Merge tag 'pm+acpi-4.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / arch / s390 / kvm / kvm-s390.c
1 /*
2 * hosting zSeries kernel virtual machines
3 *
4 * Copyright IBM Corp. 2008, 2009
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2 only)
8 * as published by the Free Software Foundation.
9 *
10 * Author(s): Carsten Otte <cotte@de.ibm.com>
11 * Christian Borntraeger <borntraeger@de.ibm.com>
12 * Heiko Carstens <heiko.carstens@de.ibm.com>
13 * Christian Ehrhardt <ehrhardt@de.ibm.com>
14 * Jason J. Herne <jjherne@us.ibm.com>
15 */
16
17 #include <linux/compiler.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/vmalloc.h>
29 #include <asm/asm-offsets.h>
30 #include <asm/lowcore.h>
31 #include <asm/etr.h>
32 #include <asm/pgtable.h>
33 #include <asm/nmi.h>
34 #include <asm/switch_to.h>
35 #include <asm/isc.h>
36 #include <asm/sclp.h>
37 #include "kvm-s390.h"
38 #include "gaccess.h"
39
40 #define KMSG_COMPONENT "kvm-s390"
41 #undef pr_fmt
42 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
43
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46 #include "trace-s390.h"
47
48 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
49 #define LOCAL_IRQS 32
50 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
51 (KVM_MAX_VCPUS + LOCAL_IRQS))
52
53 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
54
55 struct kvm_stats_debugfs_item debugfs_entries[] = {
56 { "userspace_handled", VCPU_STAT(exit_userspace) },
57 { "exit_null", VCPU_STAT(exit_null) },
58 { "exit_validity", VCPU_STAT(exit_validity) },
59 { "exit_stop_request", VCPU_STAT(exit_stop_request) },
60 { "exit_external_request", VCPU_STAT(exit_external_request) },
61 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62 { "exit_instruction", VCPU_STAT(exit_instruction) },
63 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
64 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
68 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69 { "instruction_lctl", VCPU_STAT(instruction_lctl) },
70 { "instruction_stctl", VCPU_STAT(instruction_stctl) },
71 { "instruction_stctg", VCPU_STAT(instruction_stctg) },
72 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73 { "deliver_external_call", VCPU_STAT(deliver_external_call) },
74 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
75 { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
76 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
77 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
78 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
79 { "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
80 { "exit_wait_state", VCPU_STAT(exit_wait_state) },
81 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82 { "instruction_stidp", VCPU_STAT(instruction_stidp) },
83 { "instruction_spx", VCPU_STAT(instruction_spx) },
84 { "instruction_stpx", VCPU_STAT(instruction_stpx) },
85 { "instruction_stap", VCPU_STAT(instruction_stap) },
86 { "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88 { "instruction_stsch", VCPU_STAT(instruction_stsch) },
89 { "instruction_chsc", VCPU_STAT(instruction_chsc) },
90 { "instruction_essa", VCPU_STAT(instruction_essa) },
91 { "instruction_stsi", VCPU_STAT(instruction_stsi) },
92 { "instruction_stfl", VCPU_STAT(instruction_stfl) },
93 { "instruction_tprot", VCPU_STAT(instruction_tprot) },
94 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
99 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
102 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
105 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
106 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
108 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
109 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110 { "diagnose_10", VCPU_STAT(diagnose_10) },
111 { "diagnose_44", VCPU_STAT(diagnose_44) },
112 { "diagnose_9c", VCPU_STAT(diagnose_9c) },
113 { "diagnose_258", VCPU_STAT(diagnose_258) },
114 { "diagnose_308", VCPU_STAT(diagnose_308) },
115 { "diagnose_500", VCPU_STAT(diagnose_500) },
116 { NULL }
117 };
118
119 /* upper facilities limit for kvm */
120 unsigned long kvm_s390_fac_list_mask[] = {
121 0xffe6fffbfcfdfc40UL,
122 0x005e800000000000UL,
123 };
124
125 unsigned long kvm_s390_fac_list_mask_size(void)
126 {
127 BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
128 return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 }
130
131 static struct gmap_notifier gmap_notifier;
132 debug_info_t *kvm_s390_dbf;
133
134 /* Section: not file related */
135 int kvm_arch_hardware_enable(void)
136 {
137 /* every s390 is virtualization enabled ;-) */
138 return 0;
139 }
140
141 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);
142
143 /*
144 * This callback is executed during stop_machine(). All CPUs are therefore
145 * temporarily stopped. In order not to change guest behavior, we have to
146 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
147 * so a CPU won't be stopped while calculating with the epoch.
148 */
149 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
150 void *v)
151 {
152 struct kvm *kvm;
153 struct kvm_vcpu *vcpu;
154 int i;
155 unsigned long long *delta = v;
156
157 list_for_each_entry(kvm, &vm_list, vm_list) {
158 kvm->arch.epoch -= *delta;
159 kvm_for_each_vcpu(i, vcpu, kvm) {
160 vcpu->arch.sie_block->epoch -= *delta;
161 }
162 }
163 return NOTIFY_OK;
164 }
165
166 static struct notifier_block kvm_clock_notifier = {
167 .notifier_call = kvm_clock_sync,
168 };
169
170 int kvm_arch_hardware_setup(void)
171 {
172 gmap_notifier.notifier_call = kvm_gmap_notifier;
173 gmap_register_ipte_notifier(&gmap_notifier);
174 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
175 &kvm_clock_notifier);
176 return 0;
177 }
178
179 void kvm_arch_hardware_unsetup(void)
180 {
181 gmap_unregister_ipte_notifier(&gmap_notifier);
182 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
183 &kvm_clock_notifier);
184 }
185
186 int kvm_arch_init(void *opaque)
187 {
188 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
189 if (!kvm_s390_dbf)
190 return -ENOMEM;
191
192 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
193 debug_unregister(kvm_s390_dbf);
194 return -ENOMEM;
195 }
196
197 /* Register floating interrupt controller interface. */
198 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
199 }
200
201 void kvm_arch_exit(void)
202 {
203 debug_unregister(kvm_s390_dbf);
204 }
205
206 /* Section: device related */
207 long kvm_arch_dev_ioctl(struct file *filp,
208 unsigned int ioctl, unsigned long arg)
209 {
210 if (ioctl == KVM_S390_ENABLE_SIE)
211 return s390_enable_sie();
212 return -EINVAL;
213 }
214
215 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216 {
217 int r;
218
219 switch (ext) {
220 case KVM_CAP_S390_PSW:
221 case KVM_CAP_S390_GMAP:
222 case KVM_CAP_SYNC_MMU:
223 #ifdef CONFIG_KVM_S390_UCONTROL
224 case KVM_CAP_S390_UCONTROL:
225 #endif
226 case KVM_CAP_ASYNC_PF:
227 case KVM_CAP_SYNC_REGS:
228 case KVM_CAP_ONE_REG:
229 case KVM_CAP_ENABLE_CAP:
230 case KVM_CAP_S390_CSS_SUPPORT:
231 case KVM_CAP_IOEVENTFD:
232 case KVM_CAP_DEVICE_CTRL:
233 case KVM_CAP_ENABLE_CAP_VM:
234 case KVM_CAP_S390_IRQCHIP:
235 case KVM_CAP_VM_ATTRIBUTES:
236 case KVM_CAP_MP_STATE:
237 case KVM_CAP_S390_INJECT_IRQ:
238 case KVM_CAP_S390_USER_SIGP:
239 case KVM_CAP_S390_USER_STSI:
240 case KVM_CAP_S390_SKEYS:
241 case KVM_CAP_S390_IRQ_STATE:
242 r = 1;
243 break;
244 case KVM_CAP_S390_MEM_OP:
245 r = MEM_OP_MAX_SIZE;
246 break;
247 case KVM_CAP_NR_VCPUS:
248 case KVM_CAP_MAX_VCPUS:
249 r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
250 : KVM_S390_BSCA_CPU_SLOTS;
251 break;
252 case KVM_CAP_NR_MEMSLOTS:
253 r = KVM_USER_MEM_SLOTS;
254 break;
255 case KVM_CAP_S390_COW:
256 r = MACHINE_HAS_ESOP;
257 break;
258 case KVM_CAP_S390_VECTOR_REGISTERS:
259 r = MACHINE_HAS_VX;
260 break;
261 case KVM_CAP_S390_RI:
262 r = test_facility(64);
263 break;
264 default:
265 r = 0;
266 }
267 return r;
268 }
269
270 static void kvm_s390_sync_dirty_log(struct kvm *kvm,
271 struct kvm_memory_slot *memslot)
272 {
273 gfn_t cur_gfn, last_gfn;
274 unsigned long address;
275 struct gmap *gmap = kvm->arch.gmap;
276
277 down_read(&gmap->mm->mmap_sem);
278 /* Loop over all guest pages */
279 last_gfn = memslot->base_gfn + memslot->npages;
280 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
281 address = gfn_to_hva_memslot(memslot, cur_gfn);
282
283 if (gmap_test_and_clear_dirty(address, gmap))
284 mark_page_dirty(kvm, cur_gfn);
285 }
286 up_read(&gmap->mm->mmap_sem);
287 }
288
289 /* Section: vm related */
290 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
291
292 /*
293 * Get (and clear) the dirty memory log for a memory slot.
