regulator: pwm: implement ->enable(), ->disable() and ->is_enabled methods
[deliverable/linux.git] / arch / s390 / kernel / vtime.c
1 /*
2 * Virtual cpu timer based timer functions.
3 *
4 * Copyright IBM Corp. 2004, 2012
5 * Author(s): Jan Glauber <jan.glauber@de.ibm.com>
6 */
7
8 #include <linux/kernel_stat.h>
9 #include <linux/export.h>
10 #include <linux/kernel.h>
11 #include <linux/timex.h>
12 #include <linux/types.h>
13 #include <linux/time.h>
14
15 #include <asm/cputime.h>
16 #include <asm/vtimer.h>
17 #include <asm/vtime.h>
18 #include <asm/cpu_mf.h>
19 #include <asm/smp.h>
20
21 static void virt_timer_expire(void);
22
23 static LIST_HEAD(virt_timer_list);
24 static DEFINE_SPINLOCK(virt_timer_lock);
25 static atomic64_t virt_timer_current;
26 static atomic64_t virt_timer_elapsed;
27
28 static DEFINE_PER_CPU(u64, mt_cycles[32]);
29 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
30 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
31 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
32
33 static inline u64 get_vtimer(void)
34 {
35 u64 timer;
36
37 asm volatile("stpt %0" : "=m" (timer));
38 return timer;
39 }
40
41 static inline void set_vtimer(u64 expires)
42 {
43 u64 timer;
44
45 asm volatile(
46 " stpt %0\n" /* Store current cpu timer value */
47 " spt %1" /* Set new value imm. afterwards */
48 : "=m" (timer) : "m" (expires));
49 S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
50 S390_lowcore.last_update_timer = expires;
51 }
52
53 static inline int virt_timer_forward(u64 elapsed)
54 {
55 BUG_ON(!irqs_disabled());
56
57 if (list_empty(&virt_timer_list))
58 return 0;
59 elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
60 return elapsed >= atomic64_read(&virt_timer_current);
61 }
62
63 /*
64 * Update process times based on virtual cpu times stored by entry.S
65 * to the lowcore fields user_timer, system_timer & steal_clock.
66 */
67 static int do_account_vtime(struct task_struct *tsk, int hardirq_offset)
68 {
69 struct thread_info *ti = task_thread_info(tsk);
70 u64 timer, clock, user, system, steal;
71 u64 user_scaled, system_scaled;
72 int i;
73
74 timer = S390_lowcore.last_update_timer;
75 clock = S390_lowcore.last_update_clock;
76 asm volatile(
77 " stpt %0\n" /* Store current cpu timer value */
78 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
79 " stckf %1" /* Store current tod clock value */
80 #else
81 " stck %1" /* Store current tod clock value */
82 #endif
83 : "=m" (S390_lowcore.last_update_timer),
84 "=m" (S390_lowcore.last_update_clock));
85 S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
86 S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
87
88 /* Do MT utilization calculation */
89 if (smp_cpu_mtid &&
90 time_after64(jiffies_64, __this_cpu_read(mt_scaling_jiffies))) {
91 u64 cycles_new[32], *cycles_old;
92 u64 delta, mult, div;
93
94 cycles_old = this_cpu_ptr(mt_cycles);
95 if (stcctm5(smp_cpu_mtid + 1, cycles_new) < 2) {
96 mult = div = 0;
97 for (i = 0; i <= smp_cpu_mtid; i++) {
98 delta = cycles_new[i] - cycles_old[i];
99 mult += delta;
100 div += (i + 1) * delta;
101 }
102 if (mult > 0) {
103 /* Update scaling factor */
104 __this_cpu_write(mt_scaling_mult, mult);
105 __this_cpu_write(mt_scaling_div, div);
106 memcpy(cycles_old, cycles_new,
107 sizeof(u64) * (smp_cpu_mtid + 1));
108 }
109 }
110 __this_cpu_write(mt_scaling_jiffies, jiffies_64);
111 }
112
113 user = S390_lowcore.user_timer - ti->user_timer;
114 S390_lowcore.steal_timer -= user;
115 ti->user_timer = S390_lowcore.user_timer;
116
117 system = S390_lowcore.system_timer - ti->system_timer;
118 S390_lowcore.steal_timer -= system;
119 ti->system_timer = S390_lowcore.system_timer;
120
121 user_scaled = user;
122 system_scaled = system;
123 /* Do MT utilization scaling */
124 if (smp_cpu_mtid) {
125 u64 mult = __this_cpu_read(mt_scaling_mult);
126 u64 div = __this_cpu_read(mt_scaling_div);
127
128 user_scaled = (user_scaled * mult) / div;
129 system_scaled = (system_scaled * mult) / div;
130 }
131 account_user_time(tsk, user, user_scaled);
132 account_system_time(tsk, hardirq_offset, system, system_scaled);
133
134 steal = S390_lowcore.steal_timer;
135 if ((s64) steal > 0) {
136 S390_lowcore.steal_timer = 0;
137 account_steal_time(steal);
138 }
139
140 return virt_timer_forward(user + system);
141 }
142
143 void vtime_task_switch(struct task_struct *prev)
144 {
145 struct thread_info *ti;
146
147 do_account_vtime(prev, 0);
148 ti = task_thread_info(prev);
149 ti->user_timer = S390_lowcore.user_timer;
150 ti->system_timer = S390_lowcore.system_timer;
151 ti = task_thread_info(current);
152 S390_lowcore.user_timer = ti->user_timer;
153 S390_lowcore.system_timer = ti->system_timer;
154 }
155
156 /*
157 * In s390, accounting pending user time also implies
158 * accounting system time in order to correctly compute
159 * the stolen time accounting.
