Merge tag 'fbdev-fixes-for-3.5-2' of git://github.com/schandinat/linux-2.6
[deliverable/linux.git] / arch / s390 / kernel / smp.c
1 /*
2 * SMP related functions
3 *
4 * Copyright IBM Corp. 1999,2012
5 * Author(s): Denis Joseph Barrow,
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
7 * Heiko Carstens <heiko.carstens@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/timer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include "entry.h"
48
49 enum {
50 sigp_sense = 1,
51 sigp_external_call = 2,
52 sigp_emergency_signal = 3,
53 sigp_start = 4,
54 sigp_stop = 5,
55 sigp_restart = 6,
56 sigp_stop_and_store_status = 9,
57 sigp_initial_cpu_reset = 11,
58 sigp_cpu_reset = 12,
59 sigp_set_prefix = 13,
60 sigp_store_status_at_address = 14,
61 sigp_store_extended_status_at_address = 15,
62 sigp_set_architecture = 18,
63 sigp_conditional_emergency_signal = 19,
64 sigp_sense_running = 21,
65 };
66
67 enum {
68 sigp_order_code_accepted = 0,
69 sigp_status_stored = 1,
70 sigp_busy = 2,
71 sigp_not_operational = 3,
72 };
73
74 enum {
75 ec_schedule = 0,
76 ec_call_function,
77 ec_call_function_single,
78 ec_stop_cpu,
79 };
80
81 enum {
82 CPU_STATE_STANDBY,
83 CPU_STATE_CONFIGURED,
84 };
85
86 struct pcpu {
87 struct cpu cpu;
88 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */
89 unsigned long async_stack; /* async stack for the cpu */
90 unsigned long panic_stack; /* panic stack for the cpu */
91 unsigned long ec_mask; /* bit mask for ec_xxx functions */
92 int state; /* physical cpu state */
93 u32 status; /* last status received via sigp */
94 u16 address; /* physical cpu address */
95 };
96
97 static u8 boot_cpu_type;
98 static u16 boot_cpu_address;
99 static struct pcpu pcpu_devices[NR_CPUS];
100
101 DEFINE_MUTEX(smp_cpu_state_mutex);
102
103 /*
104 * Signal processor helper functions.
105 */
106 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
107 {
108 register unsigned int reg1 asm ("1") = parm;
109 int cc;
110
111 asm volatile(
112 " sigp %1,%2,0(%3)\n"
113 " ipm %0\n"
114 " srl %0,28\n"
115 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
116 if (status && cc == 1)
117 *status = reg1;
118 return cc;
119 }
120
121 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
122 {
123 int cc;
124
125 while (1) {
126 cc = __pcpu_sigp(addr, order, parm, status);
127 if (cc != sigp_busy)
128 return cc;
129 cpu_relax();
130 }
131 }
132
133 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
134 {
135 int cc, retry;
136
137 for (retry = 0; ; retry++) {
138 cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status);
139 if (cc != sigp_busy)
140 break;
141 if (retry >= 3)
142 udelay(10);
143 }
144 return cc;
145 }
146
147 static inline int pcpu_stopped(struct pcpu *pcpu)
148 {
149 if (__pcpu_sigp(pcpu->address, sigp_sense,
150 0, &pcpu->status) != sigp_status_stored)
151 return 0;
152 /* Check for stopped and check stop state */
153 return !!(pcpu->status & 0x50);
154 }
155
156 static inline int pcpu_running(struct pcpu *pcpu)
157 {
158 if (__pcpu_sigp(pcpu->address, sigp_sense_running,
159 0, &pcpu->status) != sigp_status_stored)
160 return 1;
161 /* Check for running status */
162 return !(pcpu->status & 0x400);
163 }
164
165 /*
166 * Find struct pcpu by cpu address.