294 */
295 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
296 struct kvm_dirty_log *log)
297 {
298 int r;
299 unsigned long n;
300 struct kvm_memslots *slots;
301 struct kvm_memory_slot *memslot;
302 int is_dirty = 0;
303
304 mutex_lock(&kvm->slots_lock);
305
306 r = -EINVAL;
307 if (log->slot >= KVM_USER_MEM_SLOTS)
308 goto out;
309
310 slots = kvm_memslots(kvm);
311 memslot = id_to_memslot(slots, log->slot);
312 r = -ENOENT;
313 if (!memslot->dirty_bitmap)
314 goto out;
315
316 kvm_s390_sync_dirty_log(kvm, memslot);
317 r = kvm_get_dirty_log(kvm, log, &is_dirty);
318 if (r)
319 goto out;
320
321 /* Clear the dirty log */
322 if (is_dirty) {
323 n = kvm_dirty_bitmap_bytes(memslot);
324 memset(memslot->dirty_bitmap, 0, n);
325 }
326 r = 0;
327 out:
328 mutex_unlock(&kvm->slots_lock);
329 return r;
330 }
331
332 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
333 {
334 int r;
335
336 if (cap->flags)
337 return -EINVAL;
338
339 switch (cap->cap) {
340 case KVM_CAP_S390_IRQCHIP:
341 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
342 kvm->arch.use_irqchip = 1;
343 r = 0;
344 break;
345 case KVM_CAP_S390_USER_SIGP:
346 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
347 kvm->arch.user_sigp = 1;
348 r = 0;
349 break;
350 case KVM_CAP_S390_VECTOR_REGISTERS:
351 mutex_lock(&kvm->lock);
352 if (atomic_read(&kvm->online_vcpus)) {
353 r = -EBUSY;
354 } else if (MACHINE_HAS_VX) {
355 set_kvm_facility(kvm->arch.model.fac->mask, 129);
356 set_kvm_facility(kvm->arch.model.fac->list, 129);
357 r = 0;
358 } else
359 r = -EINVAL;
360 mutex_unlock(&kvm->lock);
361 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
362 r ? "(not available)" : "(success)");
363 break;
364 case KVM_CAP_S390_RI:
365 r = -EINVAL;
366 mutex_lock(&kvm->lock);
367 if (atomic_read(&kvm->online_vcpus)) {
368 r = -EBUSY;
369 } else if (test_facility(64)) {
370 set_kvm_facility(kvm->arch.model.fac->mask, 64);
371 set_kvm_facility(kvm->arch.model.fac->list, 64);
372 r = 0;
373 }
374 mutex_unlock(&kvm->lock);
375 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
376 r ? "(not available)" : "(success)");
377 break;
378 case KVM_CAP_S390_USER_STSI:
379 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
380 kvm->arch.user_stsi = 1;
381 r = 0;
382 break;
383 default:
384 r = -EINVAL;
385 break;
386 }
387 return r;
388 }
389
390 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
391 {
392 int ret;
393
394 switch (attr->attr) {
395 case KVM_S390_VM_MEM_LIMIT_SIZE:
396 ret = 0;
397 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
398 kvm->arch.mem_limit);
399 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
400 ret = -EFAULT;
401 break;
402 default:
403 ret = -ENXIO;
404 break;
405 }
406 return ret;
407 }
408
409 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
410 {
411 int ret;
412 unsigned int idx;
413 switch (attr->attr) {
414 case KVM_S390_VM_MEM_ENABLE_CMMA:
415 /* enable CMMA only for z10 and later (EDAT_1) */
416 ret = -EINVAL;
417 if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
418 break;
419
420 ret = -EBUSY;
421 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
422 mutex_lock(&kvm->lock);
423 if (atomic_read(&kvm->online_vcpus) == 0) {
424 kvm->arch.use_cmma = 1;
425 ret = 0;
426 }
427 mutex_unlock(&kvm->lock);
428 break;
429 case KVM_S390_VM_MEM_CLR_CMMA:
430 ret = -EINVAL;
431 if (!kvm->arch.use_cmma)
432 break;
433
434 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
435 mutex_lock(&kvm->lock);
436 idx = srcu_read_lock(&kvm->srcu);
437 s390_reset_cmma(kvm->arch.gmap->mm);
438 srcu_read_unlock(&kvm->srcu, idx);
439 mutex_unlock(&kvm->lock);
440 ret = 0;
441 break;
442 case KVM_S390_VM_MEM_LIMIT_SIZE: {
443 unsigned long new_limit;
444
445 if (kvm_is_ucontrol(kvm))
446 return -EINVAL;
447
448 if (get_user(new_limit, (u64 __user *)attr->addr))
449 return -EFAULT;
450
451 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
452 new_limit > kvm->arch.mem_limit)
453 return -E2BIG;
454
455 if (!new_limit)
456 return -EINVAL;
457
458 /* gmap_alloc takes last usable address */
459 if (new_limit != KVM_S390_NO_MEM_LIMIT)
460 new_limit -= 1;
461
462 ret = -EBUSY;
463 mutex_lock(&kvm->lock);
464 if (atomic_read(&kvm->online_vcpus) == 0) {
465 /* gmap_alloc will round the limit up */
466 struct gmap *new = gmap_alloc(current->mm, new_limit);
467
468 if (!new) {
469 ret = -ENOMEM;
470 } else {
471 gmap_free(kvm->arch.gmap);
472 new->private = kvm;
473 kvm->arch.gmap = new;
474 ret = 0;
475 }
476 }
477 mutex_unlock(&kvm->lock);
478 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
479 VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
480 (void *) kvm->arch.gmap->asce);
481 break;
482 }
483 default:
484 ret = -ENXIO;
485 break;
486 }
487 return ret;
488 }
489
490 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
491
492 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
493 {
494 struct kvm_vcpu *vcpu;
495 int i;
496
497 if (!test_kvm_facility(kvm, 76))
498 return -EINVAL;
499
500 mutex_lock(&kvm->lock);
501 switch (attr->attr) {
502 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
503 get_random_bytes(
504 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
505 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
506 kvm->arch.crypto.aes_kw = 1;
507 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
508 break;
509 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
510 get_random_bytes(
511 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
512 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
513 kvm->arch.crypto.dea_kw = 1;
514 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
515 break;
516 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
517 kvm->arch.crypto.aes_kw = 0;
518 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
519 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
520 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
521 break;
522 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
523 kvm->arch.crypto.dea_kw = 0;
524 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
525 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
526 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
527 break;
528 default:
529 mutex_unlock(&kvm->lock);
530 return -ENXIO;
531 }
532
533 kvm_for_each_vcpu(i, vcpu, kvm) {
534 kvm_s390_vcpu_crypto_setup(vcpu);
535 exit_sie(vcpu);
536 }
537 mutex_unlock(&kvm->lock);
538 return 0;
539 }
540
541 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
542 {
543 u8 gtod_high;
544
545 if (copy_from_user(&gtod_high, (void __user *)attr->addr,
546 sizeof(gtod_high)))
547 return -EFAULT;
548
549 if (gtod_high != 0)
550 return -EINVAL;
551 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
552
553 return 0;
554 }
555