160 */
161 void vtime_account_user(struct task_struct *tsk)
162 {
163 if (do_account_vtime(tsk, HARDIRQ_OFFSET))
164 virt_timer_expire();
165 }
166
167 /*
168 * Update process times based on virtual cpu times stored by entry.S
169 * to the lowcore fields user_timer, system_timer & steal_clock.
170 */
171 void vtime_account_irq_enter(struct task_struct *tsk)
172 {
173 struct thread_info *ti = task_thread_info(tsk);
174 u64 timer, system, system_scaled;
175
176 timer = S390_lowcore.last_update_timer;
177 S390_lowcore.last_update_timer = get_vtimer();
178 S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
179
180 system = S390_lowcore.system_timer - ti->system_timer;
181 S390_lowcore.steal_timer -= system;
182 ti->system_timer = S390_lowcore.system_timer;
183 system_scaled = system;
184 /* Do MT utilization scaling */
185 if (smp_cpu_mtid) {
186 u64 mult = __this_cpu_read(mt_scaling_mult);
187 u64 div = __this_cpu_read(mt_scaling_div);
188
189 system_scaled = (system_scaled * mult) / div;
190 }
191 account_system_time(tsk, 0, system, system_scaled);
192
193 virt_timer_forward(system);
194 }
195 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
196
197 void vtime_account_system(struct task_struct *tsk)
198 __attribute__((alias("vtime_account_irq_enter")));
199 EXPORT_SYMBOL_GPL(vtime_account_system);
200
201 /*
202 * Sorted add to a list. List is linear searched until first bigger
203 * element is found.
204 */
205 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
206 {
207 struct vtimer_list *tmp;
208
209 list_for_each_entry(tmp, head, entry) {
210 if (tmp->expires > timer->expires) {
211 list_add_tail(&timer->entry, &tmp->entry);
212 return;
213 }
214 }
215 list_add_tail(&timer->entry, head);
216 }
217
218 /*
219 * Handler for expired virtual CPU timer.
