87bd602f326c02053542a7544f3d5d171f97b14e
[deliverable/linux.git] / arch / s390 / kvm / kvm-s390.c
1 /*
2 * hosting zSeries kernel virtual machines
3 *
4 * Copyright IBM Corp. 2008, 2009
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2 only)
8 * as published by the Free Software Foundation.
9 *
10 * Author(s): Carsten Otte <cotte@de.ibm.com>
11 * Christian Borntraeger <borntraeger@de.ibm.com>
12 * Heiko Carstens <heiko.carstens@de.ibm.com>
13 * Christian Ehrhardt <ehrhardt@de.ibm.com>
14 * Jason J. Herne <jjherne@us.ibm.com>
15 */
16
17 #include <linux/compiler.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/vmalloc.h>
29 #include <asm/asm-offsets.h>
30 #include <asm/lowcore.h>
31 #include <asm/etr.h>
32 #include <asm/pgtable.h>
33 #include <asm/nmi.h>
34 #include <asm/switch_to.h>
35 #include <asm/isc.h>
36 #include <asm/sclp.h>
37 #include "kvm-s390.h"
38 #include "gaccess.h"
39
40 #define KMSG_COMPONENT "kvm-s390"
41 #undef pr_fmt
42 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
43
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46 #include "trace-s390.h"
47
48 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
49 #define LOCAL_IRQS 32
50 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
51 (KVM_MAX_VCPUS + LOCAL_IRQS))
52
53 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
54
55 struct kvm_stats_debugfs_item debugfs_entries[] = {
56 { "userspace_handled", VCPU_STAT(exit_userspace) },
57 { "exit_null", VCPU_STAT(exit_null) },
58 { "exit_validity", VCPU_STAT(exit_validity) },
59 { "exit_stop_request", VCPU_STAT(exit_stop_request) },
60 { "exit_external_request", VCPU_STAT(exit_external_request) },
61 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62 { "exit_instruction", VCPU_STAT(exit_instruction) },
63 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
64 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
68 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69 { "instruction_lctl", VCPU_STAT(instruction_lctl) },
70 { "instruction_stctl", VCPU_STAT(instruction_stctl) },
71 { "instruction_stctg", VCPU_STAT(instruction_stctg) },
72 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73 { "deliver_external_call", VCPU_STAT(deliver_external_call) },
74 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
75 { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
76 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
77 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
78 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
79 { "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
80 { "exit_wait_state", VCPU_STAT(exit_wait_state) },
81 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82 { "instruction_stidp", VCPU_STAT(instruction_stidp) },
83 { "instruction_spx", VCPU_STAT(instruction_spx) },
84 { "instruction_stpx", VCPU_STAT(instruction_stpx) },
85 { "instruction_stap", VCPU_STAT(instruction_stap) },
86 { "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88 { "instruction_stsch", VCPU_STAT(instruction_stsch) },
89 { "instruction_chsc", VCPU_STAT(instruction_chsc) },
90 { "instruction_essa", VCPU_STAT(instruction_essa) },
91 { "instruction_stsi", VCPU_STAT(instruction_stsi) },
92 { "instruction_stfl", VCPU_STAT(instruction_stfl) },
93 { "instruction_tprot", VCPU_STAT(instruction_tprot) },
94 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
99 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
102 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
105 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
106 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
108 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
109 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110 { "diagnose_10", VCPU_STAT(diagnose_10) },
111 { "diagnose_44", VCPU_STAT(diagnose_44) },
112 { "diagnose_9c", VCPU_STAT(diagnose_9c) },
113 { "diagnose_258", VCPU_STAT(diagnose_258) },
114 { "diagnose_308", VCPU_STAT(diagnose_308) },
115 { "diagnose_500", VCPU_STAT(diagnose_500) },
116 { NULL }
117 };
118
119 /* upper facilities limit for kvm */
120 unsigned long kvm_s390_fac_list_mask[] = {
121 0xffe6fffbfcfdfc40UL,
122 0x005e800000000000UL,
123 };
124
125 unsigned long kvm_s390_fac_list_mask_size(void)
126 {
127 BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
128 return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 }
130
131 static struct gmap_notifier gmap_notifier;
132 debug_info_t *kvm_s390_dbf;
133
134 /* Section: not file related */
135 int kvm_arch_hardware_enable(void)
136 {
137 /* every s390 is virtualization enabled ;-) */
138 return 0;
139 }
140
141 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);
142
143 /*
144 * This callback is executed during stop_machine(). All CPUs are therefore
145 * temporarily stopped. In order not to change guest behavior, we have to
146 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
147 * so a CPU won't be stopped while calculating with the epoch.
148 */
149 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
150 void *v)
151 {
152 struct kvm *kvm;
153 struct kvm_vcpu *vcpu;
154 int i;
155 unsigned long long *delta = v;
156
157 list_for_each_entry(kvm, &vm_list, vm_list) {
158 kvm->arch.epoch -= *delta;
159 kvm_for_each_vcpu(i, vcpu, kvm) {
160 vcpu->arch.sie_block->epoch -= *delta;
161 }
162 }
163 return NOTIFY_OK;
164 }
165
166 static struct notifier_block kvm_clock_notifier = {
167 .notifier_call = kvm_clock_sync,
168 };
169
170 int kvm_arch_hardware_setup(void)
171 {
172 gmap_notifier.notifier_call = kvm_gmap_notifier;
173 gmap_register_ipte_notifier(&gmap_notifier);
174 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
175 &kvm_clock_notifier);
176 return 0;
177 }
178
179 void kvm_arch_hardware_unsetup(void)
180 {
181 gmap_unregister_ipte_notifier(&gmap_notifier);
182 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
183 &kvm_clock_notifier);
184 }
185
186 int kvm_arch_init(void *opaque)
187 {
188 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
189 if (!kvm_s390_dbf)
190 return -ENOMEM;
191
192 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
193 debug_unregister(kvm_s390_dbf);
194 return -ENOMEM;
195 }
196
197 /* Register floating interrupt controller interface. */
198 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
199 }
200
201 void kvm_arch_exit(void)
202 {
203 debug_unregister(kvm_s390_dbf);
204 }
205
206 /* Section: device related */
207 long kvm_arch_dev_ioctl(struct file *filp,
208 unsigned int ioctl, unsigned long arg)
209 {
210 if (ioctl == KVM_S390_ENABLE_SIE)
211 return s390_enable_sie();
212 return -EINVAL;
213 }
214
215 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216 {
217 int r;
218
219 switch (ext) {
220 case KVM_CAP_S390_PSW:
221 case KVM_CAP_S390_GMAP:
222 case KVM_CAP_SYNC_MMU:
223 #ifdef CONFIG_KVM_S390_UCONTROL
224 case KVM_CAP_S390_UCONTROL:
225 #endif
226 case KVM_CAP_ASYNC_PF:
227 case KVM_CAP_SYNC_REGS:
228 case KVM_CAP_ONE_REG:
229 case KVM_CAP_ENABLE_CAP:
230 case KVM_CAP_S390_CSS_SUPPORT:
231 case KVM_CAP_IOEVENTFD:
232 case KVM_CAP_DEVICE_CTRL:
233 case KVM_CAP_ENABLE_CAP_VM:
234 case KVM_CAP_S390_IRQCHIP:
235 case KVM_CAP_VM_ATTRIBUTES:
236 case KVM_CAP_MP_STATE:
237 case KVM_CAP_S390_INJECT_IRQ:
238 case KVM_CAP_S390_USER_SIGP:
239 case KVM_CAP_S390_USER_STSI:
240 case KVM_CAP_S390_SKEYS:
241 case KVM_CAP_S390_IRQ_STATE:
242 r = 1;
243 break;
244 case KVM_CAP_S390_MEM_OP:
245 r = MEM_OP_MAX_SIZE;
246 break;
247 case KVM_CAP_NR_VCPUS:
248 case KVM_CAP_MAX_VCPUS:
249 r = KVM_MAX_VCPUS;
250 break;
251 case KVM_CAP_NR_MEMSLOTS:
252 r = KVM_USER_MEM_SLOTS;
253 break;
254 case KVM_CAP_S390_COW:
255 r = MACHINE_HAS_ESOP;
256 break;
257 case KVM_CAP_S390_VECTOR_REGISTERS:
258 r = MACHINE_HAS_VX;
259 break;
260 default:
261 r = 0;
262 }
263 return r;
264 }
265
266 static void kvm_s390_sync_dirty_log(struct kvm *kvm,
267 struct kvm_memory_slot *memslot)
268 {
269 gfn_t cur_gfn, last_gfn;
270 unsigned long address;
271 struct gmap *gmap = kvm->arch.gmap;
272
273 down_read(&gmap->mm->mmap_sem);
274 /* Loop over all guest pages */
275 last_gfn = memslot->base_gfn + memslot->npages;
276 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
277 address = gfn_to_hva_memslot(memslot, cur_gfn);
278
279 if (gmap_test_and_clear_dirty(address, gmap))
280 mark_page_dirty(kvm, cur_gfn);
281 }
282 up_read(&gmap->mm->mmap_sem);
283 }
284
285 /* Section: vm related */
286 /*
287 * Get (and clear) the dirty memory log for a memory slot.