556 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
557 {
558 u64 gtod;
559
560 if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
561 return -EFAULT;
562
563 kvm_s390_set_tod_clock(kvm, gtod);
564 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
565 return 0;
566 }
567
568 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
569 {
570 int ret;
571
572 if (attr->flags)
573 return -EINVAL;
574
575 switch (attr->attr) {
576 case KVM_S390_VM_TOD_HIGH:
577 ret = kvm_s390_set_tod_high(kvm, attr);
578 break;
579 case KVM_S390_VM_TOD_LOW:
580 ret = kvm_s390_set_tod_low(kvm, attr);
581 break;
582 default:
583 ret = -ENXIO;
584 break;
585 }
586 return ret;
587 }
588
589 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
590 {
591 u8 gtod_high = 0;
592
593 if (copy_to_user((void __user *)attr->addr, &gtod_high,
594 sizeof(gtod_high)))
595 return -EFAULT;
596 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
597
598 return 0;
599 }
600
601 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
602 {
603 u64 gtod;
604
605 gtod = kvm_s390_get_tod_clock_fast(kvm);
606 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
607 return -EFAULT;
608 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
609
610 return 0;
611 }
612
613 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
614 {
615 int ret;
616
617 if (attr->flags)
618 return -EINVAL;
619
620 switch (attr->attr) {
621 case KVM_S390_VM_TOD_HIGH:
622 ret = kvm_s390_get_tod_high(kvm, attr);
623 break;
624 case KVM_S390_VM_TOD_LOW:
625 ret = kvm_s390_get_tod_low(kvm, attr);
626 break;
627 default:
628 ret = -ENXIO;
629 break;
630 }
631 return ret;
632 }
633
634 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
635 {
636 struct kvm_s390_vm_cpu_processor *proc;
637 int ret = 0;
638
639 mutex_lock(&kvm->lock);
640 if (atomic_read(&kvm->online_vcpus)) {
641 ret = -EBUSY;
642 goto out;
643 }
644 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
645 if (!proc) {
646 ret = -ENOMEM;
647 goto out;
648 }
649 if (!copy_from_user(proc, (void __user *)attr->addr,
650 sizeof(*proc))) {
651 memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
652 sizeof(struct cpuid));
653 kvm->arch.model.ibc = proc->ibc;
654 memcpy(kvm->arch.model.fac->list, proc->fac_list,
655 S390_ARCH_FAC_LIST_SIZE_BYTE);
656 } else
657 ret = -EFAULT;
658 kfree(proc);
659 out:
660 mutex_unlock(&kvm->lock);
661 return ret;
662 }
663
664 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
665 {
666 int ret = -ENXIO;
667
668 switch (attr->attr) {
669 case KVM_S390_VM_CPU_PROCESSOR:
670 ret = kvm_s390_set_processor(kvm, attr);
671 break;
672 }
673 return ret;
674 }
675
676 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
677 {
678 struct kvm_s390_vm_cpu_processor *proc;
679 int ret = 0;
680
681 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
682 if (!proc) {
683 ret = -ENOMEM;
684 goto out;
685 }
686 memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
687 proc->ibc = kvm->arch.model.ibc;
688 memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
689 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
690 ret = -EFAULT;
691 kfree(proc);
692 out:
693 return ret;
694 }
695
696 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
697 {
698 struct kvm_s390_vm_cpu_machine *mach;
699 int ret = 0;
700
701 mach = kzalloc(sizeof(*mach), GFP_KERNEL);
702 if (!mach) {
703 ret = -ENOMEM;
704 goto out;
705 }
706 get_cpu_id((struct cpuid *) &mach->cpuid);
707 mach->ibc = sclp.ibc;
708 memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
709 S390_ARCH_FAC_LIST_SIZE_BYTE);
710 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
711 S390_ARCH_FAC_LIST_SIZE_BYTE);
712 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
713 ret = -EFAULT;
714 kfree(mach);
715 out:
716 return ret;
717 }
718
719 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
720 {
721 int ret = -ENXIO;
722
723 switch (attr->attr) {
724 case KVM_S390_VM_CPU_PROCESSOR:
725 ret = kvm_s390_get_processor(kvm, attr);
726 break;
727 case KVM_S390_VM_CPU_MACHINE:
728 ret = kvm_s390_get_machine(kvm, attr);
729 break;
730 }
731 return ret;
732 }
733
734 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
735 {
736 int ret;
737
738 switch (attr->group) {
739 case KVM_S390_VM_MEM_CTRL:
740 ret = kvm_s390_set_mem_control(kvm, attr);
741 break;
742 case KVM_S390_VM_TOD:
743 ret = kvm_s390_set_tod(kvm, attr);
744 break;
745 case KVM_S390_VM_CPU_MODEL:
746 ret = kvm_s390_set_cpu_model(kvm, attr);
747 break;
748 case KVM_S390_VM_CRYPTO:
749 ret = kvm_s390_vm_set_crypto(kvm, attr);
750 break;
751 default:
752 ret = -ENXIO;
753 break;
754 }
755
756 return ret;
757 }
758
759 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
760 {
761 int ret;
762
763 switch (attr->group) {
764 case KVM_S390_VM_MEM_CTRL:
765 ret = kvm_s390_get_mem_control(kvm, attr);
766 break;
767 case KVM_S390_VM_TOD:
768 ret = kvm_s390_get_tod(kvm, attr);
769 break;
770 case KVM_S390_VM_CPU_MODEL:
771 ret = kvm_s390_get_cpu_model(kvm, attr);
772 break;
773 default:
774 ret = -ENXIO;
775 break;
776 }
777
778 return ret;
779 }
780
781 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
782 {
783 int ret;
784
785 switch (attr->group) {
786 case KVM_S390_VM_MEM_CTRL:
787 switch (attr->attr) {
788 case KVM_S390_VM_MEM_ENABLE_CMMA:
789 case KVM_S390_VM_MEM_CLR_CMMA:
790 case KVM_S390_VM_MEM_LIMIT_SIZE:
791 ret = 0;
792 break;
793 default:
794 ret = -ENXIO;
795 break;
796 }
797 break;
798 case KVM_S390_VM_TOD:
799 switch (attr->attr) {
800 case KVM_S390_VM_TOD_LOW:
801 case KVM_S390_VM_TOD_HIGH:
802 ret = 0;
803 break;
804 default:
805 ret = -ENXIO;
806 break;
807 }
808 break;
809 case KVM_S390_VM_CPU_MODEL:
810 switch (attr->attr) {
811 case KVM_S390_VM_CPU_PROCESSOR:
812 case KVM_S390_VM_CPU_MACHINE:
813 ret = 0;
814 break;
815 default:
816 ret = -ENXIO;
817 break;
818 }
819 break;
820 case KVM_S390_VM_CRYPTO:
821 switch (attr->attr) {
822 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
823 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
824 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
825 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
826 ret = 0;
827 break;
828 default:
829 ret = -ENXIO;
830 break;
831 }
832 break;
833 default:
834 ret = -ENXIO;
835 break;
836 }
837
838 return ret;
839 }
840
841 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
842 {
843 uint8_t *keys;
844 uint64_t hva;
845 unsigned long curkey;
846 int i, r = 0;
847
848 if (args->flags != 0)
849 return -EINVAL;
850
851 /* Is this guest using storage keys? */
852 if (!mm_use_skey(current->mm))
853 return KVM_S390_GET_SKEYS_NONE;
854
855 /* Enforce sane limit on memory allocation */
856 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
857 return -EINVAL;
858
859 keys = kmalloc_array(args->count, sizeof(uint8_t),