167 */
168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
169 {
170 int cpu;
171
172 for_each_cpu(cpu, mask)
173 if (pcpu_devices[cpu].address == address)
174 return pcpu_devices + cpu;
175 return NULL;
176 }
177
178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
179 {
180 int order;
181
182 set_bit(ec_bit, &pcpu->ec_mask);
183 order = pcpu_running(pcpu) ?
184 sigp_external_call : sigp_emergency_signal;
185 pcpu_sigp_retry(pcpu, order, 0);
186 }
187
188 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
189 {
190 struct _lowcore *lc;
191
192 if (pcpu != &pcpu_devices[0]) {
193 pcpu->lowcore = (struct _lowcore *)
194 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
195 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
196 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
197 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
198 goto out;
199 }
200 lc = pcpu->lowcore;
201 memcpy(lc, &S390_lowcore, 512);
202 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
203 lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
204 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
205 lc->cpu_nr = cpu;
206 #ifndef CONFIG_64BIT
207 if (MACHINE_HAS_IEEE) {
208 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
209 if (!lc->extended_save_area_addr)
210 goto out;
211 }
212 #else
213 if (vdso_alloc_per_cpu(lc))
214 goto out;
215 #endif
216 lowcore_ptr[cpu] = lc;
217 pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc);
218 return 0;
219 out:
220 if (pcpu != &pcpu_devices[0]) {
221 free_page(pcpu->panic_stack);
222 free_pages(pcpu->async_stack, ASYNC_ORDER);
223 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
224 }
225 return -ENOMEM;
226 }
227
228 #ifdef CONFIG_HOTPLUG_CPU
229
230 static void pcpu_free_lowcore(struct pcpu *pcpu)
231 {
232 pcpu_sigp_retry(pcpu, sigp_set_prefix, 0);
233 lowcore_ptr[pcpu - pcpu_devices] = NULL;
234 #ifndef CONFIG_64BIT
235 if (MACHINE_HAS_IEEE) {
236 struct _lowcore *lc = pcpu->lowcore;
237
238 free_page((unsigned long) lc->extended_save_area_addr);
239 lc->extended_save_area_addr = 0;
240 }
241 #else
242 vdso_free_per_cpu(pcpu->lowcore);
243 #endif
244 if (pcpu != &pcpu_devices[0]) {
245 free_page(pcpu->panic_stack);
246 free_pages(pcpu->async_stack, ASYNC_ORDER);
247 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
248 }
249 }
250
251 #endif /* CONFIG_HOTPLUG_CPU */
252
253 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
254 {
255 struct _lowcore *lc = pcpu->lowcore;
256
257 atomic_inc(&init_mm.context.attach_count);
258 lc->cpu_nr = cpu;
259 lc->percpu_offset = __per_cpu_offset[cpu];
260 lc->kernel_asce = S390_lowcore.kernel_asce;
261 lc->machine_flags = S390_lowcore.machine_flags;
262 lc->ftrace_func = S390_lowcore.ftrace_func;
263 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
264 __ctl_store(lc->cregs_save_area, 0, 15);
265 save_access_regs((unsigned int *) lc->access_regs_save_area);
266 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
267 MAX_FACILITY_BIT/8);
268 }
269
270 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
271 {
272 struct _lowcore *lc = pcpu->lowcore;
273 struct thread_info *ti = task_thread_info(tsk);
274
275 lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
276 lc->thread_info = (unsigned long) task_thread_info(tsk);
277 lc->current_task = (unsigned long) tsk;
278 lc->user_timer = ti->user_timer;
279 lc->system_timer = ti->system_timer;
280 lc->steal_timer = 0;
281 }
282
283 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
284 {
285 struct _lowcore *lc = pcpu->lowcore;
286
287 lc->restart_stack = lc->kernel_stack;
288 lc->restart_fn = (unsigned long) func;
289 lc->restart_data = (unsigned long) data;
290 lc->restart_source = -1UL;
291 pcpu_sigp_retry(pcpu, sigp_restart, 0);
292 }
293
294 /*
295 * Call function via PSW restart on pcpu and stop the current cpu.