288 */
289 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
290 struct kvm_dirty_log *log)
291 {
292 int r;
293 unsigned long n;
294 struct kvm_memslots *slots;
295 struct kvm_memory_slot *memslot;
296 int is_dirty = 0;
297
298 mutex_lock(&kvm->slots_lock);
299
300 r = -EINVAL;
301 if (log->slot >= KVM_USER_MEM_SLOTS)
302 goto out;
303
304 slots = kvm_memslots(kvm);
305 memslot = id_to_memslot(slots, log->slot);
306 r = -ENOENT;
307 if (!memslot->dirty_bitmap)
308 goto out;
309
310 kvm_s390_sync_dirty_log(kvm, memslot);
311 r = kvm_get_dirty_log(kvm, log, &is_dirty);
312 if (r)
313 goto out;
314
315 /* Clear the dirty log */
316 if (is_dirty) {
317 n = kvm_dirty_bitmap_bytes(memslot);
318 memset(memslot->dirty_bitmap, 0, n);
319 }
320 r = 0;
321 out:
322 mutex_unlock(&kvm->slots_lock);
323 return r;
324 }
325
326 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
327 {
328 int r;
329
330 if (cap->flags)
331 return -EINVAL;
332
333 switch (cap->cap) {
334 case KVM_CAP_S390_IRQCHIP:
335 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
336 kvm->arch.use_irqchip = 1;
337 r = 0;
338 break;
339 case KVM_CAP_S390_USER_SIGP:
340 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
341 kvm->arch.user_sigp = 1;
342 r = 0;
343 break;
344 case KVM_CAP_S390_VECTOR_REGISTERS:
345 if (MACHINE_HAS_VX) {
346 set_kvm_facility(kvm->arch.model.fac->mask, 129);
347 set_kvm_facility(kvm->arch.model.fac->list, 129);
348 r = 0;
349 } else
350 r = -EINVAL;
351 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
352 r ? "(not available)" : "(success)");
353 break;
354 case KVM_CAP_S390_USER_STSI:
355 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
356 kvm->arch.user_stsi = 1;
357 r = 0;
358 break;
359 default:
360 r = -EINVAL;
361 break;
362 }
363 return r;
364 }
365
366 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
367 {
368 int ret;
369
370 switch (attr->attr) {
371 case KVM_S390_VM_MEM_LIMIT_SIZE:
372 ret = 0;
373 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
374 kvm->arch.gmap->asce_end);
375 if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr))
376 ret = -EFAULT;
377 break;
378 default:
379 ret = -ENXIO;
380 break;
381 }
382 return ret;
383 }
384
385 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
386 {
387 int ret;
388 unsigned int idx;
389 switch (attr->attr) {
390 case KVM_S390_VM_MEM_ENABLE_CMMA:
391 /* enable CMMA only for z10 and later (EDAT_1) */
392 ret = -EINVAL;
393 if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
394 break;
395
396 ret = -EBUSY;
397 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
398 mutex_lock(&kvm->lock);
399 if (atomic_read(&kvm->online_vcpus) == 0) {
400 kvm->arch.use_cmma = 1;
401 ret = 0;
402 }
403 mutex_unlock(&kvm->lock);
404 break;
405 case KVM_S390_VM_MEM_CLR_CMMA:
406 ret = -EINVAL;
407 if (!kvm->arch.use_cmma)
408 break;
409
410 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
411 mutex_lock(&kvm->lock);
412 idx = srcu_read_lock(&kvm->srcu);
413 s390_reset_cmma(kvm->arch.gmap->mm);
414 srcu_read_unlock(&kvm->srcu, idx);
415 mutex_unlock(&kvm->lock);
416 ret = 0;
417 break;
418 case KVM_S390_VM_MEM_LIMIT_SIZE: {
419 unsigned long new_limit;
420
421 if (kvm_is_ucontrol(kvm))
422 return -EINVAL;
423
424 if (get_user(new_limit, (u64 __user *)attr->addr))
425 return -EFAULT;
426
427 if (new_limit > kvm->arch.gmap->asce_end)
428 return -E2BIG;
429
430 ret = -EBUSY;
431 mutex_lock(&kvm->lock);
432 if (atomic_read(&kvm->online_vcpus) == 0) {
433 /* gmap_alloc will round the limit up */
434 struct gmap *new = gmap_alloc(current->mm, new_limit);
435
436 if (!new) {
437 ret = -ENOMEM;
438 } else {
439 gmap_free(kvm->arch.gmap);
440 new->private = kvm;
441 kvm->arch.gmap = new;
442 ret = 0;
443 }
444 }
445 mutex_unlock(&kvm->lock);
446 VM_EVENT(kvm, 3, "SET: max guest memory: %lu bytes", new_limit);
447 break;
448 }
449 default:
450 ret = -ENXIO;
451 break;
452 }
453 return ret;
454 }
455
456 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
457
458 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
459 {
460 struct kvm_vcpu *vcpu;
461 int i;
462
463 if (!test_kvm_facility(kvm, 76))
464 return -EINVAL;
465
466 mutex_lock(&kvm->lock);
467 switch (attr->attr) {
468 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
469 get_random_bytes(
470 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
471 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
472 kvm->arch.crypto.aes_kw = 1;
473 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
474 break;
475 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
476 get_random_bytes(
477 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
478 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
479 kvm->arch.crypto.dea_kw = 1;
480 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
481 break;
482 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
483 kvm->arch.crypto.aes_kw = 0;
484 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
485 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
486 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
487 break;
488 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
489 kvm->arch.crypto.dea_kw = 0;
490 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
491 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
492 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
493 break;
494 default:
495 mutex_unlock(&kvm->lock);
496 return -ENXIO;
497 }
498
499 kvm_for_each_vcpu(i, vcpu, kvm) {
500 kvm_s390_vcpu_crypto_setup(vcpu);
501 exit_sie(vcpu);
502 }
503 mutex_unlock(&kvm->lock);
504 return 0;
505 }
506
507 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
508 {
509 u8 gtod_high;
510
511 if (copy_from_user(&gtod_high, (void __user *)attr->addr,
512 sizeof(gtod_high)))
513 return -EFAULT;
514
515 if (gtod_high != 0)
516 return -EINVAL;
517 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x\n", gtod_high);
518
519 return 0;
520 }
521
522 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
523 {
524 u64 gtod;
525
526 if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
527 return -EFAULT;
528
529 kvm_s390_set_tod_clock(kvm, gtod);
530 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx\n", gtod);
531 return 0;
532 }
533
534 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
535 {
536 int ret;
537
538 if (attr->flags)
539 return -EINVAL;
540
541 switch (attr->attr) {
542 case KVM_S390_VM_TOD_HIGH:
543 ret = kvm_s390_set_tod_high(kvm, attr);
544 break;
545 case KVM_S390_VM_TOD_LOW:
546 ret = kvm_s390_set_tod_low(kvm, attr);
547 break;
548 default:
549 ret = -ENXIO;
550 break;
551 }
552 return ret;
553 }
554
555 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
556 {
557 u8 gtod_high = 0;
558
559 if (copy_to_user((void __user *)attr->addr, &gtod_high,
560 sizeof(gtod_high)))
561 return -EFAULT;
562 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x\n", gtod_high);
563
564 return 0;
565 }
566
567 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
568 {
569 u64 gtod;
570
571 preempt_disable();
572 gtod = get_tod_clock() + kvm->arch.epoch;
573 preempt_enable();
574 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
575 return -EFAULT;
576 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx\n", gtod);
577
578 return 0;
579 }
580
581 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
582 {
583 int ret;
584
585 if (attr->flags)
586 return -EINVAL;
587
588 switch (attr->attr) {
589 case KVM_S390_VM_TOD_HIGH:
590 ret = kvm_s390_get_tod_high(kvm, attr);
591 break;
592 case KVM_S390_VM_TOD_LOW:
593 ret = kvm_s390_get_tod_low(kvm, attr);
594 break;
595 default:
596 ret = -ENXIO;
597 break;
598 }
599 return ret;
600 }
601
602 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
603 {
604 struct kvm_s390_vm_cpu_processor *proc;
605 int ret = 0;
606
607 mutex_lock(&kvm->lock);
608 if (atomic_read(&kvm->online_vcpus)) {
609 ret = -EBUSY;
610 goto out;
611 }
612 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
613 if (!proc) {
614 ret = -ENOMEM;
615 goto out;
616 }
617 if (!copy_from_user(proc, (void __user *)attr->addr,
618 sizeof(*proc))) {
619 memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
620 sizeof(struct cpuid));
621 kvm->arch.model.ibc = proc->ibc;
622 memcpy(kvm->arch.model.fac->list, proc->fac_list,
623 S390_ARCH_FAC_LIST_SIZE_BYTE);
624 } else
625 ret = -EFAULT;
626 kfree(proc);
627 out:
628 mutex_unlock(&kvm->lock);
629 return ret;
630 }
631
632 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
633 {
634 int ret = -ENXIO;
635
636 switch (attr->attr) {
637 case KVM_S390_VM_CPU_PROCESSOR:
638 ret = kvm_s390_set_processor(kvm, attr);
639 break;
640 }
641 return ret;
642 }
643
644 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
645 {
646 struct kvm_s390_vm_cpu_processor *proc;
647 int ret = 0;
648
649 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
650 if (!proc) {
651 ret = -ENOMEM;
652 goto out;
653 }
654 memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
655 proc->ibc = kvm->arch.model.ibc;
656 memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
657 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
658 ret = -EFAULT;
659 kfree(proc);
660 out:
661 return ret;
662 }
663
664 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
665 {
666 struct kvm_s390_vm_cpu_machine *mach;
667 int ret = 0;
668
669 mach = kzalloc(sizeof(*mach), GFP_KERNEL);
670 if (!mach) {
671 ret = -ENOMEM;
672 goto out;
673 }
674 get_cpu_id((struct cpuid *) &mach->cpuid);
675 mach->ibc = sclp.ibc;
676 memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
677 S390_ARCH_FAC_LIST_SIZE_BYTE);
678 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
679 S390_ARCH_FAC_LIST_SIZE_BYTE);
680 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
681 ret = -EFAULT;
682 kfree(mach);
683 out:
684 return ret;
685 }
686
687 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
688 {
689 int ret = -ENXIO;