860 GFP_KERNEL | __GFP_NOWARN);
861 if (!keys)
862 keys = vmalloc(sizeof(uint8_t) * args->count);
863 if (!keys)
864 return -ENOMEM;
865
866 for (i = 0; i < args->count; i++) {
867 hva = gfn_to_hva(kvm, args->start_gfn + i);
868 if (kvm_is_error_hva(hva)) {
869 r = -EFAULT;
870 goto out;
871 }
872
873 curkey = get_guest_storage_key(current->mm, hva);
874 if (IS_ERR_VALUE(curkey)) {
875 r = curkey;
876 goto out;
877 }
878 keys[i] = curkey;
879 }
880
881 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
882 sizeof(uint8_t) * args->count);
883 if (r)
884 r = -EFAULT;
885 out:
886 kvfree(keys);
887 return r;
888 }
889
890 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
891 {
892 uint8_t *keys;
893 uint64_t hva;
894 int i, r = 0;
895
896 if (args->flags != 0)
897 return -EINVAL;
898
899 /* Enforce sane limit on memory allocation */
900 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
901 return -EINVAL;
902
903 keys = kmalloc_array(args->count, sizeof(uint8_t),
904 GFP_KERNEL | __GFP_NOWARN);
905 if (!keys)
906 keys = vmalloc(sizeof(uint8_t) * args->count);
907 if (!keys)
908 return -ENOMEM;
909
910 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
911 sizeof(uint8_t) * args->count);
912 if (r) {
913 r = -EFAULT;
914 goto out;
915 }
916
917 /* Enable storage key handling for the guest */
918 r = s390_enable_skey();
919 if (r)
920 goto out;
921
922 for (i = 0; i < args->count; i++) {
923 hva = gfn_to_hva(kvm, args->start_gfn + i);
924 if (kvm_is_error_hva(hva)) {
925 r = -EFAULT;
926 goto out;
927 }
928
929 /* Lowest order bit is reserved */
930 if (keys[i] & 0x01) {
931 r = -EINVAL;
932 goto out;
933 }
934
935 r = set_guest_storage_key(current->mm, hva,
936 (unsigned long)keys[i], 0);
937 if (r)
938 goto out;
939 }
940 out:
941 kvfree(keys);
942 return r;
943 }
944
945 long kvm_arch_vm_ioctl(struct file *filp,
946 unsigned int ioctl, unsigned long arg)
947 {
948 struct kvm *kvm = filp->private_data;
949 void __user *argp = (void __user *)arg;
950 struct kvm_device_attr attr;
951 int r;
952
953 switch (ioctl) {
954 case KVM_S390_INTERRUPT: {
955 struct kvm_s390_interrupt s390int;
956
957 r = -EFAULT;
958 if (copy_from_user(&s390int, argp, sizeof(s390int)))
959 break;
960 r = kvm_s390_inject_vm(kvm, &s390int);
961 break;
962 }
963 case KVM_ENABLE_CAP: {
964 struct kvm_enable_cap cap;
965 r = -EFAULT;
966 if (copy_from_user(&cap, argp, sizeof(cap)))
967 break;
968 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
969 break;
970 }
971 case KVM_CREATE_IRQCHIP: {
972 struct kvm_irq_routing_entry routing;
973
974 r = -EINVAL;
975 if (kvm->arch.use_irqchip) {
976 /* Set up dummy routing. */
977 memset(&routing, 0, sizeof(routing));
978 r = kvm_set_irq_routing(kvm, &routing, 0, 0);
979 }
980 break;
981 }
982 case KVM_SET_DEVICE_ATTR: {
983 r = -EFAULT;
984 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
985 break;
986 r = kvm_s390_vm_set_attr(kvm, &attr);
987 break;
988 }
989 case KVM_GET_DEVICE_ATTR: {
990 r = -EFAULT;
991 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
992 break;
993 r = kvm_s390_vm_get_attr(kvm, &attr);
994 break;
995 }
996 case KVM_HAS_DEVICE_ATTR: {
997 r = -EFAULT;
998 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
999 break;
1000 r = kvm_s390_vm_has_attr(kvm, &attr);
1001 break;
1002 }
1003 case KVM_S390_GET_SKEYS: {
1004 struct kvm_s390_skeys args;
1005
1006 r = -EFAULT;
1007 if (copy_from_user(&args, argp,
1008 sizeof(struct kvm_s390_skeys)))
1009 break;
1010 r = kvm_s390_get_skeys(kvm, &args);
1011 break;
1012 }
1013 case KVM_S390_SET_SKEYS: {
1014 struct kvm_s390_skeys args;
1015
1016 r = -EFAULT;
1017 if (copy_from_user(&args, argp,
1018 sizeof(struct kvm_s390_skeys)))
1019 break;
1020 r = kvm_s390_set_skeys(kvm, &args);
1021 break;
1022 }
1023 default:
1024 r = -ENOTTY;
1025 }
1026
1027 return r;
1028 }
1029
1030 static int kvm_s390_query_ap_config(u8 *config)
1031 {
1032 u32 fcn_code = 0x04000000UL;
1033 u32 cc = 0;
1034
1035 memset(config, 0, 128);
1036 asm volatile(
1037 "lgr 0,%1\n"
1038 "lgr 2,%2\n"
1039 ".long 0xb2af0000\n" /* PQAP(QCI) */
1040 "0: ipm %0\n"
1041 "srl %0,28\n"
1042 "1:\n"
1043 EX_TABLE(0b, 1b)
1044 : "+r" (cc)
1045 : "r" (fcn_code), "r" (config)
1046 : "cc", "0", "2", "memory"
1047 );
1048
1049 return cc;
1050 }
1051
1052 static int kvm_s390_apxa_installed(void)
1053 {
1054 u8 config[128];
1055 int cc;
1056
1057 if (test_facility(12)) {
1058 cc = kvm_s390_query_ap_config(config);
1059
1060 if (cc)
1061 pr_err("PQAP(QCI) failed with cc=%d", cc);
1062 else
1063 return config[0] & 0x40;
1064 }
1065
1066 return 0;
1067 }
1068
1069 static void kvm_s390_set_crycb_format(struct kvm *kvm)
1070 {
1071 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
1072
1073 if (kvm_s390_apxa_installed())
1074 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
1075 else
1076 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
1077 }
1078
1079 static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
1080 {
1081 get_cpu_id(cpu_id);
1082 cpu_id->version = 0xff;
1083 }
1084
1085 static int kvm_s390_crypto_init(struct kvm *kvm)
1086 {
1087 if (!test_kvm_facility(kvm, 76))
1088 return 0;
1089
1090 kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
1091 GFP_KERNEL | GFP_DMA);
1092 if (!kvm->arch.crypto.crycb)
1093 return -ENOMEM;
1094
1095 kvm_s390_set_crycb_format(kvm);
1096
1097 /* Enable AES/DEA protected key functions by default */
1098 kvm->arch.crypto.aes_kw = 1;
1099 kvm->arch.crypto.dea_kw = 1;
1100 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1101 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1102 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1103 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1104
1105 return 0;
1106 }
1107
1108 static void sca_dispose(struct kvm *kvm)
1109 {
1110 if (kvm->arch.use_esca)
1111 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1112 else
1113 free_page((unsigned long)(kvm->arch.sca));
1114 kvm->arch.sca = NULL;
1115 }
1116
1117 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1118 {
1119 int i, rc;
1120 char debug_name[16];
1121 static unsigned long sca_offset;
1122
1123 rc = -EINVAL;
1124 #ifdef CONFIG_KVM_S390_UCONTROL
1125 if (type & ~KVM_VM_S390_UCONTROL)
1126 goto out_err;
1127 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
1128 goto out_err;
1129 #else
1130 if (type)
1131 goto out_err;
1132 #endif
1133
1134 rc = s390_enable_sie();
1135 if (rc)
1136 goto out_err;
1137
1138 rc = -ENOMEM;
1139
1140 kvm->arch.use_esca = 0; /* start with basic SCA */
1141 rwlock_init(&kvm->arch.sca_lock);
1142 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1143 if (!kvm->arch.sca)
1144 goto out_err;
1145 spin_lock(&kvm_lock);
1146 sca_offset += 16;
1147 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1148 sca_offset = 0;