296 */
297 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
298 void *data, unsigned long stack)
299 {
300 struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
301 struct {
302 unsigned long stack;
303 void *func;
304 void *data;
305 unsigned long source;
306 } restart = { stack, func, data, stap() };
307
308 __load_psw_mask(psw_kernel_bits);
309 if (pcpu->address == restart.source)
310 func(data); /* should not return */
311 /* Stop target cpu (if func returns this stops the current cpu). */
312 pcpu_sigp_retry(pcpu, sigp_stop, 0);
313 /* Restart func on the target cpu and stop the current cpu. */
314 memcpy_absolute(&lc->restart_stack, &restart, sizeof(restart));
315 asm volatile(
316 "0: sigp 0,%0,6 # sigp restart to target cpu\n"
317 " brc 2,0b # busy, try again\n"
318 "1: sigp 0,%1,5 # sigp stop to current cpu\n"
319 " brc 2,1b # busy, try again\n"
320 : : "d" (pcpu->address), "d" (restart.source) : "0", "1", "cc");
321 for (;;) ;
322 }
323
324 /*
325 * Call function on an online CPU.
326 */
327 void smp_call_online_cpu(void (*func)(void *), void *data)
328 {
329 struct pcpu *pcpu;
330
331 /* Use the current cpu if it is online. */
332 pcpu = pcpu_find_address(cpu_online_mask, stap());
333 if (!pcpu)
334 /* Use the first online cpu. */
335 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
336 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
337 }
338
339 /*
340 * Call function on the ipl CPU.
341 */
342 void smp_call_ipl_cpu(void (*func)(void *), void *data)
343 {
344 pcpu_delegate(&pcpu_devices[0], func, data,
345 pcpu_devices->panic_stack + PAGE_SIZE);
346 }
347
348 int smp_find_processor_id(u16 address)
349 {
350 int cpu;
351
352 for_each_present_cpu(cpu)
353 if (pcpu_devices[cpu].address == address)
354 return cpu;
355 return -1;
356 }
357
358 int smp_vcpu_scheduled(int cpu)
359 {
360 return pcpu_running(pcpu_devices + cpu);
361 }
362
363 void smp_yield(void)
364 {
365 if (MACHINE_HAS_DIAG44)
366 asm volatile("diag 0,0,0x44");
367 }
368
369 void smp_yield_cpu(int cpu)
370 {
371 if (MACHINE_HAS_DIAG9C)
372 asm volatile("diag %0,0,0x9c"
373 : : "d" (pcpu_devices[cpu].address));
374 else if (MACHINE_HAS_DIAG44)
375 asm volatile("diag 0,0,0x44");
376 }
377
378 /*
379 * Send cpus emergency shutdown signal. This gives the cpus the
380 * opportunity to complete outstanding interrupts.
381 */
382 void smp_emergency_stop(cpumask_t *cpumask)
383 {
384 u64 end;
385 int cpu;
386
387 end = get_clock() + (1000000UL << 12);
388 for_each_cpu(cpu, cpumask) {
389 struct pcpu *pcpu = pcpu_devices + cpu;
390 set_bit(ec_stop_cpu, &pcpu->ec_mask);
391 while (__pcpu_sigp(pcpu->address, sigp_emergency_signal,
392 0, NULL) == sigp_busy &&
393 get_clock() < end)
394 cpu_relax();
395 }
396 while (get_clock() < end) {
397 for_each_cpu(cpu, cpumask)
398 if (pcpu_stopped(pcpu_devices + cpu))
399 cpumask_clear_cpu(cpu, cpumask);
400 if (cpumask_empty(cpumask))
401 break;
402 cpu_relax();
403 }
404 }
405
406 /*
407 * Stop all cpus but the current one.