690
691 switch (attr->attr) {
692 case KVM_S390_VM_CPU_PROCESSOR:
693 ret = kvm_s390_get_processor(kvm, attr);
694 break;
695 case KVM_S390_VM_CPU_MACHINE:
696 ret = kvm_s390_get_machine(kvm, attr);
697 break;
698 }
699 return ret;
700 }
701
702 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
703 {
704 int ret;
705
706 switch (attr->group) {
707 case KVM_S390_VM_MEM_CTRL:
708 ret = kvm_s390_set_mem_control(kvm, attr);
709 break;
710 case KVM_S390_VM_TOD:
711 ret = kvm_s390_set_tod(kvm, attr);
712 break;
713 case KVM_S390_VM_CPU_MODEL:
714 ret = kvm_s390_set_cpu_model(kvm, attr);
715 break;
716 case KVM_S390_VM_CRYPTO:
717 ret = kvm_s390_vm_set_crypto(kvm, attr);
718 break;
719 default:
720 ret = -ENXIO;
721 break;
722 }
723
724 return ret;
725 }
726
727 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
728 {
729 int ret;
730
731 switch (attr->group) {
732 case KVM_S390_VM_MEM_CTRL:
733 ret = kvm_s390_get_mem_control(kvm, attr);
734 break;
735 case KVM_S390_VM_TOD:
736 ret = kvm_s390_get_tod(kvm, attr);
737 break;
738 case KVM_S390_VM_CPU_MODEL:
739 ret = kvm_s390_get_cpu_model(kvm, attr);
740 break;
741 default:
742 ret = -ENXIO;
743 break;
744 }
745
746 return ret;
747 }
748
749 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
750 {
751 int ret;
752
753 switch (attr->group) {
754 case KVM_S390_VM_MEM_CTRL:
755 switch (attr->attr) {
756 case KVM_S390_VM_MEM_ENABLE_CMMA:
757 case KVM_S390_VM_MEM_CLR_CMMA:
758 case KVM_S390_VM_MEM_LIMIT_SIZE:
759 ret = 0;
760 break;
761 default:
762 ret = -ENXIO;
763 break;
764 }
765 break;
766 case KVM_S390_VM_TOD:
767 switch (attr->attr) {
768 case KVM_S390_VM_TOD_LOW:
769 case KVM_S390_VM_TOD_HIGH:
770 ret = 0;
771 break;
772 default:
773 ret = -ENXIO;
774 break;
775 }
776 break;
777 case KVM_S390_VM_CPU_MODEL:
778 switch (attr->attr) {
779 case KVM_S390_VM_CPU_PROCESSOR:
780 case KVM_S390_VM_CPU_MACHINE:
781 ret = 0;
782 break;
783 default:
784 ret = -ENXIO;
785 break;
786 }
787 break;
788 case KVM_S390_VM_CRYPTO:
789 switch (attr->attr) {
790 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
791 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
792 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
793 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
794 ret = 0;
795 break;
796 default:
797 ret = -ENXIO;
798 break;
799 }
800 break;
801 default:
802 ret = -ENXIO;
803 break;
804 }
805
806 return ret;
807 }
808
809 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
810 {
811 uint8_t *keys;
812 uint64_t hva;
813 unsigned long curkey;
814 int i, r = 0;
815
816 if (args->flags != 0)
817 return -EINVAL;
818
819 /* Is this guest using storage keys? */
820 if (!mm_use_skey(current->mm))
821 return KVM_S390_GET_SKEYS_NONE;
822
823 /* Enforce sane limit on memory allocation */
824 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
825 return -EINVAL;
826
827 keys = kmalloc_array(args->count, sizeof(uint8_t),
828 GFP_KERNEL | __GFP_NOWARN);
829 if (!keys)
830 keys = vmalloc(sizeof(uint8_t) * args->count);
831 if (!keys)
832 return -ENOMEM;
833
834 for (i = 0; i < args->count; i++) {
835 hva = gfn_to_hva(kvm, args->start_gfn + i);
836 if (kvm_is_error_hva(hva)) {
837 r = -EFAULT;
838 goto out;
839 }
840
841 curkey = get_guest_storage_key(current->mm, hva);
842 if (IS_ERR_VALUE(curkey)) {
843 r = curkey;
844 goto out;
845 }
846 keys[i] = curkey;
847 }
848
849 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
850 sizeof(uint8_t) * args->count);
851 if (r)
852 r = -EFAULT;
853 out:
854 kvfree(keys);
855 return r;
856 }
857
858 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
859 {
860 uint8_t *keys;
861 uint64_t hva;
862 int i, r = 0;
863
864 if (args->flags != 0)
865 return -EINVAL;
866
867 /* Enforce sane limit on memory allocation */
868 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
869 return -EINVAL;
870
871 keys = kmalloc_array(args->count, sizeof(uint8_t),
872 GFP_KERNEL | __GFP_NOWARN);
873 if (!keys)
874 keys = vmalloc(sizeof(uint8_t) * args->count);
875 if (!keys)
876 return -ENOMEM;
877
878 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
879 sizeof(uint8_t) * args->count);
880 if (r) {
881 r = -EFAULT;
882 goto out;
883 }
884
885 /* Enable storage key handling for the guest */
886 r = s390_enable_skey();
887 if (r)
888 goto out;
889
890 for (i = 0; i < args->count; i++) {
891 hva = gfn_to_hva(kvm, args->start_gfn + i);
892 if (kvm_is_error_hva(hva)) {
893 r = -EFAULT;
894 goto out;
895 }
896
897 /* Lowest order bit is reserved */
898 if (keys[i] & 0x01) {
899 r = -EINVAL;
900 goto out;
901 }
902
903 r = set_guest_storage_key(current->mm, hva,
904 (unsigned long)keys[i], 0);
905 if (r)
906 goto out;
907 }
908 out:
909 kvfree(keys);
910 return r;
911 }
912
913 long kvm_arch_vm_ioctl(struct file *filp,
914 unsigned int ioctl, unsigned long arg)
915 {
916 struct kvm *kvm = filp->private_data;
917 void __user *argp = (void __user *)arg;
918 struct kvm_device_attr attr;
919 int r;
920
921 switch (ioctl) {
922 case KVM_S390_INTERRUPT: {
923 struct kvm_s390_interrupt s390int;
924
925 r = -EFAULT;
926 if (copy_from_user(&s390int, argp, sizeof(s390int)))
927 break;
928 r = kvm_s390_inject_vm(kvm, &s390int);
929 break;
930 }
931 case KVM_ENABLE_CAP: {
932 struct kvm_enable_cap cap;
933 r = -EFAULT;
934 if (copy_from_user(&cap, argp, sizeof(cap)))
935 break;
936 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
937 break;
938 }
939 case KVM_CREATE_IRQCHIP: {
940 struct kvm_irq_routing_entry routing;
941
942 r = -EINVAL;
943 if (kvm->arch.use_irqchip) {
944 /* Set up dummy routing. */
945 memset(&routing, 0, sizeof(routing));
946 r = kvm_set_irq_routing(kvm, &routing, 0, 0);
947 }
948 break;
949 }
950 case KVM_SET_DEVICE_ATTR: {
951 r = -EFAULT;
952 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
953 break;
954 r = kvm_s390_vm_set_attr(kvm, &attr);
955 break;
956 }
957 case KVM_GET_DEVICE_ATTR: {
958 r = -EFAULT;
959 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
960 break;
961 r = kvm_s390_vm_get_attr(kvm, &attr);
962 break;
963 }
964 case KVM_HAS_DEVICE_ATTR: {
965 r = -EFAULT;
966 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
967 break;
968 r = kvm_s390_vm_has_attr(kvm, &attr);
969 break;
970 }
971 case KVM_S390_GET_SKEYS: {
972 struct kvm_s390_skeys args;
973
974 r = -EFAULT;
975 if (copy_from_user(&args, argp,
976 sizeof(struct kvm_s390_skeys)))
977 break;
978 r = kvm_s390_get_skeys(kvm, &args);
979 break;
980 }
981 case KVM_S390_SET_SKEYS: {
982 struct kvm_s390_skeys args;
983
984 r = -EFAULT;
985 if (copy_from_user(&args, argp,
986 sizeof(struct kvm_s390_skeys)))
987 break;
988 r = kvm_s390_set_skeys(kvm, &args);
989 break;
990 }
991 default:
992 r = -ENOTTY;
993 }
994
995 return r;
996 }
997
998 static int kvm_s390_query_ap_config(u8 *config)
999 {
1000 u32 fcn_code = 0x04000000UL;
1001 u32 cc = 0;
1002
1003 memset(config, 0, 128);
1004 asm volatile(
1005 "lgr 0,%1\n"
1006 "lgr 2,%2\n"
1007 ".long 0xb2af0000\n" /* PQAP(QCI) */
1008 "0: ipm %0\n"
1009 "srl %0,28\n"
1010 "1:\n"
1011 EX_TABLE(0b, 1b)
1012 : "+r" (cc)
1013 : "r" (fcn_code), "r" (config)
1014 : "cc", "0", "2", "memory"
1015 );
1016
1017 return cc;
1018 }
1019
1020 static int kvm_s390_apxa_installed(void)
1021 {
1022 u8 config[128];
1023 int cc;
1024
1025 if (test_facility(2) && test_facility(12)) {
1026 cc = kvm_s390_query_ap_config(config);
1027
1028 if (cc)
1029 pr_err("PQAP(QCI) failed with cc=%d", cc);
1030 else
1031 return config[0] & 0x40;
1032 }
1033
1034 return 0;
1035 }
1036
1037 static void kvm_s390_set_crycb_format(struct kvm *kvm)
1038 {
1039 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
1040
1041 if (kvm_s390_apxa_installed())
1042 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
1043 else
1044 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
1045 }
1046
1047 static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
1048 {
1049 get_cpu_id(cpu_id);
1050 cpu_id->version = 0xff;
1051 }
1052
1053 static int kvm_s390_crypto_init(struct kvm *kvm)
1054 {
1055 if (!test_kvm_facility(kvm, 76))
1056 return 0;
1057
1058 kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
1059 GFP_KERNEL | GFP_DMA);
1060 if (!kvm->arch.crypto.crycb)
1061 return -ENOMEM;
1062
1063 kvm_s390_set_crycb_format(kvm);
1064
1065 /* Enable AES/DEA protected key functions by default */
1066 kvm->arch.crypto.aes_kw = 1;
1067 kvm->arch.crypto.dea_kw = 1;
1068 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1069 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1070 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1071 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1072
1073 return 0;
1074 }
1075
1076 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1077 {
1078 int i, rc;
1079 char debug_name[16];
1080 static unsigned long sca_offset;
1081
1082 rc = -EINVAL;
1083 #ifdef CONFIG_KVM_S390_UCONTROL
1084 if (type & ~KVM_VM_S390_UCONTROL)
1085 goto out_err;
1086 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
1087 goto out_err;
1088 #else
1089 if (type)
1090 goto out_err;
1091 #endif
1092
1093 rc = s390_enable_sie();
1094 if (rc)
1095 goto out_err;
1096
1097 rc = -ENOMEM;
1098
1099 kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
1100 if (!kvm->arch.sca)
1101 goto out_err;
1102 spin_lock(&kvm_lock);
1103 sca_offset = (sca_offset + 16) & 0x7f0;
1104 kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset);
1105 spin_unlock(&kvm_lock);
1106
1107 sprintf(debug_name, "kvm-%u", current->pid);
1108
1109 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1110 if (!kvm->arch.dbf)
1111 goto out_err;
1112
1113 /*
1114 * The architectural maximum amount of facilities is 16 kbit. To store
1115 * this amount, 2 kbyte of memory is required. Thus we need a full
1116 * page to hold the guest facility list (arch.model.fac->list) and the
1117 * facility mask (arch.model.fac->mask). Its address size has to be
1118 * 31 bits and word aligned.