1149 kvm->arch.sca = (struct bsca_block *)
1150 ((char *) kvm->arch.sca + sca_offset);
1151 spin_unlock(&kvm_lock);
1152
1153 sprintf(debug_name, "kvm-%u", current->pid);
1154
1155 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1156 if (!kvm->arch.dbf)
1157 goto out_err;
1158
1159 /*
1160 * The architectural maximum amount of facilities is 16 kbit. To store
1161 * this amount, 2 kbyte of memory is required. Thus we need a full
1162 * page to hold the guest facility list (arch.model.fac->list) and the
1163 * facility mask (arch.model.fac->mask). Its address size has to be
1164 * 31 bits and word aligned.
1165 */
1166 kvm->arch.model.fac =
1167 (struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1168 if (!kvm->arch.model.fac)
1169 goto out_err;
1170
1171 /* Populate the facility mask initially. */
1172 memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1173 S390_ARCH_FAC_LIST_SIZE_BYTE);
1174 for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
1175 if (i < kvm_s390_fac_list_mask_size())
1176 kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1177 else
1178 kvm->arch.model.fac->mask[i] = 0UL;
1179 }
1180
1181 /* Populate the facility list initially. */
1182 memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
1183 S390_ARCH_FAC_LIST_SIZE_BYTE);
1184
1185 kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1186 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1187
1188 if (kvm_s390_crypto_init(kvm) < 0)
1189 goto out_err;
1190
1191 spin_lock_init(&kvm->arch.float_int.lock);
1192 for (i = 0; i < FIRQ_LIST_COUNT; i++)
1193 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1194 init_waitqueue_head(&kvm->arch.ipte_wq);
1195 mutex_init(&kvm->arch.ipte_mutex);
1196
1197 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1198 VM_EVENT(kvm, 3, "vm created with type %lu", type);
1199
1200 if (type & KVM_VM_S390_UCONTROL) {
1201 kvm->arch.gmap = NULL;
1202 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1203 } else {
1204 if (sclp.hamax == U64_MAX)
1205 kvm->arch.mem_limit = TASK_MAX_SIZE;
1206 else
1207 kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
1208 sclp.hamax + 1);
1209 kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1210 if (!kvm->arch.gmap)
1211 goto out_err;
1212 kvm->arch.gmap->private = kvm;
1213 kvm->arch.gmap->pfault_enabled = 0;
1214 }
1215
1216 kvm->arch.css_support = 0;
1217 kvm->arch.use_irqchip = 0;
1218 kvm->arch.epoch = 0;
1219
1220 spin_lock_init(&kvm->arch.start_stop_lock);
1221 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1222
1223 return 0;
1224 out_err:
1225 kfree(kvm->arch.crypto.crycb);
1226 free_page((unsigned long)kvm->arch.model.fac);
1227 debug_unregister(kvm->arch.dbf);
1228 sca_dispose(kvm);
1229 KVM_EVENT(3, "creation of vm failed: %d", rc);
1230 return rc;
1231 }
1232
1233 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1234 {
1235 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1236 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1237 kvm_s390_clear_local_irqs(vcpu);
1238 kvm_clear_async_pf_completion_queue(vcpu);
1239 if (!kvm_is_ucontrol(vcpu->kvm))
1240 sca_del_vcpu(vcpu);
1241
1242 if (kvm_is_ucontrol(vcpu->kvm))
1243 gmap_free(vcpu->arch.gmap);
1244
1245 if (vcpu->kvm->arch.use_cmma)
1246 kvm_s390_vcpu_unsetup_cmma(vcpu);
1247 free_page((unsigned long)(vcpu->arch.sie_block));
1248
1249 kvm_vcpu_uninit(vcpu);
1250 kmem_cache_free(kvm_vcpu_cache, vcpu);
1251 }
1252
1253 static void kvm_free_vcpus(struct kvm *kvm)
1254 {
1255 unsigned int i;
1256 struct kvm_vcpu *vcpu;
1257
1258 kvm_for_each_vcpu(i, vcpu, kvm)
1259 kvm_arch_vcpu_destroy(vcpu);
1260
1261 mutex_lock(&kvm->lock);
1262 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
1263 kvm->vcpus[i] = NULL;
1264
1265 atomic_set(&kvm->online_vcpus, 0);
1266 mutex_unlock(&kvm->lock);
1267 }
1268
1269 void kvm_arch_destroy_vm(struct kvm *kvm)
1270 {
1271 kvm_free_vcpus(kvm);
1272 free_page((unsigned long)kvm->arch.model.fac);
1273 sca_dispose(kvm);
1274 debug_unregister(kvm->arch.dbf);
1275 kfree(kvm->arch.crypto.crycb);
1276 if (!kvm_is_ucontrol(kvm))
1277 gmap_free(kvm->arch.gmap);
1278 kvm_s390_destroy_adapters(kvm);
1279 kvm_s390_clear_float_irqs(kvm);
1280 KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1281 }
1282
1283 /* Section: vcpu related */
1284 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
1285 {
1286 vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
1287 if (!vcpu->arch.gmap)
1288 return -ENOMEM;
1289 vcpu->arch.gmap->private = vcpu->kvm;
1290
1291 return 0;
1292 }
1293
1294 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
1295 {
1296 read_lock(&vcpu->kvm->arch.sca_lock);
1297 if (vcpu->kvm->arch.use_esca) {
1298 struct esca_block *sca = vcpu->kvm->arch.sca;
1299
1300 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1301 sca->cpu[vcpu->vcpu_id].sda = 0;
1302 } else {
1303 struct bsca_block *sca = vcpu->kvm->arch.sca;
1304
1305 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1306 sca->cpu[vcpu->vcpu_id].sda = 0;
1307 }
1308 read_unlock(&vcpu->kvm->arch.sca_lock);
1309 }
1310
1311 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1312 {
1313 read_lock(&vcpu->kvm->arch.sca_lock);
1314 if (vcpu->kvm->arch.use_esca) {
1315 struct esca_block *sca = vcpu->kvm->arch.sca;
1316
1317 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1318 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1319 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1320 vcpu->arch.sie_block->ecb2 |= 0x04U;
1321 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1322 } else {
1323 struct bsca_block *sca = vcpu->kvm->arch.sca;
1324
1325 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1326 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1327 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1328 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1329 }
1330 read_unlock(&vcpu->kvm->arch.sca_lock);
1331 }
1332
1333 /* Basic SCA to Extended SCA data copy routines */
1334 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
1335 {
1336 d->sda = s->sda;
1337 d->sigp_ctrl.c = s->sigp_ctrl.c;
1338 d->sigp_ctrl.scn = s->sigp_ctrl.scn;
1339 }
1340
1341 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
1342 {
1343 int i;
1344
1345 d->ipte_control = s->ipte_control;
1346 d->mcn[0] = s->mcn;
1347 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
1348 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
1349 }
1350
1351 static int sca_switch_to_extended(struct kvm *kvm)
1352 {
1353 struct bsca_block *old_sca = kvm->arch.sca;
1354 struct esca_block *new_sca;
1355 struct kvm_vcpu *vcpu;
1356 unsigned int vcpu_idx;
1357 u32 scaol, scaoh;
1358
1359 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
1360 if (!new_sca)
1361 return -ENOMEM;
