
738 #endif /* CONFIG_HOTPLUG_CPU */
739
740 void __init smp_prepare_cpus(unsigned int max_cpus)
741 {
742 #ifndef CONFIG_64BIT
743 unsigned long save_area = 0;
744 #endif
745 unsigned long async_stack, panic_stack;
746 struct _lowcore *lowcore;
747
748 smp_detect_cpus();
749
750 /* request the 0x1201 emergency signal external interrupt */
751 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
752 panic("Couldn't request external interrupt 0x1201");
753
754 /* Reallocate current lowcore, but keep its contents. */
755 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
756 panic_stack = __get_free_page(GFP_KERNEL);
757 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
758 BUG_ON(!lowcore || !panic_stack || !async_stack);
759 #ifndef CONFIG_64BIT
760 if (MACHINE_HAS_IEEE)
761 save_area = get_zeroed_page(GFP_KERNEL);
762 #endif
763 local_irq_disable();
764 local_mcck_disable();
765 lowcore_ptr[smp_processor_id()] = lowcore;
766 *lowcore = S390_lowcore;
767 lowcore->panic_stack = panic_stack + PAGE_SIZE;
768 lowcore->async_stack = async_stack + ASYNC_SIZE;
769 #ifndef CONFIG_64BIT
770 if (MACHINE_HAS_IEEE)
771 lowcore->extended_save_area_addr = (u32) save_area;
772 #endif
773 set_prefix((u32)(unsigned long) lowcore);
774 local_mcck_enable();
775 local_irq_enable();
776 #ifdef CONFIG_64BIT
777 if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
778 BUG();
779 #endif
780 }
781
782 void __init smp_prepare_boot_cpu(void)
783 {
784 BUG_ON(smp_processor_id() != 0);
785
786 current_thread_info()->cpu = 0;
787 set_cpu_present(0, true);
788 set_cpu_online(0, true);
789 S390_lowcore.percpu_offset = __per_cpu_offset[0];
790 current_set[0] = current;
791 smp_cpu_state[0] = CPU_STATE_CONFIGURED;
792 smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
793 }
794
795 void __init smp_cpus_done(unsigned int max_cpus)
796 {
797 }
798
799 void __init smp_setup_processor_id(void)
800 {
801 S390_lowcore.cpu_nr = 0;
802 __cpu_logical_map[0] = stap();
803 }
804
805 /*
806 * the frequency of the profiling timer can be changed
807 * by writing a multiplier value into /proc/profile.
808 *
809 * usually you want to run this on all CPUs ;)
810 */
811 int setup_profiling_timer(unsigned int multiplier)
812 {
813 return 0;
814 }
815
816 #ifdef CONFIG_HOTPLUG_CPU
817 static ssize_t cpu_configure_show(struct sys_device *dev,
818 struct sysdev_attribute *attr, char *buf)
819 {
820 ssize_t count;
821
822 mutex_lock(&smp_cpu_state_mutex);
823 count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
824 mutex_unlock(&smp_cpu_state_mutex);
825 return count;
826 }
827
828 static ssize_t cpu_configure_store(struct sys_device *dev,
829 struct sysdev_attribute *attr,
830 const char *buf, size_t count)
831 {
832 int cpu = dev->id;
833 int val, rc;
834 char delim;
835
836 if (sscanf(buf, "%d %c", &val, &delim) != 1)
837 return -EINVAL;
838 if (val != 0 && val != 1)
839 return -EINVAL;
840
841 get_online_cpus();
842 mutex_lock(&smp_cpu_state_mutex);
843 rc = -EBUSY;
844 /* disallow configuration changes of online cpus and cpu 0 */
845 if (cpu_online(cpu) || cpu == 0)
846 goto out;
847 rc = 0;
848 switch (val) {
849 case 0:
850 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
851 rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
852 if (!rc) {
853 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
854 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
855 }
856 }
857 break;
858 case 1:
859 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
860 rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
861 if (!rc) {
862 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
863 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
864 }
865 }
866 break;
867 default:
868 break;
869 }
870 out:
871 mutex_unlock(&smp_cpu_state_mutex);
872 put_online_cpus();
873 return rc ? rc : count;
874 }
875 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
876 #endif /* CONFIG_HOTPLUG_CPU */
877
878 static ssize_t cpu_polarization_show(struct sys_device *dev,
879 struct sysdev_attribute *attr, char *buf)
880 {
881 int cpu = dev->id;
882 ssize_t count;
883
884 mutex_lock(&smp_cpu_state_mutex);
885 switch (smp_cpu_polarization[cpu]) {
886 case POLARIZATION_HRZ:
887 count = sprintf(buf, "horizontal\n");
888 break;
889 case POLARIZATION_VL:
890 count = sprintf(buf, "vertical:low\n");
891 break;
892 case POLARIZATION_VM:
893 count = sprintf(buf, "vertical:medium\n");
894 break;
895 case POLARIZATION_VH:
896 count = sprintf(buf, "vertical:high\n");
897 break;
898 default:
899 count = sprintf(buf, "unknown\n");
900 break;
901 }
902 mutex_unlock(&smp_cpu_state_mutex);
903 return count;
904 }
905 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
906
907 static ssize_t show_cpu_address(struct sys_device *dev,
908 struct sysdev_attribute *attr, char *buf)
909 {
910 return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
911 }
912 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
913
914
915 static struct attribute *cpu_common_attrs[] = {
916 #ifdef CONFIG_HOTPLUG_CPU
917 &attr_configure.attr,
918 #endif
919 &attr_address.attr,
920 &attr_polarization.attr,
921 NULL,
922 };
923
924 static struct attribute_group cpu_common_attr_group = {
925 .attrs = cpu_common_attrs,
926 };
927
928 static ssize_t show_capability(struct sys_device *dev,
929 struct sysdev_attribute *attr, char *buf)
930 {
931 unsigned int capability;
932 int rc;
933
934 rc = get_cpu_capability(&capability);
935 if (rc)
936 return rc;
937 return sprintf(buf, "%u\n", capability);
938 }
939 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
940
941 static ssize_t show_idle_count(struct sys_device *dev,
942 struct sysdev_attribute *attr, char *buf)
943 {
944 struct s390_idle_data *idle;
945 unsigned long long idle_count;
946 unsigned int sequence;
947
948 idle = &per_cpu(s390_idle, dev->id);
949 repeat:
950 sequence = idle->sequence;
951 smp_rmb();
952 if (sequence & 1)
953 goto repeat;
954 idle_count = idle->idle_count;
955 if (idle->idle_enter)
956 idle_count++;
957 smp_rmb();
958 if (idle->sequence != sequence)
959 goto repeat;
960 return sprintf(buf, "%llu\n", idle_count);
961 }
962 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
963
964 static ssize_t show_idle_time(struct sys_device *dev,
965 struct sysdev_attribute *attr, char *buf)
966 {
967 struct s390_idle_data *idle;
968 unsigned long long now, idle_time, idle_enter;
969 unsigned int sequence;
970
971 idle = &per_cpu(s390_idle, dev->id);
972 now = get_clock();
973 repeat:
974 sequence = idle->sequence;
975 smp_rmb();
976 if (sequence & 1)
977 goto repeat;
978 idle_time = idle->idle_time;
979 idle_enter = idle->idle_enter;
980 if (idle_enter != 0ULL && idle_enter < now)
981 idle_time += now - idle_enter;
982 smp_rmb();
983 if (idle->sequence != sequence)
984 goto repeat;
985 return sprintf(buf, "%llu\n", idle_time >> 12);
986 }
987 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
988
989 static struct attribute *cpu_online_attrs[] = {
990 &attr_capability.attr,
991 &attr_idle_count.attr,
992 &attr_idle_time_us.attr,
993 NULL,
994 };
995
996 static struct attribute_group cpu_online_attr_group = {
997 .attrs = cpu_online_attrs,
998 };
999
1000 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1001 unsigned long action, void *hcpu)
1002 {
1003 unsigned int cpu = (unsigned int)(long)hcpu;
1004 struct cpu *c = &per_cpu(cpu_devices, cpu);
1005 struct sys_device *s = &c->sysdev;
1006 struct s390_idle_data *idle;
1007 int err = 0;
1008
1009 switch (action) {
1010 case CPU_ONLINE:
1011 case CPU_ONLINE_FROZEN:
1012 idle = &per_cpu(s390_idle, cpu);
1013 memset(idle, 0, sizeof(struct s390_idle_data));
1014 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1015 break;
1016 case CPU_DEAD:
1017 case CPU_DEAD_FROZEN:
1018 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1019 break;
1020 }
1021 return notifier_from_errno(err);
1022 }
1023
1024 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1025 .notifier_call = smp_cpu_notify,
1026 };
1027
1028 static int __devinit smp_add_present_cpu(int cpu)
1029 {
1030 struct cpu *c = &per_cpu(cpu_devices, cpu);
1031 struct sys_device *s = &c->sysdev;
1032 int rc;
1033
1034 c->hotpluggable = 1;
1035 rc = register_cpu(c, cpu);
1036 if (rc)
1037 goto out;
1038 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1039 if (rc)
1040 goto out_cpu;
1041 if (!cpu_online(cpu))
1042 goto out;
1043 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1044 if (!rc)
1045 return 0;
1046 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1047 out_cpu:
1048 #ifdef CONFIG_HOTPLUG_CPU
1049 unregister_cpu(c);
1050 #endif
1051 out:
1052 return rc;
1053 }
1054
1055 #ifdef CONFIG_HOTPLUG_CPU
1056
1057 int __ref smp_rescan_cpus(void)
1058 {
1059 cpumask_t newcpus;
1060 int cpu;
1061 int rc;
1062
1063 get_online_cpus();
1064 mutex_lock(&smp_cpu_state_mutex);
1065 cpumask_copy(&newcpus, cpu_present_mask);
1066 rc = __smp_rescan_cpus();
1067 if (rc)
1068 goto out;
1069 cpumask_andnot(&newcpus, cpu_present_mask, &newcpus);
1070 for_each_cpu(cpu, &newcpus) {
1071 rc = smp_add_present_cpu(cpu);
1072 if (rc)
1073 set_cpu_present(cpu, false);
1074 }
1075 rc = 0;
1076 out:
1077 mutex_unlock(&smp_cpu_state_mutex);
1078 put_online_cpus();
1079 if (!cpumask_empty(&newcpus))
1080 topology_schedule_update();
1081 return rc;
1082 }
1083
1084 static ssize_t __ref rescan_store(struct sysdev_class *class,
1085 struct sysdev_class_attribute *attr,
1086 const char *buf,
1087 size_t count)
1088 {
1089 int rc;
1090
1091 rc = smp_rescan_cpus();
1092 return rc ? rc : count;
1093 }
1094 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1095 #endif /* CONFIG_HOTPLUG_CPU */
1096
1097 static ssize_t dispatching_show(struct sysdev_class *class,
1098 struct sysdev_class_attribute *attr,
1099 char *buf)
1100 {
1101 ssize_t count;
1102
1103 mutex_lock(&smp_cpu_state_mutex);
1104 count = sprintf(buf, "%d\n", cpu_management);
1105 mutex_unlock(&smp_cpu_state_mutex);
1106 return count;
1107 }
1108
1109 static ssize_t dispatching_store(struct sysdev_class *dev,
1110 struct sysdev_class_attribute *attr,
1111 const char *buf,
1112 size_t count)
1113 {
1114 int val, rc;
1115 char delim;
1116
1117 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1118 return -EINVAL;
1119 if (val != 0 && val != 1)
1120 return -EINVAL;
1121 rc = 0;
1122 get_online_cpus();
1123 mutex_lock(&smp_cpu_state_mutex);
1124 if (cpu_management == val)
1125 goto out;
1126 rc = topology_set_cpu_management(val);
1127 if (!rc)
1128 cpu_management = val;
1129 out:
1130 mutex_unlock(&smp_cpu_state_mutex);
1131 put_online_cpus();
1132 return rc ? rc : count;
1133 }
1134 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1135 dispatching_store);
1136
1137 static int __init topology_init(void)
1138 {
1139 int cpu;
1140 int rc;
1141
1142 register_cpu_notifier(&smp_cpu_nb);
1143
1144 #ifdef CONFIG_HOTPLUG_CPU
1145 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1146 if (rc)
1147 return rc;
1148 #endif
1149 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1150 if (rc)
1151 return rc;
1152 for_each_present_cpu(cpu) {
1153 rc = smp_add_present_cpu(cpu);
1154 if (rc)
1155 return rc;
1156 }
1157 return 0;
1158 }
1159 subsys_initcall(topology_init);
This page took 0.056421 seconds and 5 git commands to generate.