408 */
409 void smp_send_stop(void)
410 {
411 cpumask_t cpumask;
412 int cpu;
413
414 /* Disable all interrupts/machine checks */
415 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
416 trace_hardirqs_off();
417
418 debug_set_critical();
419 cpumask_copy(&cpumask, cpu_online_mask);
420 cpumask_clear_cpu(smp_processor_id(), &cpumask);
421
422 if (oops_in_progress)
423 smp_emergency_stop(&cpumask);
424
425 /* stop all processors */
426 for_each_cpu(cpu, &cpumask) {
427 struct pcpu *pcpu = pcpu_devices + cpu;
428 pcpu_sigp_retry(pcpu, sigp_stop, 0);
429 while (!pcpu_stopped(pcpu))
430 cpu_relax();
431 }
432 }
433
434 /*
435 * Stop the current cpu.
436 */
437 void smp_stop_cpu(void)
438 {
439 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
440 for (;;) ;
441 }
442
443 /*
444 * This is the main routine where commands issued by other
445 * cpus are handled.
446 */
447 static void do_ext_call_interrupt(struct ext_code ext_code,
448 unsigned int param32, unsigned long param64)
449 {
450 unsigned long bits;
451 int cpu;
452
453 cpu = smp_processor_id();
454 if (ext_code.code == 0x1202)
455 kstat_cpu(cpu).irqs[EXTINT_EXC]++;
456 else
457 kstat_cpu(cpu).irqs[EXTINT_EMS]++;
458 /*
459 * handle bit signal external calls
460 */
461 bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
462
463 if (test_bit(ec_stop_cpu, &bits))
464 smp_stop_cpu();
465
466 if (test_bit(ec_schedule, &bits))
467 scheduler_ipi();
468
469 if (test_bit(ec_call_function, &bits))
470 generic_smp_call_function_interrupt();
471
472 if (test_bit(ec_call_function_single, &bits))
473 generic_smp_call_function_single_interrupt();
474
475 }
476
477 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
478 {
479 int cpu;
480
481 for_each_cpu(cpu, mask)
482 pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
483 }
484
485 void arch_send_call_function_single_ipi(int cpu)
486 {
487 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
488 }
489
490 #ifndef CONFIG_64BIT
491 /*
492 * this function sends a 'purge tlb' signal to another CPU.
493 */
494 static void smp_ptlb_callback(void *info)
495 {
496 __tlb_flush_local();
497 }
498
499 void smp_ptlb_all(void)
500 {
501 on_each_cpu(smp_ptlb_callback, NULL, 1);
502 }
503 EXPORT_SYMBOL(smp_ptlb_all);
504 #endif /* ! CONFIG_64BIT */
505
506 /*
507 * this function sends a 'reschedule' IPI to another CPU.
508 * it goes straight through and wastes no time serializing
509 * anything. Worst case is that we lose a reschedule ...
510 */
511 void smp_send_reschedule(int cpu)
512 {
513 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
514 }
515
516 /*
517 * parameter area for the set/clear control bit callbacks
518 */
519 struct ec_creg_mask_parms {
520 unsigned long orval;
521 unsigned long andval;
522 int cr;
523 };
524
525 /*
526 * callback for setting/clearing control bits
527 */
528 static void smp_ctl_bit_callback(void *info)
529 {
530 struct ec_creg_mask_parms *pp = info;
531 unsigned long cregs[16];
532
533 __ctl_store(cregs, 0, 15);
534 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
535 __ctl_load(cregs, 0, 15);
536 }
537
538 /*
539 * Set a bit in a control register of all cpus
540 */
541 void smp_ctl_set_bit(int cr, int bit)
542 {
543 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
544
545 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
546 }
547 EXPORT_SYMBOL(smp_ctl_set_bit);
548
549 /*
550 * Clear a bit in a control register of all cpus
551 */
552 void smp_ctl_clear_bit(int cr, int bit)
553 {
554 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
555
556 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
557 }
558 EXPORT_SYMBOL(smp_ctl_clear_bit);
559
560 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
561
562 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
563 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
564
565 static void __init smp_get_save_area(int cpu, u16 address)
566 {