1362
1363 scaoh = (u32)((u64)(new_sca) >> 32);
1364 scaol = (u32)(u64)(new_sca) & ~0x3fU;
1365
1366 kvm_s390_vcpu_block_all(kvm);
1367 write_lock(&kvm->arch.sca_lock);
1368
1369 sca_copy_b_to_e(new_sca, old_sca);
1370
1371 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
1372 vcpu->arch.sie_block->scaoh = scaoh;
1373 vcpu->arch.sie_block->scaol = scaol;
1374 vcpu->arch.sie_block->ecb2 |= 0x04U;
1375 }
1376 kvm->arch.sca = new_sca;
1377 kvm->arch.use_esca = 1;
1378
1379 write_unlock(&kvm->arch.sca_lock);
1380 kvm_s390_vcpu_unblock_all(kvm);
1381
1382 free_page((unsigned long)old_sca);
1383
1384 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
1385 old_sca, kvm->arch.sca);
1386 return 0;
1387 }
1388
1389 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
1390 {
1391 int rc;
1392
1393 if (id < KVM_S390_BSCA_CPU_SLOTS)
1394 return true;
1395 if (!sclp.has_esca)
1396 return false;
1397
1398 mutex_lock(&kvm->lock);
1399 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
1400 mutex_unlock(&kvm->lock);
1401
1402 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1403 }
1404
1405 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1406 {
1407 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1408 kvm_clear_async_pf_completion_queue(vcpu);
1409 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
1410 KVM_SYNC_GPRS |
1411 KVM_SYNC_ACRS |
1412 KVM_SYNC_CRS |
1413 KVM_SYNC_ARCH0 |
1414 KVM_SYNC_PFAULT;
1415 if (test_kvm_facility(vcpu->kvm, 64))
1416 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1417 if (test_kvm_facility(vcpu->kvm, 129))
1418 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1419
1420 if (kvm_is_ucontrol(vcpu->kvm))
1421 return __kvm_ucontrol_vcpu_init(vcpu);
1422
1423 return 0;
1424 }
1425
1426 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1427 {
1428 /* Save host register state */
1429 save_fpu_regs();
1430 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
1431 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1432
1433 /* Depending on MACHINE_HAS_VX, data stored to vrs either
1434 * has vector register or floating point register format.
1435 */
1436 current->thread.fpu.regs = vcpu->run->s.regs.vrs;
1437 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1438 if (test_fp_ctl(current->thread.fpu.fpc))
1439 /* User space provided an invalid FPC, let's clear it */
1440 current->thread.fpu.fpc = 0;
1441
1442 save_access_regs(vcpu->arch.host_acrs);
1443 restore_access_regs(vcpu->run->s.regs.acrs);
1444 gmap_enable(vcpu->arch.gmap);
1445 atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1446 }
1447
1448 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1449 {
1450 atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1451 gmap_disable(vcpu->arch.gmap);
1452
1453 /* Save guest register state */
1454 save_fpu_regs();
1455 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1456
1457 /* Restore host register state */
1458 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
1459 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1460
1461 save_access_regs(vcpu->run->s.regs.acrs);
1462 restore_access_regs(vcpu->arch.host_acrs);
1463 }
1464
1465 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
1466 {
1467 /* this equals initial cpu reset in pop, but we don't switch to ESA */
1468 vcpu->arch.sie_block->gpsw.mask = 0UL;
1469 vcpu->arch.sie_block->gpsw.addr = 0UL;
1470 kvm_s390_set_prefix(vcpu, 0);
1471 vcpu->arch.sie_block->cputm = 0UL;
1472 vcpu->arch.sie_block->ckc = 0UL;
1473 vcpu->arch.sie_block->todpr = 0;
1474 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
1475 vcpu->arch.sie_block->gcr[0] = 0xE0UL;
1476 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1477 /* make sure the new fpc will be lazily loaded */
1478 save_fpu_regs();
1479 current->thread.fpu.fpc = 0;
1480 vcpu->arch.sie_block->gbea = 1;
1481 vcpu->arch.sie_block->pp = 0;
1482 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1483 kvm_clear_async_pf_completion_queue(vcpu);
1484 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
1485 kvm_s390_vcpu_stop(vcpu);
1486 kvm_s390_clear_local_irqs(vcpu);
1487 }
1488
1489 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1490 {
1491 mutex_lock(&vcpu->kvm->lock);
1492 preempt_disable();
1493 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1494 preempt_enable();
1495 mutex_unlock(&vcpu->kvm->lock);
1496 if (!kvm_is_ucontrol(vcpu->kvm)) {
1497 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1498 sca_add_vcpu(vcpu);
1499 }
1500
1501 }
1502
1503 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
1504 {
1505 if (!test_kvm_facility(vcpu->kvm, 76))
1506 return;
1507
1508 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
1509
1510 if (vcpu->kvm->arch.crypto.aes_kw)
1511 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
1512 if (vcpu->kvm->arch.crypto.dea_kw)
1513 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
1514
1515 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
1516 }
1517
1518 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
1519 {
1520 free_page(vcpu->arch.sie_block->cbrlo);
1521 vcpu->arch.sie_block->cbrlo = 0;
1522 }
1523
1524 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
1525 {
1526 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
1527 if (!vcpu->arch.sie_block->cbrlo)
1528 return -ENOMEM;
1529
1530 vcpu->arch.sie_block->ecb2 |= 0x80;
1531 vcpu->arch.sie_block->ecb2 &= ~0x08;
1532 return 0;
1533 }
1534
1535 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
1536 {
1537 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
1538
1539 vcpu->arch.cpu_id = model->cpu_id;
1540 vcpu->arch.sie_block->ibc = model->ibc;
1541 vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
1542 }
1543
1544 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1545 {
1546 int rc = 0;
1547
1548 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
1549 CPUSTAT_SM |
1550 CPUSTAT_STOPPED);
1551
1552 if (test_kvm_facility(vcpu->kvm, 78))
1553 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1554 else if (test_kvm_facility(vcpu->kvm, 8))
1555 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1556
1557 kvm_s390_vcpu_setup_model(vcpu);
1558
1559 vcpu->arch.sie_block->ecb = 6;
1560 if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1561 vcpu->arch.sie_block->ecb |= 0x10;
1562
1563 vcpu->arch.sie_block->ecb2 = 8;
1564 vcpu->arch.sie_block->eca = 0xC1002000U;
1565 if (sclp.has_siif)
1566 vcpu->arch.sie_block->eca |= 1;
1567 if (sclp.has_sigpif)
1568 vcpu->arch.sie_block->eca |= 0x10000000U;
1569 if (test_kvm_facility(vcpu->kvm, 64))
1570 vcpu->arch.sie_block->ecb3 |= 0x01;
1571 if (test_kvm_facility(vcpu->kvm, 129)) {
1572 vcpu->arch.sie_block->eca |= 0x00020000;
1573 vcpu->arch.sie_block->ecd |= 0x20000000;
1574 }