220 */
221 static void virt_timer_expire(void)
222 {
223 struct vtimer_list *timer, *tmp;
224 unsigned long elapsed;
225 LIST_HEAD(cb_list);
226
227 /* walk timer list, fire all expired timers */
228 spin_lock(&virt_timer_lock);
229 elapsed = atomic64_read(&virt_timer_elapsed);
230 list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
231 if (timer->expires < elapsed)
232 /* move expired timer to the callback queue */
233 list_move_tail(&timer->entry, &cb_list);
234 else
235 timer->expires -= elapsed;
236 }
237 if (!list_empty(&virt_timer_list)) {
238 timer = list_first_entry(&virt_timer_list,
239 struct vtimer_list, entry);
240 atomic64_set(&virt_timer_current, timer->expires);
241 }
242 atomic64_sub(elapsed, &virt_timer_elapsed);
243 spin_unlock(&virt_timer_lock);
244
245 /* Do callbacks and recharge periodic timers */
246 list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
247 list_del_init(&timer->entry);
248 timer->function(timer->data);
249 if (timer->interval) {
250 /* Recharge interval timer */
251 timer->expires = timer->interval +
252 atomic64_read(&virt_timer_elapsed);
253 spin_lock(&virt_timer_lock);
254 list_add_sorted(timer, &virt_timer_list);
255 spin_unlock(&virt_timer_lock);
256 }
257 }
258 }
259
260 void init_virt_timer(struct vtimer_list *timer)
261 {
262 timer->function = NULL;
263 INIT_LIST_HEAD(&timer->entry);
264 }
265 EXPORT_SYMBOL(init_virt_timer);
266
267 static inline int vtimer_pending(struct vtimer_list *timer)
268 {
269 return !list_empty(&timer->entry);
270 }
271
272 static void internal_add_vtimer(struct vtimer_list *timer)
273 {
274 if (list_empty(&virt_timer_list)) {
275 /* First timer, just program it. */
276 atomic64_set(&virt_timer_current, timer->expires);
277 atomic64_set(&virt_timer_elapsed, 0);
278 list_add(&timer->entry, &virt_timer_list);
279 } else {
280 /* Update timer against current base. */
281 timer->expires += atomic64_read(&virt_timer_elapsed);
282 if (likely((s64) timer->expires <
283 (s64) atomic64_read(&virt_timer_current)))
284 /* The new timer expires before the current timer. */
285 atomic64_set(&virt_timer_current, timer->expires);
286 /* Insert new timer into the list. */
287 list_add_sorted(timer, &virt_timer_list);
288 }
289 }
290
291 static void __add_vtimer(struct vtimer_list *timer, int periodic)
292 {
293 unsigned long flags;
294
295 timer->interval = periodic ? timer->expires : 0;
296 spin_lock_irqsave(&virt_timer_lock, flags);
297 internal_add_vtimer(timer);
298 spin_unlock_irqrestore(&virt_timer_lock, flags);
299 }
300
301 /*
302 * add_virt_timer - add an oneshot virtual CPU timer
303 */
304 void add_virt_timer(struct vtimer_list *timer)
305 {
306 __add_vtimer(timer, 0);
307 }
308 EXPORT_SYMBOL(add_virt_timer);
309
310 /*
311 * add_virt_timer_int - add an interval virtual CPU timer
312 */
313 void add_virt_timer_periodic(struct vtimer_list *timer)
314 {
315 __add_vtimer(timer, 1);
316 }
317 EXPORT_SYMBOL(add_virt_timer_periodic);
318
319 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
320 {
321 unsigned long flags;
322 int rc;
323
324 BUG_ON(!timer->function);
325
326 if (timer->expires == expires && vtimer_pending(timer))
327 return 1;
328 spin_lock_irqsave(&virt_timer_lock, flags);
329 rc = vtimer_pending(timer);
330 if (rc)
331 list_del_init(&timer->entry);
332 timer->interval = periodic ? expires : 0;
333 timer->expires = expires;
334 internal_add_vtimer(timer);
335 spin_unlock_irqrestore(&virt_timer_lock, flags);
336 return rc;
337 }
338
339 /*
340 * returns whether it has modified a pending timer (1) or not (0)
341 */
342 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
343 {
344 return __mod_vtimer(timer, expires, 0);
345 }
346 EXPORT_SYMBOL(mod_virt_timer);
347
348 /*
349 * returns whether it has modified a pending timer (1) or not (0)
350 */
351 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
352 {
353 return __mod_vtimer(timer, expires, 1);
354 }
355 EXPORT_SYMBOL(mod_virt_timer_periodic);
356
357 /*
358 * Delete a virtual timer.
359 *
360 * returns whether the deleted timer was pending (1) or not (0)
361 */
362 int del_virt_timer(struct vtimer_list *timer)
363 {
364 unsigned long flags;
365
366 if (!vtimer_pending(timer))
367 return 0;
368 spin_lock_irqsave(&virt_timer_lock, flags);
369 list_del_init(&timer->entry);
370 spin_unlock_irqrestore(&virt_timer_lock, flags);
371 return 1;
372 }
373 EXPORT_SYMBOL(del_virt_timer);
374
375 /*
376 * Start the virtual CPU timer on the current CPU.
377 */
378 void vtime_init(void)
379 {
380 /* set initial cpu timer */
381 set_vtimer(VTIMER_MAX_SLICE);
382 /* Setup initial MT scaling values */
383 if (smp_cpu_mtid) {
384 __this_cpu_write(mt_scaling_jiffies, jiffies);
385 __this_cpu_write(mt_scaling_mult, 1);
386 __this_cpu_write(mt_scaling_div, 1);
387 stcctm5(smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
388 }
389 }
This page took 0.152448 seconds and 5 git commands to generate.