567 void *lc = pcpu_devices[0].lowcore;
568 struct save_area *save_area;
569
570 if (is_kdump_kernel())
571 return;
572 if (!OLDMEM_BASE && (address == boot_cpu_address ||
573 ipl_info.type != IPL_TYPE_FCP_DUMP))
574 return;
575 if (cpu >= NR_CPUS) {
576 pr_warning("CPU %i exceeds the maximum %i and is excluded "
577 "from the dump\n", cpu, NR_CPUS - 1);
578 return;
579 }
580 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
581 if (!save_area)
582 panic("could not allocate memory for save area\n");
583 zfcpdump_save_areas[cpu] = save_area;
584 #ifdef CONFIG_CRASH_DUMP
585 if (address == boot_cpu_address) {
586 /* Copy the registers of the boot cpu. */
587 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
588 SAVE_AREA_BASE - PAGE_SIZE, 0);
589 return;
590 }
591 #endif
592 /* Get the registers of a non-boot cpu. */
593 __pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL);
594 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
595 }
596
597 int smp_store_status(int cpu)
598 {
599 struct pcpu *pcpu;
600
601 pcpu = pcpu_devices + cpu;
602 if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status,
603 0, NULL) != sigp_order_code_accepted)
604 return -EIO;
605 return 0;
606 }
607
608 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
609
610 static inline void smp_get_save_area(int cpu, u16 address) { }
611
612 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
613
614 static struct sclp_cpu_info *smp_get_cpu_info(void)
615 {
616 static int use_sigp_detection;
617 struct sclp_cpu_info *info;
618 int address;
619
620 info = kzalloc(sizeof(*info), GFP_KERNEL);
621 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
622 use_sigp_detection = 1;
623 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
624 if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) ==
625 sigp_not_operational)
626 continue;
627 info->cpu[info->configured].address = address;
628 info->configured++;
629 }
630 info->combined = info->configured;
631 }
632 return info;
633 }
634
635 static int __devinit smp_add_present_cpu(int cpu);
636
637 static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
638 int sysfs_add)
639 {
640 struct pcpu *pcpu;
641 cpumask_t avail;
642 int cpu, nr, i;
643
644 nr = 0;
645 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
646 cpu = cpumask_first(&avail);
647 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
648 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
649 continue;
650 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
651 continue;
652 pcpu = pcpu_devices + cpu;
653 pcpu->address = info->cpu[i].address;
654 pcpu->state = (cpu >= info->configured) ?
655 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
656 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
657 set_cpu_present(cpu, true);
658 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
659 set_cpu_present(cpu, false);
660 else
661 nr++;
662 cpu = cpumask_next(cpu, &avail);
663 }
664 return nr;
665 }
666
667 static void __init smp_detect_cpus(void)
668 {
669 unsigned int cpu, c_cpus, s_cpus;
670 struct sclp_cpu_info *info;
671
672 info = smp_get_cpu_info();
673 if (!info)
674 panic("smp_detect_cpus failed to allocate memory\n");
675 if (info->has_cpu_type) {
676 for (cpu = 0; cpu < info->combined; cpu++) {
677 if (info->cpu[cpu].address != boot_cpu_address)
678 continue;
679 /* The boot cpu dictates the cpu type. */
680 boot_cpu_type = info->cpu[cpu].type;
681 break;
682 }
683 }
684 c_cpus = s_cpus = 0;
685 for (cpu = 0; cpu < info->combined; cpu++) {
686 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
687 continue;
688 if (cpu < info->configured) {
689 smp_get_save_area(c_cpus, info->cpu[cpu].address);
690 c_cpus++;
691 } else
692 s_cpus++;
693 }
694 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
695 get_online_cpus();
696 __smp_rescan_cpus(info, 0);
697 put_online_cpus();
698 kfree(info);
699 }
700
701 /*
702 * Activate a secondary processor.