1575 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1576 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1577
1578 if (vcpu->kvm->arch.use_cmma) {
1579 rc = kvm_s390_vcpu_setup_cmma(vcpu);
1580 if (rc)
1581 return rc;
1582 }
1583 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1584 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1585
1586 kvm_s390_vcpu_crypto_setup(vcpu);
1587
1588 return rc;
1589 }
1590
1591 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1592 unsigned int id)
1593 {
1594 struct kvm_vcpu *vcpu;
1595 struct sie_page *sie_page;
1596 int rc = -EINVAL;
1597
1598 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1599 goto out;
1600
1601 rc = -ENOMEM;
1602
1603 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1604 if (!vcpu)
1605 goto out;
1606
1607 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
1608 if (!sie_page)
1609 goto out_free_cpu;
1610
1611 vcpu->arch.sie_block = &sie_page->sie_block;
1612 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1613
1614 vcpu->arch.sie_block->icpua = id;
1615 spin_lock_init(&vcpu->arch.local_int.lock);
1616 vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1617 vcpu->arch.local_int.wq = &vcpu->wq;
1618 vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1619
1620 rc = kvm_vcpu_init(vcpu, kvm, id);
1621 if (rc)
1622 goto out_free_sie_block;
1623 VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1624 vcpu->arch.sie_block);
1625 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1626
1627 return vcpu;
1628 out_free_sie_block:
1629 free_page((unsigned long)(vcpu->arch.sie_block));
1630 out_free_cpu:
1631 kmem_cache_free(kvm_vcpu_cache, vcpu);
1632 out:
1633 return ERR_PTR(rc);
1634 }
1635
1636 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1637 {
1638 return kvm_s390_vcpu_has_irq(vcpu, 0);
1639 }
1640
1641 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1642 {
1643 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1644 exit_sie(vcpu);
1645 }
1646
1647 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1648 {
1649 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1650 }
1651
1652 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
1653 {
1654 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1655 exit_sie(vcpu);
1656 }
1657
1658 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
1659 {
1660 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1661 }
1662
1663 /*
1664 * Kick a guest cpu out of SIE and wait until SIE is not running.
1665 * If the CPU is not running (e.g. waiting as idle) the function will
1666 * return immediately. */
1667 void exit_sie(struct kvm_vcpu *vcpu)
1668 {
1669 atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1670 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
1671 cpu_relax();
1672 }
1673
1674 /* Kick a guest cpu out of SIE to process a request synchronously */
1675 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1676 {
1677 kvm_make_request(req, vcpu);
1678 kvm_s390_vcpu_request(vcpu);
1679 }
1680
1681 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
1682 {
1683 int i;
1684 struct kvm *kvm = gmap->private;
1685 struct kvm_vcpu *vcpu;
1686
1687 kvm_for_each_vcpu(i, vcpu, kvm) {
1688 /* match against both prefix pages */
1689 if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1690 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1691 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1692 }
1693 }
1694 }
1695
1696 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
1697 {
1698 /* kvm common code refers to this, but never calls it */
1699 BUG();
1700 return 0;
1701 }
1702
1703 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
1704 struct kvm_one_reg *reg)
1705 {
1706 int r = -EINVAL;
1707
1708 switch (reg->id) {
1709 case KVM_REG_S390_TODPR:
1710 r = put_user(vcpu->arch.sie_block->todpr,
1711 (u32 __user *)reg->addr);
1712 break;
1713 case KVM_REG_S390_EPOCHDIFF:
1714 r = put_user(vcpu->arch.sie_block->epoch,
1715 (u64 __user *)reg->addr);
1716 break;
1717 case KVM_REG_S390_CPU_TIMER:
1718 r = put_user(vcpu->arch.sie_block->cputm,
1719 (u64 __user *)reg->addr);
1720 break;
1721 case KVM_REG_S390_CLOCK_COMP:
1722 r = put_user(vcpu->arch.sie_block->ckc,
1723 (u64 __user *)reg->addr);
1724 break;
1725 case KVM_REG_S390_PFTOKEN:
1726 r = put_user(vcpu->arch.pfault_token,
1727 (u64 __user *)reg->addr);
1728 break;
1729 case KVM_REG_S390_PFCOMPARE:
1730 r = put_user(vcpu->arch.pfault_compare,
1731 (u64 __user *)reg->addr);
1732 break;
1733 case KVM_REG_S390_PFSELECT:
1734 r = put_user(vcpu->arch.pfault_select,
1735 (u64 __user *)reg->addr);
1736 break;
1737 case KVM_REG_S390_PP:
1738 r = put_user(vcpu->arch.sie_block->pp,
1739 (u64 __user *)reg->addr);
1740 break;
1741 case KVM_REG_S390_GBEA:
1742 r = put_user(vcpu->arch.sie_block->gbea,
1743 (u64 __user *)reg->addr);
1744 break;
1745 default:
1746 break;
1747 }
1748
1749 return r;
1750 }
1751
1752 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
1753 struct kvm_one_reg *reg)
1754 {
1755 int r = -EINVAL;
1756
1757 switch (reg->id) {
1758 case KVM_REG_S390_TODPR:
1759 r = get_user(vcpu->arch.sie_block->todpr,
1760 (u32 __user *)reg->addr);
1761 break;
1762 case KVM_REG_S390_EPOCHDIFF:
1763 r = get_user(vcpu->arch.sie_block->epoch,
1764 (u64 __user *)reg->addr);
1765 break;
1766 case KVM_REG_S390_CPU_TIMER:
1767 r = get_user(vcpu->arch.sie_block->cputm,
1768 (u64 __user *)reg->addr);
1769 break;
1770 case KVM_REG_S390_CLOCK_COMP:
1771 r = get_user(vcpu->arch.sie_block->ckc,
1772 (u64 __user *)reg->addr);
1773 break;
1774 case KVM_REG_S390_PFTOKEN:
1775 r = get_user(vcpu->arch.pfault_token,
1776 (u64 __user *)reg->addr);
1777 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
1778 kvm_clear_async_pf_completion_queue(vcpu);
1779 break;
1780 case KVM_REG_S390_PFCOMPARE:
1781 r = get_user(vcpu->arch.pfault_compare,
1782 (u64 __user *)reg->addr);
1783 break;
1784 case KVM_REG_S390_PFSELECT:
1785 r = get_user(vcpu->arch.pfault_select,
1786 (u64 __user *)reg->addr);
1787 break;
1788 case KVM_REG_S390_PP:
1789 r = get_user(vcpu->arch.sie_block->pp,
1790 (u64 __user *)reg->addr);
1791 break;
1792 case KVM_REG_S390_GBEA:
1793 r = get_user(vcpu->arch.sie_block->gbea,
1794 (u64 __user *)reg->addr);
1795 break;
1796 default:
1797 break;
1798 }
1799
1800 return r;
1801 }
1802
1803 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
1804 {
1805 kvm_s390_vcpu_initial_reset(vcpu);
1806 return 0;
1807 }
1808
1809 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1810 {
1811 memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1812 return 0;
1813 }
1814
1815 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1816 {
1817 memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1818 return 0;
1819 }
1820