1119 */
1120 kvm->arch.model.fac =
1121 (struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1122 if (!kvm->arch.model.fac)
1123 goto out_err;
1124
1125 /* Populate the facility mask initially. */
1126 memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1127 S390_ARCH_FAC_LIST_SIZE_BYTE);
1128 for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
1129 if (i < kvm_s390_fac_list_mask_size())
1130 kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1131 else
1132 kvm->arch.model.fac->mask[i] = 0UL;
1133 }
1134
1135 /* Populate the facility list initially. */
1136 memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
1137 S390_ARCH_FAC_LIST_SIZE_BYTE);
1138
1139 kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1140 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1141
1142 if (kvm_s390_crypto_init(kvm) < 0)
1143 goto out_err;
1144
1145 spin_lock_init(&kvm->arch.float_int.lock);
1146 for (i = 0; i < FIRQ_LIST_COUNT; i++)
1147 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1148 init_waitqueue_head(&kvm->arch.ipte_wq);
1149 mutex_init(&kvm->arch.ipte_mutex);
1150
1151 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1152 VM_EVENT(kvm, 3, "vm created with type %lu", type);
1153
1154 if (type & KVM_VM_S390_UCONTROL) {
1155 kvm->arch.gmap = NULL;
1156 } else {
1157 kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1);
1158 if (!kvm->arch.gmap)
1159 goto out_err;
1160 kvm->arch.gmap->private = kvm;
1161 kvm->arch.gmap->pfault_enabled = 0;
1162 }
1163
1164 kvm->arch.css_support = 0;
1165 kvm->arch.use_irqchip = 0;
1166 kvm->arch.epoch = 0;
1167
1168 spin_lock_init(&kvm->arch.start_stop_lock);
1169 KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid);
1170
1171 return 0;
1172 out_err:
1173 kfree(kvm->arch.crypto.crycb);
1174 free_page((unsigned long)kvm->arch.model.fac);
1175 debug_unregister(kvm->arch.dbf);
1176 free_page((unsigned long)(kvm->arch.sca));
1177 KVM_EVENT(3, "creation of vm failed: %d", rc);
1178 return rc;
1179 }
1180
1181 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1182 {
1183 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1184 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1185 kvm_s390_clear_local_irqs(vcpu);
1186 kvm_clear_async_pf_completion_queue(vcpu);
1187 if (!kvm_is_ucontrol(vcpu->kvm)) {
1188 clear_bit(63 - vcpu->vcpu_id,
1189 (unsigned long *) &vcpu->kvm->arch.sca->mcn);
1190 if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
1191 (__u64) vcpu->arch.sie_block)
1192 vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
1193 }
1194 smp_mb();
1195
1196 if (kvm_is_ucontrol(vcpu->kvm))
1197 gmap_free(vcpu->arch.gmap);
1198
1199 if (vcpu->kvm->arch.use_cmma)
1200 kvm_s390_vcpu_unsetup_cmma(vcpu);
1201 free_page((unsigned long)(vcpu->arch.sie_block));
1202
1203 kvm_vcpu_uninit(vcpu);
1204 kmem_cache_free(kvm_vcpu_cache, vcpu);
1205 }
1206
1207 static void kvm_free_vcpus(struct kvm *kvm)
1208 {
1209 unsigned int i;
1210 struct kvm_vcpu *vcpu;
1211
1212 kvm_for_each_vcpu(i, vcpu, kvm)
1213 kvm_arch_vcpu_destroy(vcpu);
1214
1215 mutex_lock(&kvm->lock);
1216 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
1217 kvm->vcpus[i] = NULL;
1218
1219 atomic_set(&kvm->online_vcpus, 0);
1220 mutex_unlock(&kvm->lock);
1221 }
1222
1223 void kvm_arch_destroy_vm(struct kvm *kvm)
1224 {
1225 kvm_free_vcpus(kvm);
1226 free_page((unsigned long)kvm->arch.model.fac);
1227 free_page((unsigned long)(kvm->arch.sca));
1228 debug_unregister(kvm->arch.dbf);
1229 kfree(kvm->arch.crypto.crycb);
1230 if (!kvm_is_ucontrol(kvm))
1231 gmap_free(kvm->arch.gmap);
1232 kvm_s390_destroy_adapters(kvm);
1233 kvm_s390_clear_float_irqs(kvm);
1234 KVM_EVENT(3, "vm 0x%p destroyed", kvm);
1235 }
1236
1237 /* Section: vcpu related */
1238 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
1239 {
1240 vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
1241 if (!vcpu->arch.gmap)
1242 return -ENOMEM;
1243 vcpu->arch.gmap->private = vcpu->kvm;
1244
1245 return 0;
1246 }
1247
1248 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1249 {
1250 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1251 kvm_clear_async_pf_completion_queue(vcpu);
1252 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
1253 KVM_SYNC_GPRS |
1254 KVM_SYNC_ACRS |
1255 KVM_SYNC_CRS |
1256 KVM_SYNC_ARCH0 |
1257 KVM_SYNC_PFAULT;
1258 if (test_kvm_facility(vcpu->kvm, 129))
1259 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1260
1261 if (kvm_is_ucontrol(vcpu->kvm))
1262 return __kvm_ucontrol_vcpu_init(vcpu);
1263
1264 return 0;
1265 }
1266
1267 /*
1268 * Backs up the current FP/VX register save area on a particular
1269 * destination. Used to switch between different register save
1270 * areas.
1271 */
1272 static inline void save_fpu_to(struct fpu *dst)
1273 {
1274 dst->fpc = current->thread.fpu.fpc;
1275 dst->flags = current->thread.fpu.flags;
1276 dst->regs = current->thread.fpu.regs;
1277 }
1278
1279 /*
1280 * Switches the FP/VX register save area from which to lazy
1281 * restore register contents.
1282 */
1283 static inline void load_fpu_from(struct fpu *from)
1284 {
1285 current->thread.fpu.fpc = from->fpc;
1286 current->thread.fpu.flags = from->flags;
1287 current->thread.fpu.regs = from->regs;
1288 }
1289
1290 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1291 {
1292 /* Save host register state */
1293 save_fpu_regs();
1294 save_fpu_to(&vcpu->arch.host_fpregs);
1295
1296 if (test_kvm_facility(vcpu->kvm, 129)) {
1297 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1298 current->thread.fpu.flags = FPU_USE_VX;
1299 /*
1300 * Use the register save area in the SIE-control block
1301 * for register restore and save in kvm_arch_vcpu_put()
1302 */
1303 current->thread.fpu.vxrs =
1304 (__vector128 *)&vcpu->run->s.regs.vrs;
1305 /* Always enable the vector extension for KVM */
1306 __ctl_set_vx();
1307 } else
1308 load_fpu_from(&vcpu->arch.guest_fpregs);
1309
1310 if (test_fp_ctl(current->thread.fpu.fpc))
1311 /* User space provided an invalid FPC, let's clear it */
1312 current->thread.fpu.fpc = 0;
1313
1314 save_access_regs(vcpu->arch.host_acrs);
1315 restore_access_regs(vcpu->run->s.regs.acrs);
1316 gmap_enable(vcpu->arch.gmap);
1317 atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1318 }
1319
1320 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1321 {
1322 atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1323 gmap_disable(vcpu->arch.gmap);
1324
1325 save_fpu_regs();
1326
1327 if (test_kvm_facility(vcpu->kvm, 129))
1328 /*
1329 * kvm_arch_vcpu_load() set up the register save area to
1330 * the &vcpu->run->s.regs.vrs and, thus, the vector registers
1331 * are already saved. Only the floating-point control must be
1332 * copied.