703 */
704 static void __cpuinit smp_start_secondary(void *cpuvoid)
705 {
706 S390_lowcore.last_update_clock = get_clock();
707 S390_lowcore.restart_stack = (unsigned long) restart_stack;
708 S390_lowcore.restart_fn = (unsigned long) do_restart;
709 S390_lowcore.restart_data = 0;
710 S390_lowcore.restart_source = -1UL;
711 restore_access_regs(S390_lowcore.access_regs_save_area);
712 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
713 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
714 cpu_init();
715 preempt_disable();
716 init_cpu_timer();
717 init_cpu_vtimer();
718 pfault_init();
719 notify_cpu_starting(smp_processor_id());
720 ipi_call_lock();
721 set_cpu_online(smp_processor_id(), true);
722 ipi_call_unlock();
723 local_irq_enable();
724 /* cpu_idle will call schedule for us */
725 cpu_idle();
726 }
727
728 /* Upping and downing of CPUs */
729 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
730 {
731 struct pcpu *pcpu;
732 int rc;
733
734 pcpu = pcpu_devices + cpu;
735 if (pcpu->state != CPU_STATE_CONFIGURED)
736 return -EIO;
737 if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) !=
738 sigp_order_code_accepted)
739 return -EIO;
740
741 rc = pcpu_alloc_lowcore(pcpu, cpu);
742 if (rc)
743 return rc;
744 pcpu_prepare_secondary(pcpu, cpu);
745 pcpu_attach_task(pcpu, tidle);
746 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
747 while (!cpu_online(cpu))
748 cpu_relax();
749 return 0;
750 }
751
752 static int __init setup_possible_cpus(char *s)
753 {
754 int max, cpu;
755
756 if (kstrtoint(s, 0, &max) < 0)
757 return 0;
758 init_cpu_possible(cpumask_of(0));
759 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
760 set_cpu_possible(cpu, true);
761 return 0;
762 }
763 early_param("possible_cpus", setup_possible_cpus);
764
765 #ifdef CONFIG_HOTPLUG_CPU
766
767 int __cpu_disable(void)
768 {
769 unsigned long cregs[16];
770
771 set_cpu_online(smp_processor_id(), false);
772 /* Disable pseudo page faults on this cpu. */
773 pfault_fini();
774 /* Disable interrupt sources via control register. */
775 __ctl_store(cregs, 0, 15);
776 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
777 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
778 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
779 __ctl_load(cregs, 0, 15);
780 return 0;
781 }
782
783 void __cpu_die(unsigned int cpu)
784 {
785 struct pcpu *pcpu;
786
787 /* Wait until target cpu is down */
788 pcpu = pcpu_devices + cpu;
789 while (!pcpu_stopped(pcpu))
790 cpu_relax();
791 pcpu_free_lowcore(pcpu);
792 atomic_dec(&init_mm.context.attach_count);
793 }
794
795 void __noreturn cpu_die(void)
796 {
797 idle_task_exit();
798 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
799 for (;;) ;
800 }
801
802 #endif /* CONFIG_HOTPLUG_CPU */
803
804 void __init smp_prepare_cpus(unsigned int max_cpus)
805 {
806 /* request the 0x1201 emergency signal external interrupt */
807 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
808 panic("Couldn't request external interrupt 0x1201");
809 /* request the 0x1202 external call external interrupt */
810 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
811 panic("Couldn't request external interrupt 0x1202");
812 smp_detect_cpus();
813 }
814
815 void __init smp_prepare_boot_cpu(void)
816 {
817 struct pcpu *pcpu = pcpu_devices;
818
819 boot_cpu_address = stap();
820 pcpu->state = CPU_STATE_CONFIGURED;
821 pcpu->address = boot_cpu_address;
822 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
823 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
824 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
825 S390_lowcore.percpu_offset = __per_cpu_offset[0];
826 cpu_set_polarization(0, POLARIZATION_UNKNOWN);
827 set_cpu_present(0, true);
828 set_cpu_online(0, true);
829 }
830
831 void __init smp_cpus_done(unsigned int max_cpus)
832 {
833 }
834
835 void __init smp_setup_processor_id(void)
836 {
837 S390_lowcore.cpu_nr = 0;
838 }
839
840 /*
841 * the frequency of the profiling timer can be changed
842 * by writing a multiplier value into /proc/profile.