1333 */
1334 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1335 else
1336 save_fpu_to(&vcpu->arch.guest_fpregs);
1337 load_fpu_from(&vcpu->arch.host_fpregs);
1338
1339 save_access_regs(vcpu->run->s.regs.acrs);
1340 restore_access_regs(vcpu->arch.host_acrs);
1341 }
1342
1343 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
1344 {
1345 /* this equals initial cpu reset in pop, but we don't switch to ESA */
1346 vcpu->arch.sie_block->gpsw.mask = 0UL;
1347 vcpu->arch.sie_block->gpsw.addr = 0UL;
1348 kvm_s390_set_prefix(vcpu, 0);
1349 vcpu->arch.sie_block->cputm = 0UL;
1350 vcpu->arch.sie_block->ckc = 0UL;
1351 vcpu->arch.sie_block->todpr = 0;
1352 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
1353 vcpu->arch.sie_block->gcr[0] = 0xE0UL;
1354 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1355 vcpu->arch.guest_fpregs.fpc = 0;
1356 asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
1357 vcpu->arch.sie_block->gbea = 1;
1358 vcpu->arch.sie_block->pp = 0;
1359 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1360 kvm_clear_async_pf_completion_queue(vcpu);
1361 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
1362 kvm_s390_vcpu_stop(vcpu);
1363 kvm_s390_clear_local_irqs(vcpu);
1364 }
1365
1366 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1367 {
1368 mutex_lock(&vcpu->kvm->lock);
1369 preempt_disable();
1370 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1371 preempt_enable();
1372 mutex_unlock(&vcpu->kvm->lock);
1373 if (!kvm_is_ucontrol(vcpu->kvm))
1374 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1375 }
1376
1377 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
1378 {
1379 if (!test_kvm_facility(vcpu->kvm, 76))
1380 return;
1381
1382 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
1383
1384 if (vcpu->kvm->arch.crypto.aes_kw)
1385 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
1386 if (vcpu->kvm->arch.crypto.dea_kw)
1387 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
1388
1389 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
1390 }
1391
1392 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
1393 {
1394 free_page(vcpu->arch.sie_block->cbrlo);
1395 vcpu->arch.sie_block->cbrlo = 0;
1396 }
1397
1398 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
1399 {
1400 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
1401 if (!vcpu->arch.sie_block->cbrlo)
1402 return -ENOMEM;
1403
1404 vcpu->arch.sie_block->ecb2 |= 0x80;
1405 vcpu->arch.sie_block->ecb2 &= ~0x08;
1406 return 0;
1407 }
1408
1409 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
1410 {
1411 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
1412
1413 vcpu->arch.cpu_id = model->cpu_id;
1414 vcpu->arch.sie_block->ibc = model->ibc;
1415 vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
1416 }
1417
1418 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1419 {
1420 int rc = 0;
1421
1422 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
1423 CPUSTAT_SM |
1424 CPUSTAT_STOPPED);
1425
1426 if (test_kvm_facility(vcpu->kvm, 78))
1427 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1428 else if (test_kvm_facility(vcpu->kvm, 8))
1429 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1430
1431 kvm_s390_vcpu_setup_model(vcpu);
1432
1433 vcpu->arch.sie_block->ecb = 6;
1434 if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1435 vcpu->arch.sie_block->ecb |= 0x10;
1436
1437 vcpu->arch.sie_block->ecb2 = 8;
1438 vcpu->arch.sie_block->eca = 0xC1002000U;
1439 if (sclp.has_siif)
1440 vcpu->arch.sie_block->eca |= 1;
1441 if (sclp.has_sigpif)
1442 vcpu->arch.sie_block->eca |= 0x10000000U;
1443 if (test_kvm_facility(vcpu->kvm, 129)) {
1444 vcpu->arch.sie_block->eca |= 0x00020000;
1445 vcpu->arch.sie_block->ecd |= 0x20000000;
1446 }
1447 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1448
1449 if (vcpu->kvm->arch.use_cmma) {
1450 rc = kvm_s390_vcpu_setup_cmma(vcpu);
1451 if (rc)
1452 return rc;
1453 }
1454 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1455 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1456
1457 kvm_s390_vcpu_crypto_setup(vcpu);
1458
1459 return rc;
1460 }
1461
1462 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1463 unsigned int id)
1464 {
1465 struct kvm_vcpu *vcpu;
1466 struct sie_page *sie_page;
1467 int rc = -EINVAL;
1468
1469 if (id >= KVM_MAX_VCPUS)
1470 goto out;
1471
1472 rc = -ENOMEM;
1473
1474 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1475 if (!vcpu)
1476 goto out;
1477
1478 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
1479 if (!sie_page)
1480 goto out_free_cpu;
1481
1482 vcpu->arch.sie_block = &sie_page->sie_block;
1483 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1484
1485 vcpu->arch.sie_block->icpua = id;
1486 if (!kvm_is_ucontrol(kvm)) {
1487 if (!kvm->arch.sca) {
1488 WARN_ON_ONCE(1);
1489 goto out_free_cpu;
1490 }
1491 if (!kvm->arch.sca->cpu[id].sda)
1492 kvm->arch.sca->cpu[id].sda =
1493 (__u64) vcpu->arch.sie_block;
1494 vcpu->arch.sie_block->scaoh =
1495 (__u32)(((__u64)kvm->arch.sca) >> 32);
1496 vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
1497 set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn);
1498 }
1499
1500 spin_lock_init(&vcpu->arch.local_int.lock);
1501 vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1502 vcpu->arch.local_int.wq = &vcpu->wq;
1503 vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1504
1505 /*
1506 * Allocate a save area for floating-point registers. If the vector
1507 * extension is available, register contents are saved in the SIE
1508 * control block. The allocated save area is still required in
1509 * particular places, for example, in kvm_s390_vcpu_store_status().
1510 */
1511 vcpu->arch.guest_fpregs.fprs = kzalloc(sizeof(freg_t) * __NUM_FPRS,
1512 GFP_KERNEL);
1513 if (!vcpu->arch.guest_fpregs.fprs) {
1514 rc = -ENOMEM;
1515 goto out_free_sie_block;
1516 }
1517
1518 rc = kvm_vcpu_init(vcpu, kvm, id);
1519 if (rc)
1520 goto out_free_sie_block;
1521 VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
1522 vcpu->arch.sie_block);
1523 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1524
1525 return vcpu;
1526 out_free_sie_block:
1527 free_page((unsigned long)(vcpu->arch.sie_block));
1528 out_free_cpu:
1529 kmem_cache_free(kvm_vcpu_cache, vcpu);
1530 out:
1531 return ERR_PTR(rc);
1532 }
1533
1534 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1535 {
1536 return kvm_s390_vcpu_has_irq(vcpu, 0);
1537 }
1538
1539 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1540 {
1541 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1542 exit_sie(vcpu);
1543 }
1544
1545 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1546 {
1547 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1548 }
1549
1550 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
1551 {
1552 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1553 exit_sie(vcpu);
1554 }
1555
1556 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
1557 {
1558 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1559 }
1560
1561 /*
1562 * Kick a guest cpu out of SIE and wait until SIE is not running.
1563 * If the CPU is not running (e.g. waiting as idle) the function will
1564 * return immediately. */
1565 void exit_sie(struct kvm_vcpu *vcpu)
1566 {
1567 atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1568 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
1569 cpu_relax();
1570 }
1571
1572 /* Kick a guest cpu out of SIE to process a request synchronously */
1573 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1574 {
1575 kvm_make_request(req, vcpu);
1576 kvm_s390_vcpu_request(vcpu);
1577 }
1578
1579 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
1580 {
1581 int i;
1582 struct kvm *kvm = gmap->private;
1583 struct kvm_vcpu *vcpu;
1584
1585 kvm_for_each_vcpu(i, vcpu, kvm) {
1586 /* match against both prefix pages */
1587 if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1588 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1589 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1590 }
1591 }
1592 }
1593
1594 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
1595 {
1596 /* kvm common code refers to this, but never calls it */
1597 BUG();
1598 return 0;
1599 }
1600
1601 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
1602 struct kvm_one_reg *reg)
1603 {
1604 int r = -EINVAL;
1605
1606 switch (reg->id) {
1607 case KVM_REG_S390_TODPR:
1608 r = put_user(vcpu->arch.sie_block->todpr,
1609 (u32 __user *)reg->addr);
1610 break;
1611 case KVM_REG_S390_EPOCHDIFF:
1612 r = put_user(vcpu->arch.sie_block->epoch,
1613 (u64 __user *)reg->addr);
1614 break;
1615 case KVM_REG_S390_CPU_TIMER:
1616 r = put_user(vcpu->arch.sie_block->cputm,
1617 (u64 __user *)reg->addr);
1618 break;
1619 case KVM_REG_S390_CLOCK_COMP:
1620 r = put_user(vcpu->arch.sie_block->ckc,
1621 (u64 __user *)reg->addr);
1622 break;
1623 case KVM_REG_S390_PFTOKEN:
1624 r = put_user(vcpu->arch.pfault_token,
1625 (u64 __user *)reg->addr);
1626 break;
1627 case KVM_REG_S390_PFCOMPARE:
1628 r = put_user(vcpu->arch.pfault_compare,
1629 (u64 __user *)reg->addr);
1630 break;
1631 case KVM_REG_S390_PFSELECT:
1632 r = put_user(vcpu->arch.pfault_select,
1633 (u64 __user *)reg->addr);
1634 break;
1635 case KVM_REG_S390_PP:
1636 r = put_user(vcpu->arch.sie_block->pp,
1637 (u64 __user *)reg->addr);
1638 break;
1639 case KVM_REG_S390_GBEA:
1640 r = put_user(vcpu->arch.sie_block->gbea,
1641 (u64 __user *)reg->addr);
1642 break;
1643 default:
1644 break;
1645 }
1646
1647 return r;
1648 }
1649
1650 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
1651 struct kvm_one_reg *reg)
1652 {
1653 int r = -EINVAL;
1654
1655 switch (reg->id) {
1656 case KVM_REG_S390_TODPR:
1657 r = get_user(vcpu->arch.sie_block->todpr,
1658 (u32 __user *)reg->addr);
1659 break;
1660 case KVM_REG_S390_EPOCHDIFF:
1661 r = get_user(vcpu->arch.sie_block->epoch,
1662 (u64 __user *)reg->addr);
1663 break;
1664 case KVM_REG_S390_CPU_TIMER:
1665 r = get_user(vcpu->arch.sie_block->cputm,
1666 (u64 __user *)reg->addr);
1667 break;
1668 case KVM_REG_S390_CLOCK_COMP:
1669 r = get_user(vcpu->arch.sie_block->ckc,
1670 (u64 __user *)reg->addr);
1671 break;
1672 case KVM_REG_S390_PFTOKEN:
1673 r = get_user(vcpu->arch.pfault_token,
1674 (u64 __user *)reg->addr);
1675 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
1676 kvm_clear_async_pf_completion_queue(vcpu);
1677 break;
1678 case KVM_REG_S390_PFCOMPARE:
1679 r = get_user(vcpu->arch.pfault_compare,
1680 (u64 __user *)reg->addr);
1681 break;
1682 case KVM_REG_S390_PFSELECT:
1683 r = get_user(vcpu->arch.pfault_select,
1684 (u64 __user *)reg->addr);
1685 break;