843 *
844 * usually you want to run this on all CPUs ;)
845 */
846 int setup_profiling_timer(unsigned int multiplier)
847 {
848 return 0;
849 }
850
851 #ifdef CONFIG_HOTPLUG_CPU
852 static ssize_t cpu_configure_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
854 {
855 ssize_t count;
856
857 mutex_lock(&smp_cpu_state_mutex);
858 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
859 mutex_unlock(&smp_cpu_state_mutex);
860 return count;
861 }
862
863 static ssize_t cpu_configure_store(struct device *dev,
864 struct device_attribute *attr,
865 const char *buf, size_t count)
866 {
867 struct pcpu *pcpu;
868 int cpu, val, rc;
869 char delim;
870
871 if (sscanf(buf, "%d %c", &val, &delim) != 1)
872 return -EINVAL;
873 if (val != 0 && val != 1)
874 return -EINVAL;
875 get_online_cpus();
876 mutex_lock(&smp_cpu_state_mutex);
877 rc = -EBUSY;
878 /* disallow configuration changes of online cpus and cpu 0 */
879 cpu = dev->id;
880 if (cpu_online(cpu) || cpu == 0)
881 goto out;
882 pcpu = pcpu_devices + cpu;
883 rc = 0;
884 switch (val) {
885 case 0:
886 if (pcpu->state != CPU_STATE_CONFIGURED)
887 break;
888 rc = sclp_cpu_deconfigure(pcpu->address);
889 if (rc)
890 break;
891 pcpu->state = CPU_STATE_STANDBY;
892 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
893 topology_expect_change();
894 break;
895 case 1:
896 if (pcpu->state != CPU_STATE_STANDBY)
897 break;
898 rc = sclp_cpu_configure(pcpu->address);
899 if (rc)
900 break;
901 pcpu->state = CPU_STATE_CONFIGURED;
902 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
903 topology_expect_change();
904 break;
905 default:
906 break;
907 }
908 out:
909 mutex_unlock(&smp_cpu_state_mutex);
910 put_online_cpus();
911 return rc ? rc : count;
912 }
913 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
914 #endif /* CONFIG_HOTPLUG_CPU */
915
916 static ssize_t show_cpu_address(struct device *dev,
917 struct device_attribute *attr, char *buf)
918 {
919 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
920 }
921 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
922
923 static struct attribute *cpu_common_attrs[] = {
924 #ifdef CONFIG_HOTPLUG_CPU
925 &dev_attr_configure.attr,
926 #endif
927 &dev_attr_address.attr,
928 NULL,
929 };
930
931 static struct attribute_group cpu_common_attr_group = {
932 .attrs = cpu_common_attrs,
933 };
934
935 static ssize_t show_idle_count(struct device *dev,
936 struct device_attribute *attr, char *buf)
937 {
938 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
939 unsigned long long idle_count;
940 unsigned int sequence;
941
942 do {
943 sequence = ACCESS_ONCE(idle->sequence);
944 idle_count = ACCESS_ONCE(idle->idle_count);
945 if (ACCESS_ONCE(idle->idle_enter))
946 idle_count++;
947 } while ((sequence & 1) || (idle->sequence != sequence));
948 return sprintf(buf, "%llu\n", idle_count);
949 }
950 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
951
952 static ssize_t show_idle_time(struct device *dev,
953 struct device_attribute *attr, char *buf)
954 {
955 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
956 unsigned long long now, idle_time, idle_enter, idle_exit;
957 unsigned int sequence;
958
959 do {
960 now = get_clock();
961 sequence = ACCESS_ONCE(idle->sequence);
962 idle_time = ACCESS_ONCE(idle->idle_time);
963 idle_enter = ACCESS_ONCE(idle->idle_enter);
964 idle_exit = ACCESS_ONCE(idle->idle_exit);
965 } while ((sequence & 1) || (idle->sequence != sequence));
966 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
967 return sprintf(buf, "%llu\n", idle_time >> 12);
968 }
969 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
970
971 static struct attribute *cpu_online_attrs[] = {
972 &dev_attr_idle_count.attr,
973 &dev_attr_idle_time_us.attr,
974 NULL,
975 };
976
977 static struct attribute_group cpu_online_attr_group = {
978 .attrs = cpu_online_attrs,
979 };
980
981 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
982 unsigned long action, void *hcpu)
983 {
984 unsigned int cpu = (unsigned int)(long)hcpu;
985 struct cpu *c = &pcpu_devices[cpu].cpu;
986 struct device *s = &c->dev;
987 struct s390_idle_data *idle;
988 int err = 0;
989
990 switch (action) {
991 case CPU_ONLINE:
992 case CPU_ONLINE_FROZEN:
993 idle = &per_cpu(s390_idle, cpu);
994 memset(idle, 0, sizeof(struct s390_idle_data));
995 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
996 break;
997 case CPU_DEAD:
998 case CPU_DEAD_FROZEN:
999 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1000 break;
1001 }
1002 return notifier_from_errno(err);
1003 }
1004
1005 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1006 .notifier_call = smp_cpu_notify,
1007 };
1008
1009 static int __devinit smp_add_present_cpu(int cpu)
1010 {
1011 struct cpu *c = &pcpu_devices[cpu].cpu;
1012 struct device *s = &c->dev;
1013 int rc;
1014
1015 c->hotpluggable = 1;
1016 rc = register_cpu(c, cpu);
1017 if (rc)
1018 goto out;
1019 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1020 if (rc)
1021 goto out_cpu;
1022 if (cpu_online(cpu)) {
1023 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1024 if (rc)
1025 goto out_online;
1026 }
1027 rc = topology_cpu_init(c);
1028 if (rc)
1029 goto out_topology;
1030 return 0;
1031
1032 out_topology:
1033 if (cpu_online(cpu))
1034 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1035 out_online:
1036 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1037 out_cpu:
1038 #ifdef CONFIG_HOTPLUG_CPU
1039 unregister_cpu(c);
1040 #endif
1041 out:
1042 return rc;
1043 }
1044
1045 #ifdef CONFIG_HOTPLUG_CPU
1046
1047 int __ref smp_rescan_cpus(void)
1048 {
1049 struct sclp_cpu_info *info;
1050 int nr;
1051
1052 info = smp_get_cpu_info();
1053 if (!info)
1054 return -ENOMEM;
1055 get_online_cpus();
1056 mutex_lock(&smp_cpu_state_mutex);
1057 nr = __smp_rescan_cpus(info, 1);
1058 mutex_unlock(&smp_cpu_state_mutex);
1059 put_online_cpus();
1060 kfree(info);
1061 if (nr)
1062 topology_schedule_update();
1063 return 0;
1064 }
1065
1066 static ssize_t __ref rescan_store(struct device *dev,
1067 struct device_attribute *attr,
1068 const char *buf,
1069 size_t count)
1070 {
1071 int rc;
1072
1073 rc = smp_rescan_cpus();
1074 return rc ? rc : count;
1075 }
1076 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1077 #endif /* CONFIG_HOTPLUG_CPU */
1078
1079 static int __init s390_smp_init(void)
1080 {
1081 int cpu, rc;
1082
1083 register_cpu_notifier(&smp_cpu_nb);
1084 #ifdef CONFIG_HOTPLUG_CPU
1085 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1086 if (rc)
1087 return rc;
1088 #endif
1089 for_each_present_cpu(cpu) {
1090 rc = smp_add_present_cpu(cpu);
1091 if (rc)
1092 return rc;
1093 }
1094 return 0;
1095 }
1096 subsys_initcall(s390_smp_init);
This page took 0.077548 seconds and 6 git commands to generate.