1686 case KVM_REG_S390_PP:
1687 r = get_user(vcpu->arch.sie_block->pp,
1688 (u64 __user *)reg->addr);
1689 break;
1690 case KVM_REG_S390_GBEA:
1691 r = get_user(vcpu->arch.sie_block->gbea,
1692 (u64 __user *)reg->addr);
1693 break;
1694 default:
1695 break;
1696 }
1697
1698 return r;
1699 }
1700
1701 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
1702 {
1703 kvm_s390_vcpu_initial_reset(vcpu);
1704 return 0;
1705 }
1706
1707 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1708 {
1709 memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1710 return 0;
1711 }
1712
1713 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1714 {
1715 memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1716 return 0;
1717 }
1718
1719 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1720 struct kvm_sregs *sregs)
1721 {
1722 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1723 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1724 restore_access_regs(vcpu->run->s.regs.acrs);
1725 return 0;
1726 }
1727
1728 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1729 struct kvm_sregs *sregs)
1730 {
1731 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1732 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
1733 return 0;
1734 }
1735
1736 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1737 {
1738 if (test_fp_ctl(fpu->fpc))
1739 return -EINVAL;
1740 memcpy(vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1741 vcpu->arch.guest_fpregs.fpc = fpu->fpc;
1742 save_fpu_regs();
1743 load_fpu_from(&vcpu->arch.guest_fpregs);
1744 return 0;
1745 }
1746
1747 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1748 {
1749 memcpy(&fpu->fprs, vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
1750 fpu->fpc = vcpu->arch.guest_fpregs.fpc;
1751 return 0;
1752 }
1753
1754 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
1755 {
1756 int rc = 0;
1757
1758 if (!is_vcpu_stopped(vcpu))
1759 rc = -EBUSY;
1760 else {
1761 vcpu->run->psw_mask = psw.mask;
1762 vcpu->run->psw_addr = psw.addr;
1763 }
1764 return rc;
1765 }
1766
1767 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1768 struct kvm_translation *tr)
1769 {
1770 return -EINVAL; /* not implemented yet */
1771 }
1772
1773 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
1774 KVM_GUESTDBG_USE_HW_BP | \
1775 KVM_GUESTDBG_ENABLE)
1776
1777 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1778 struct kvm_guest_debug *dbg)
1779 {
1780 int rc = 0;
1781
1782 vcpu->guest_debug = 0;
1783 kvm_s390_clear_bp_data(vcpu);
1784
1785 if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1786 return -EINVAL;
1787
1788 if (dbg->control & KVM_GUESTDBG_ENABLE) {
1789 vcpu->guest_debug = dbg->control;
1790 /* enforce guest PER */
1791 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1792
1793 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
1794 rc = kvm_s390_import_bp_data(vcpu, dbg);
1795 } else {
1796 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1797 vcpu->arch.guestdbg.last_bp = 0;
1798 }
1799
1800 if (rc) {
1801 vcpu->guest_debug = 0;
1802 kvm_s390_clear_bp_data(vcpu);
1803 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1804 }
1805
1806 return rc;
1807 }
1808
1809 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1810 struct kvm_mp_state *mp_state)
1811 {
1812 /* CHECK_STOP and LOAD are not supported yet */
1813 return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
1814 KVM_MP_STATE_OPERATING;
1815 }
1816
1817 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1818 struct kvm_mp_state *mp_state)
1819 {
1820 int rc = 0;
1821
1822 /* user space knows about this interface - let it control the state */
1823 vcpu->kvm->arch.user_cpu_state_ctrl = 1;
1824
1825 switch (mp_state->mp_state) {
1826 case KVM_MP_STATE_STOPPED:
1827 kvm_s390_vcpu_stop(vcpu);
1828 break;
1829 case KVM_MP_STATE_OPERATING:
1830 kvm_s390_vcpu_start(vcpu);
1831 break;
1832 case KVM_MP_STATE_LOAD:
1833 case KVM_MP_STATE_CHECK_STOP:
1834 /* fall through - CHECK_STOP and LOAD are not supported yet */
1835 default:
1836 rc = -ENXIO;
1837 }
1838
1839 return rc;
1840 }
1841
1842 static bool ibs_enabled(struct kvm_vcpu *vcpu)
1843 {
1844 return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
1845 }
1846
1847 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
1848 {
1849 retry:
1850 kvm_s390_vcpu_request_handled(vcpu);
1851 if (!vcpu->requests)
1852 return 0;
1853 /*
1854 * We use MMU_RELOAD just to re-arm the ipte notifier for the
1855 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
1856 * This ensures that the ipte instruction for this request has
1857 * already finished. We might race against a second unmapper that
1858 * wants to set the blocking bit. Lets just retry the request loop.
1859 */
1860 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1861 int rc;
1862 rc = gmap_ipte_notify(vcpu->arch.gmap,
1863 kvm_s390_get_prefix(vcpu),
1864 PAGE_SIZE * 2);
1865 if (rc)
1866 return rc;
1867 goto retry;
1868 }
1869
1870 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
1871 vcpu->arch.sie_block->ihcpu = 0xffff;
1872 goto retry;
1873 }
1874
1875 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
1876 if (!ibs_enabled(vcpu)) {
1877 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
1878 atomic_or(CPUSTAT_IBS,
1879 &vcpu->arch.sie_block->cpuflags);
1880 }
1881 goto retry;
1882 }
1883
1884 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
1885 if (ibs_enabled(vcpu)) {
1886 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
1887 atomic_andnot(CPUSTAT_IBS,
1888 &vcpu->arch.sie_block->cpuflags);
1889 }
1890 goto retry;
1891 }
1892
1893 /* nothing to do, just clear the request */
1894 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
1895
1896 return 0;
1897 }
1898
1899 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
1900 {
1901 struct kvm_vcpu *vcpu;
1902 int i;
1903
1904 mutex_lock(&kvm->lock);
1905 preempt_disable();
1906 kvm->arch.epoch = tod - get_tod_clock();
1907 kvm_s390_vcpu_block_all(kvm);
1908 kvm_for_each_vcpu(i, vcpu, kvm)
1909 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
1910 kvm_s390_vcpu_unblock_all(kvm);
1911 preempt_enable();
1912 mutex_unlock(&kvm->lock);
1913 }
1914
1915 /**
1916 * kvm_arch_fault_in_page - fault-in guest page if necessary
1917 * @vcpu: The corresponding virtual cpu
1918 * @gpa: Guest physical address
1919 * @writable: Whether the page should be writable or not
1920 *
1921 * Make sure that a guest page has been faulted-in on the host.
1922 *
1923 * Return: Zero on success, negative error code otherwise.
1924 */
1925 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
1926 {
1927 return gmap_fault(vcpu->arch.gmap, gpa,
1928 writable ? FAULT_FLAG_WRITE : 0);
1929 }
1930
1931 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
1932 unsigned long token)
1933 {
1934 struct kvm_s390_interrupt inti;
1935 struct kvm_s390_irq irq;
1936
1937 if (start_token) {
1938 irq.u.ext.ext_params2 = token;
1939 irq.type = KVM_S390_INT_PFAULT_INIT;
1940 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
1941 } else {
1942 inti.type = KVM_S390_INT_PFAULT_DONE;
1943 inti.parm64 = token;
1944 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
1945 }
1946 }
1947
1948 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1949 struct kvm_async_pf *work)
1950 {
1951 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
1952 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
1953 }
1954
1955 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1956 struct kvm_async_pf *work)
1957 {
1958 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
1959 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
1960 }
1961
1962 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1963 struct kvm_async_pf *work)
1964 {
1965 /* s390 will always inject the page directly */
1966 }
1967
1968 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
1969 {
1970 /*
1971 * s390 will always inject the page directly,
1972 * but we still want check_async_completion to cleanup
1973 */
1974 return true;
1975 }
1976
1977 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
1978 {
1979 hva_t hva;
1980 struct kvm_arch_async_pf arch;
1981 int rc;
1982
1983 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
1984 return 0;
1985 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
1986 vcpu->arch.pfault_compare)
1987 return 0;
1988 if (psw_extint_disabled(vcpu))
1989 return 0;
1990 if (kvm_s390_vcpu_has_irq(vcpu, 0))
1991 return 0;
1992 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
1993 return 0;
1994 if (!vcpu->arch.gmap->pfault_enabled)
1995 return 0;
1996
1997 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
1998 hva += current->thread.gmap_addr & ~PAGE_MASK;
1999 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2000 return 0;
2001
2002 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
2003 return rc;
2004 }
2005
2006 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2007 {
2008 int rc, cpuflags;
2009
2010 /*
2011 * On s390 notifications for arriving pages will be delivered directly
2012 * to the guest but the house keeping for completed pfaults is
2013 * handled outside the worker.
2014 */
2015 kvm_check_async_pf_completion(vcpu);
2016
2017 memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
2018
2019 if (need_resched())
2020 schedule();
2021
2022 if (test_cpu_flag(CIF_MCCK_PENDING))
2023 s390_handle_mcck();
2024
2025 if (!kvm_is_ucontrol(vcpu->kvm)) {
2026 rc = kvm_s390_deliver_pending_interrupts(vcpu);
2027 if (rc)
2028 return rc;
2029 }
2030
2031 rc = kvm_s390_handle_requests(vcpu);
2032 if (rc)
2033 return rc;
2034
2035 if (guestdbg_enabled(vcpu)) {
2036 kvm_s390_backup_guest_per_regs(vcpu);
2037 kvm_s390_patch_guest_per_regs(vcpu);
2038 }
2039
2040 vcpu->arch.sie_block->icptcode = 0;
2041 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
2042 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
2043 trace_kvm_s390_sie_enter(vcpu, cpuflags);
2044
2045 return 0;
2046 }
2047
2048 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
2049 {
2050 psw_t *psw = &vcpu->arch.sie_block->gpsw;
2051 u8 opcode;
2052 int rc;
2053
2054 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
2055 trace_kvm_s390_sie_fault(vcpu);
2056
2057 /*
2058 * We want to inject an addressing exception, which is defined as a
2059 * suppressing or terminating exception. However, since we came here
2060 * by a DAT access exception, the PSW still points to the faulting
2061 * instruction since DAT exceptions are nullifying. So we've got
2062 * to look up the current opcode to get the length of the instruction
2063 * to be able to forward the PSW.
2064 */
2065 rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
2066 if (rc)
2067 return kvm_s390_inject_prog_cond(vcpu, rc);
2068 psw->addr = __rewind_psw(*psw, -insn_length(opcode));
2069
2070 return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
2071 }
2072
2073 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
2074 {
2075 int rc = -1;
2076
2077 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
2078 vcpu->arch.sie_block->icptcode);
2079 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
2080
2081 if (guestdbg_enabled(vcpu))
2082 kvm_s390_restore_guest_per_regs(vcpu);
2083
2084 if (exit_reason >= 0) {
2085 rc = 0;
2086 } else if (kvm_is_ucontrol(vcpu->kvm)) {
2087 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
2088 vcpu->run->s390_ucontrol.trans_exc_code =
2089 current->thread.gmap_addr;
2090 vcpu->run->s390_ucontrol.pgm_code = 0x10;
2091 rc = -EREMOTE;
2092
2093 } else if (current->thread.gmap_pfault) {
2094 trace_kvm_s390_major_guest_pfault(vcpu);
2095 current->thread.gmap_pfault = 0;
2096 if (kvm_arch_setup_async_pf(vcpu)) {
2097 rc = 0;
2098 } else {
2099 gpa_t gpa = current->thread.gmap_addr;
2100 rc = kvm_arch_fault_in_page(vcpu, gpa, 1);
2101 }
2102 }
2103
2104 if (rc == -1)
2105 rc = vcpu_post_run_fault_in_sie(vcpu);
2106
2107 memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);
2108
2109 if (rc == 0) {
2110 if (kvm_is_ucontrol(vcpu->kvm))
2111 /* Don't exit for host interrupts. */
2112 rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0;
2113 else
2114 rc = kvm_handle_sie_intercept(vcpu);
2115 }
2116
2117 return rc;
2118 }
2119
2120 static int __vcpu_run(struct kvm_vcpu *vcpu)
2121 {
2122 int rc, exit_reason;
2123
2124 /*
2125 * We try to hold kvm->srcu during most of vcpu_run (except when run-
2126 * ning the guest), so that memslots (and other stuff) are protected
2127 */
2128 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2129
2130 do {
2131 rc = vcpu_pre_run(vcpu);
2132 if (rc)
2133 break;
2134
2135 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2136 /*
2137 * As PF_VCPU will be used in fault handler, between
2138 * guest_enter and guest_exit should be no uaccess.
2139 */
2140 local_irq_disable();
2141 __kvm_guest_enter();
2142 local_irq_enable();
2143 exit_reason = sie64a(vcpu->arch.sie_block,
2144 vcpu->run->s.regs.gprs);
2145 local_irq_disable();
2146 __kvm_guest_exit();
2147 local_irq_enable();
2148 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2149
2150 rc = vcpu_post_run(vcpu, exit_reason);
2151 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2152
2153 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2154 return rc;
2155 }
2156
2157 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2158 {
2159 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
2160 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
2161 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
2162 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
2163 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
2164 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2165 /* some control register changes require a tlb flush */
2166 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2167 }
2168 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2169 vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
2170 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
2171 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
2172 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
2173 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
2174 }
2175 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
2176 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
2177 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
2178 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2179 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2180 kvm_clear_async_pf_completion_queue(vcpu);
2181 }
2182 kvm_run->kvm_dirty_regs = 0;
2183 }
2184
2185 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2186 {
2187 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
2188 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
2189 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
2190 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2191 kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
2192 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
2193 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
2194 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
2195 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
2196 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
2197 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
2198 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2199 }
2200
2201 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2202 {
2203 int rc;
2204 sigset_t sigsaved;
2205
2206 if (guestdbg_exit_pending(vcpu)) {
2207 kvm_s390_prepare_debug_exit(vcpu);
2208 return 0;
2209 }
2210
2211 if (vcpu->sigset_active)
2212 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2213
2214 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
2215 kvm_s390_vcpu_start(vcpu);
2216 } else if (is_vcpu_stopped(vcpu)) {
2217 pr_err_ratelimited("can't run stopped vcpu %d\n",
2218 vcpu->vcpu_id);
2219 return -EINVAL;
2220 }
2221
2222 sync_regs(vcpu, kvm_run);
2223
2224 might_fault();
2225 rc = __vcpu_run(vcpu);
2226
2227 if (signal_pending(current) && !rc) {
2228 kvm_run->exit_reason = KVM_EXIT_INTR;
2229 rc = -EINTR;
2230 }
2231
2232 if (guestdbg_exit_pending(vcpu) && !rc) {
2233 kvm_s390_prepare_debug_exit(vcpu);
2234 rc = 0;
2235 }
2236
2237 if (rc == -EOPNOTSUPP) {
2238 /* intercept cannot be handled in-kernel, prepare kvm-run */
2239 kvm_run->exit_reason = KVM_EXIT_S390_SIEIC;
2240 kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
2241 kvm_run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
2242 kvm_run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
2243 rc = 0;
2244 }
2245
2246 if (rc == -EREMOTE) {
2247 /* intercept was handled, but userspace support is needed
2248 * kvm_run has been prepared by the handler */
2249 rc = 0;
2250 }
2251
2252 store_regs(vcpu, kvm_run);
2253
2254 if (vcpu->sigset_active)
2255 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2256
2257 vcpu->stat.exit_userspace++;
2258 return rc;
2259 }
2260
2261 /*
2262 * store status at address
2263 * we use have two special cases:
2264 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
2265 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
2266 */
2267 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2268 {
2269 unsigned char archmode = 1;
2270 unsigned int px;
2271 u64 clkcomp;
2272 int rc;
2273
2274 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
2275 if (write_guest_abs(vcpu, 163, &archmode, 1))
2276 return -EFAULT;
2277 gpa = SAVE_AREA_BASE;
2278 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
2279 if (write_guest_real(vcpu, 163, &archmode, 1))
2280 return -EFAULT;
2281 gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
2282 }
2283 rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
2284 vcpu->arch.guest_fpregs.fprs, 128);
2285 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
2286 vcpu->run->s.regs.gprs, 128);
2287 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
2288 &vcpu->arch.sie_block->gpsw, 16);
2289 px = kvm_s390_get_prefix(vcpu);
2290 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
2291 &px, 4);
2292 rc |= write_guest_abs(vcpu,
2293 gpa + offsetof(struct save_area, fp_ctrl_reg),
2294 &vcpu->arch.guest_fpregs.fpc, 4);
2295 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
2296 &vcpu->arch.sie_block->todpr, 4);
2297 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
2298 &vcpu->arch.sie_block->cputm, 8);
2299 clkcomp = vcpu->arch.sie_block->ckc >> 8;
2300 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
2301 &clkcomp, 8);
2302 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
2303 &vcpu->run->s.regs.acrs, 64);
2304 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
2305 &vcpu->arch.sie_block->gcr, 128);
2306 return rc ? -EFAULT : 0;
2307 }
2308
2309 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
2310 {
2311 /*
2312 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2313 * copying in vcpu load/put. Lets update our copies before we save
2314 * it into the save area
2315 */
2316 save_fpu_regs();
2317 if (test_kvm_facility(vcpu->kvm, 129)) {
2318 /*
2319 * If the vector extension is available, the vector registers
2320 * which overlaps with floating-point registers are saved in
2321 * the SIE-control block. Hence, extract the floating-point
2322 * registers and the FPC value and store them in the
2323 * guest_fpregs structure.
2324 */
2325 WARN_ON(!is_vx_task(current)); /* XXX remove later */
2326 vcpu->arch.guest_fpregs.fpc = current->thread.fpu.fpc;
2327 convert_vx_to_fp(vcpu->arch.guest_fpregs.fprs,
2328 current->thread.fpu.vxrs);
2329 } else
2330 save_fpu_to(&vcpu->arch.guest_fpregs);
2331 save_access_regs(vcpu->run->s.regs.acrs);
2332
2333 return kvm_s390_store_status_unloaded(vcpu, addr);
2334 }
2335
2336 /*
2337 * store additional status at address
2338 */
2339 int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
2340 unsigned long gpa)
2341 {
2342 /* Only bits 0-53 are used for address formation */
2343 if (!(gpa & ~0x3ff))
2344 return 0;
2345
2346 return write_guest_abs(vcpu, gpa & ~0x3ff,
2347 (void *)&vcpu->run->s.regs.vrs, 512);
2348 }
2349
2350 int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
2351 {
2352 if (!test_kvm_facility(vcpu->kvm, 129))
2353 return 0;
2354
2355 /*
2356 * The guest VXRS are in the host VXRs due to the lazy
2357 * copying in vcpu load/put. We can simply call save_fpu_regs()
2358 * to save the current register state because we are in the
2359 * middle of a load/put cycle.
2360 *
2361 * Let's update our copies before we save it into the save area.
2362 */
2363 save_fpu_regs();
2364
2365 return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
2366 }
2367
2368 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2369 {
2370 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2371 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2372 }
2373
2374 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
2375 {
2376 unsigned int i;
2377 struct kvm_vcpu *vcpu;
2378
2379 kvm_for_each_vcpu(i, vcpu, kvm) {
2380 __disable_ibs_on_vcpu(vcpu);
2381 }
2382 }
2383
2384 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2385 {
2386 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2387 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2388 }
2389
2390 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
2391 {
2392 int i, online_vcpus, started_vcpus = 0;
2393
2394 if (!is_vcpu_stopped(vcpu))
2395 return;
2396
2397 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2398 /* Only one cpu at a time may enter/leave the STOPPED state. */
2399 spin_lock(&vcpu->kvm->arch.start_stop_lock);
2400 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2401
2402 for (i = 0; i < online_vcpus; i++) {
2403 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
2404 started_vcpus++;
2405 }
2406
2407 if (started_vcpus == 0) {
2408 /* we're the only active VCPU -> speed it up */
2409 __enable_ibs_on_vcpu(vcpu);
2410 } else if (started_vcpus == 1) {
2411 /*
2412 * As we are starting a second VCPU, we have to disable
2413 * the IBS facility on all VCPUs to remove potentially
2414 * oustanding ENABLE requests.
2415 */
2416 __disable_ibs_on_all_vcpus(vcpu->kvm);
2417 }
2418
2419 atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2420 /*
2421 * Another VCPU might have used IBS while we were offline.
2422 * Let's play safe and flush the VCPU at startup.
2423 */
2424 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2425 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2426 return;
2427 }
2428
2429 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
2430 {
2431 int i, online_vcpus, started_vcpus = 0;
2432 struct kvm_vcpu *started_vcpu = NULL;
2433
2434 if (is_vcpu_stopped(vcpu))
2435 return;
2436
2437 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2438 /* Only one cpu at a time may enter/leave the STOPPED state. */
2439 spin_lock(&vcpu->kvm->arch.start_stop_lock);
2440 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2441
2442 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2443 kvm_s390_clear_stop_irq(vcpu);
2444
2445 atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2446 __disable_ibs_on_vcpu(vcpu);
2447
2448 for (i = 0; i < online_vcpus; i++) {
2449 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
2450 started_vcpus++;
2451 started_vcpu = vcpu->kvm->vcpus[i];
2452 }
2453 }
2454
2455 if (started_vcpus == 1) {
2456 /*
2457 * As we only have one VCPU left, we want to enable the
2458 * IBS facility for that VCPU to speed it up.
2459 */
2460 __enable_ibs_on_vcpu(started_vcpu);
2461 }
2462
2463 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2464 return;
2465 }
2466
2467 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
2468 struct kvm_enable_cap *cap)
2469 {
2470 int r;
2471
2472 if (cap->flags)
2473 return -EINVAL;
2474
2475 switch (cap->cap) {
2476 case KVM_CAP_S390_CSS_SUPPORT:
2477 if (!vcpu->kvm->arch.css_support) {
2478 vcpu->kvm->arch.css_support = 1;
2479 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2480 trace_kvm_s390_enable_css(vcpu->kvm);
2481 }
2482 r = 0;
2483 break;
2484 default:
2485 r = -EINVAL;
2486 break;
2487 }
2488 return r;
2489 }
2490
2491 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
2492 struct kvm_s390_mem_op *mop)
2493 {
2494 void __user *uaddr = (void __user *)mop->buf;
2495 void *tmpbuf = NULL;
2496 int r, srcu_idx;
2497 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
2498 | KVM_S390_MEMOP_F_CHECK_ONLY;
2499
2500 if (mop->flags & ~supported_flags)
2501 return -EINVAL;
2502
2503 if (mop->size > MEM_OP_MAX_SIZE)
2504 return -E2BIG;
2505
2506 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2507 tmpbuf = vmalloc(mop->size);
2508 if (!tmpbuf)
2509 return -ENOMEM;
2510 }
2511
2512 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2513
2514 switch (mop->op) {
2515 case KVM_S390_MEMOP_LOGICAL_READ:
2516 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2517 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
2518 break;
2519 }
2520 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
2521 if (r == 0) {
2522 if (copy_to_user(uaddr, tmpbuf, mop->size))
2523 r = -EFAULT;
2524 }
2525 break;
2526 case KVM_S390_MEMOP_LOGICAL_WRITE:
2527 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2528 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
2529 break;
2530 }
2531 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2532 r = -EFAULT;
2533 break;
2534 }
2535 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
2536 break;
2537 default:
2538 r = -EINVAL;
2539 }
2540
2541 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2542
2543 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
2544 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
2545
2546 vfree(tmpbuf);
2547 return r;
2548 }
2549
2550 long kvm_arch_vcpu_ioctl(struct file *filp,
2551 unsigned int ioctl, unsigned long arg)
2552 {
2553 struct kvm_vcpu *vcpu = filp->private_data;
2554 void __user *argp = (void __user *)arg;
2555 int idx;
2556 long r;
2557
2558 switch (ioctl) {
2559 case KVM_S390_IRQ: {
2560 struct kvm_s390_irq s390irq;
2561
2562 r = -EFAULT;
2563 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
2564 break;
2565 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2566 break;
2567 }
2568 case KVM_S390_INTERRUPT: {
2569 struct kvm_s390_interrupt s390int;
2570 struct kvm_s390_irq s390irq;
2571
2572 r = -EFAULT;
2573 if (copy_from_user(&s390int, argp, sizeof(s390int)))
2574 break;
2575 if (s390int_to_s390irq(&s390int, &s390irq))
2576 return -EINVAL;
2577 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2578 break;
2579 }
2580 case KVM_S390_STORE_STATUS:
2581 idx = srcu_read_lock(&vcpu->kvm->srcu);
2582 r = kvm_s390_vcpu_store_status(vcpu, arg);
2583 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2584 break;
2585 case KVM_S390_SET_INITIAL_PSW: {
2586 psw_t psw;
2587
2588 r = -EFAULT;
2589 if (copy_from_user(&psw, argp, sizeof(psw)))
2590 break;
2591 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
2592 break;
2593 }
2594 case KVM_S390_INITIAL_RESET:
2595 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
2596 break;
2597 case KVM_SET_ONE_REG:
2598 case KVM_GET_ONE_REG: {
2599 struct kvm_one_reg reg;
2600 r = -EFAULT;
2601 if (copy_from_user(&reg, argp, sizeof(reg)))
2602 break;
2603 if (ioctl == KVM_SET_ONE_REG)
2604 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
2605 else
2606 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
2607 break;
2608 }
2609 #ifdef CONFIG_KVM_S390_UCONTROL
2610 case KVM_S390_UCAS_MAP: {
2611 struct kvm_s390_ucas_mapping ucasmap;
2612
2613 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
2614 r = -EFAULT;
2615 break;
2616 }
2617
2618 if (!kvm_is_ucontrol(vcpu->kvm)) {
2619 r = -EINVAL;
2620 break;
2621 }
2622
2623 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
2624 ucasmap.vcpu_addr, ucasmap.length);
2625 break;
2626 }
2627 case KVM_S390_UCAS_UNMAP: {
2628 struct kvm_s390_ucas_mapping ucasmap;
2629
2630 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
2631 r = -EFAULT;
2632 break;
2633 }
2634
2635 if (!kvm_is_ucontrol(vcpu->kvm)) {
2636 r = -EINVAL;
2637 break;
2638 }
2639
2640 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
2641 ucasmap.length);
2642 break;
2643 }
2644 #endif
2645 case KVM_S390_VCPU_FAULT: {
2646 r = gmap_fault(vcpu->arch.gmap, arg, 0);
2647 break;
2648 }
2649 case KVM_ENABLE_CAP:
2650 {
2651 struct kvm_enable_cap cap;
2652 r = -EFAULT;
2653 if (copy_from_user(&cap, argp, sizeof(cap)))
2654 break;
2655 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2656 break;
2657 }
2658 case KVM_S390_MEM_OP: {
2659 struct kvm_s390_mem_op mem_op;
2660
2661 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
2662 r = kvm_s390_guest_mem_op(vcpu, &mem_op);
2663 else
2664 r = -EFAULT;
2665 break;
2666 }
2667 case KVM_S390_SET_IRQ_STATE: {
2668 struct kvm_s390_irq_state irq_state;
2669
2670 r = -EFAULT;
2671 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
2672 break;
2673 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
2674 irq_state.len == 0 ||
2675 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
2676 r = -EINVAL;
2677 break;
2678 }
2679 r = kvm_s390_set_irq_state(vcpu,
2680 (void __user *) irq_state.buf,
2681 irq_state.len);
2682 break;
2683 }
2684 case KVM_S390_GET_IRQ_STATE: {
2685 struct kvm_s390_irq_state irq_state;
2686
2687 r = -EFAULT;
2688 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
2689 break;
2690 if (irq_state.len == 0) {
2691 r = -EINVAL;
2692 break;
2693 }
2694 r = kvm_s390_get_irq_state(vcpu,
2695 (__u8 __user *) irq_state.buf,
2696 irq_state.len);
2697 break;
2698 }
2699 default:
2700 r = -ENOTTY;
2701 }
2702 return r;
2703 }
2704
2705 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2706 {
2707 #ifdef CONFIG_KVM_S390_UCONTROL
2708 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
2709 && (kvm_is_ucontrol(vcpu->kvm))) {
2710 vmf->page = virt_to_page(vcpu->arch.sie_block);
2711 get_page(vmf->page);
2712 return 0;
2713 }
2714 #endif
2715 return VM_FAULT_SIGBUS;
2716 }
2717
2718 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2719 unsigned long npages)
2720 {
2721 return 0;
2722 }
2723
2724 /* Section: memory related */
2725 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2726 struct kvm_memory_slot *memslot,
2727 const struct kvm_userspace_memory_region *mem,
2728 enum kvm_mr_change change)
2729 {
2730 /* A few sanity checks. We can have memory slots which have to be
2731 located/ended at a segment boundary (1MB). The memory in userland is
2732 ok to be fragmented into various different vmas. It is okay to mmap()
2733 and munmap() stuff in this slot after doing this call at any time */
2734
2735 if (mem->userspace_addr & 0xffffful)
2736 return -EINVAL;
2737
2738 if (mem->memory_size & 0xffffful)
2739 return -EINVAL;
2740
2741 return 0;
2742 }
2743
2744 void kvm_arch_commit_memory_region(struct kvm *kvm,
2745 const struct kvm_userspace_memory_region *mem,
2746 const struct kvm_memory_slot *old,
2747 const struct kvm_memory_slot *new,
2748 enum kvm_mr_change change)
2749 {
2750 int rc;
2751
2752 /* If the basics of the memslot do not change, we do not want
2753 * to update the gmap. Every update causes several unnecessary
2754 * segment translation exceptions. This is usually handled just
2755 * fine by the normal fault handler + gmap, but it will also
2756 * cause faults on the prefix page of running guest CPUs.
2757 */
2758 if (old->userspace_addr == mem->userspace_addr &&
2759 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
2760 old->npages * PAGE_SIZE == mem->memory_size)
2761 return;
2762
2763 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
2764 mem->guest_phys_addr, mem->memory_size);
2765 if (rc)
2766 pr_warn("failed to commit memory region\n");
2767 return;
2768 }
2769
2770 static int __init kvm_s390_init(void)
2771 {
2772 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2773 }
2774
2775 static void __exit kvm_s390_exit(void)
2776 {
2777 kvm_exit();
2778 }
2779
2780 module_init(kvm_s390_init);
2781 module_exit(kvm_s390_exit);
2782
2783 /*
2784 * Enable autoloading of the kvm module.
2785 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
2786 * since x86 takes a different approach.
2787 */
2788 #include <linux/miscdevice.h>
2789 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2790 MODULE_ALIAS("devname:kvm");
This page took 0.349534 seconds and 4 git commands to generate.