1821 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1822 struct kvm_sregs *sregs)
1823 {
1824 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1825 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1826 restore_access_regs(vcpu->run->s.regs.acrs);
1827 return 0;
1828 }
1829
1830 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1831 struct kvm_sregs *sregs)
1832 {
1833 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1834 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
1835 return 0;
1836 }
1837
1838 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1839 {
1840 /* make sure the new values will be lazily loaded */
1841 save_fpu_regs();
1842 if (test_fp_ctl(fpu->fpc))
1843 return -EINVAL;
1844 current->thread.fpu.fpc = fpu->fpc;
1845 if (MACHINE_HAS_VX)
1846 convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
1847 else
1848 memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
1849 return 0;
1850 }
1851
1852 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1853 {
1854 /* make sure we have the latest values */
1855 save_fpu_regs();
1856 if (MACHINE_HAS_VX)
1857 convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
1858 else
1859 memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
1860 fpu->fpc = current->thread.fpu.fpc;
1861 return 0;
1862 }
1863
1864 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
1865 {
1866 int rc = 0;
1867
1868 if (!is_vcpu_stopped(vcpu))
1869 rc = -EBUSY;
1870 else {
1871 vcpu->run->psw_mask = psw.mask;
1872 vcpu->run->psw_addr = psw.addr;
1873 }
1874 return rc;
1875 }
1876
1877 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1878 struct kvm_translation *tr)
1879 {
1880 return -EINVAL; /* not implemented yet */
1881 }
1882
1883 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
1884 KVM_GUESTDBG_USE_HW_BP | \
1885 KVM_GUESTDBG_ENABLE)
1886
1887 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1888 struct kvm_guest_debug *dbg)
1889 {
1890 int rc = 0;
1891
1892 vcpu->guest_debug = 0;
1893 kvm_s390_clear_bp_data(vcpu);
1894
1895 if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1896 return -EINVAL;
1897
1898 if (dbg->control & KVM_GUESTDBG_ENABLE) {
1899 vcpu->guest_debug = dbg->control;
1900 /* enforce guest PER */
1901 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1902
1903 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
1904 rc = kvm_s390_import_bp_data(vcpu, dbg);
1905 } else {
1906 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1907 vcpu->arch.guestdbg.last_bp = 0;
1908 }
1909
1910 if (rc) {
1911 vcpu->guest_debug = 0;
1912 kvm_s390_clear_bp_data(vcpu);
1913 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1914 }
1915
1916 return rc;
1917 }
1918
1919 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1920 struct kvm_mp_state *mp_state)
1921 {
1922 /* CHECK_STOP and LOAD are not supported yet */
1923 return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
1924 KVM_MP_STATE_OPERATING;
1925 }
1926
1927 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1928 struct kvm_mp_state *mp_state)
1929 {
1930 int rc = 0;
1931
1932 /* user space knows about this interface - let it control the state */
1933 vcpu->kvm->arch.user_cpu_state_ctrl = 1;
1934
1935 switch (mp_state->mp_state) {
1936 case KVM_MP_STATE_STOPPED:
1937 kvm_s390_vcpu_stop(vcpu);
1938 break;
1939 case KVM_MP_STATE_OPERATING:
1940 kvm_s390_vcpu_start(vcpu);
1941 break;
1942 case KVM_MP_STATE_LOAD:
1943 case KVM_MP_STATE_CHECK_STOP:
1944 /* fall through - CHECK_STOP and LOAD are not supported yet */
1945 default:
1946 rc = -ENXIO;
1947 }
1948
1949 return rc;
1950 }
1951
1952 static bool ibs_enabled(struct kvm_vcpu *vcpu)
1953 {
1954 return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
1955 }
1956
1957 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
1958 {
1959 retry:
1960 kvm_s390_vcpu_request_handled(vcpu);
1961 if (!vcpu->requests)
1962 return 0;
1963 /*
1964 * We use MMU_RELOAD just to re-arm the ipte notifier for the
1965 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
1966 * This ensures that the ipte instruction for this request has
1967 * already finished. We might race against a second unmapper that
1968 * wants to set the blocking bit. Lets just retry the request loop.
1969 */
1970 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1971 int rc;
1972 rc = gmap_ipte_notify(vcpu->arch.gmap,
1973 kvm_s390_get_prefix(vcpu),
1974 PAGE_SIZE * 2);
1975 if (rc)
1976 return rc;
1977 goto retry;
1978 }
1979
1980 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
1981 vcpu->arch.sie_block->ihcpu = 0xffff;
1982 goto retry;
1983 }
1984
1985 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
1986 if (!ibs_enabled(vcpu)) {
1987 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
1988 atomic_or(CPUSTAT_IBS,
1989 &vcpu->arch.sie_block->cpuflags);
1990 }
1991 goto retry;
1992 }
1993
1994 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
1995 if (ibs_enabled(vcpu)) {
1996 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
1997 atomic_andnot(CPUSTAT_IBS,
1998 &vcpu->arch.sie_block->cpuflags);
1999 }
2000 goto retry;
2001 }
2002
2003 /* nothing to do, just clear the request */
2004 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
2005
2006 return 0;
2007 }
2008
2009 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
2010 {
2011 struct kvm_vcpu *vcpu;
2012 int i;
2013
2014 mutex_lock(&kvm->lock);
2015 preempt_disable();
2016 kvm->arch.epoch = tod - get_tod_clock();
2017 kvm_s390_vcpu_block_all(kvm);
2018 kvm_for_each_vcpu(i, vcpu, kvm)
2019 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
2020 kvm_s390_vcpu_unblock_all(kvm);
2021 preempt_enable();
2022 mutex_unlock(&kvm->lock);
2023 }
2024
2025 /**
2026 * kvm_arch_fault_in_page - fault-in guest page if necessary
2027 * @vcpu: The corresponding virtual cpu
2028 * @gpa: Guest physical address
2029 * @writable: Whether the page should be writable or not
2030 *
2031 * Make sure that a guest page has been faulted-in on the host.
2032 *
2033 * Return: Zero on success, negative error code otherwise.
2034 */
2035 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2036 {
2037 return gmap_fault(vcpu->arch.gmap, gpa,
2038 writable ? FAULT_FLAG_WRITE : 0);
2039 }
2040
2041 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
2042 unsigned long token)
2043 {
2044 struct kvm_s390_interrupt inti;
2045 struct kvm_s390_irq irq;
2046
2047 if (start_token) {
2048 irq.u.ext.ext_params2 = token;
2049 irq.type = KVM_S390_INT_PFAULT_INIT;
2050 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2051 } else {
2052 inti.type = KVM_S390_INT_PFAULT_DONE;
2053 inti.parm64 = token;
2054 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
2055 }
2056 }
2057
2058 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2059 struct kvm_async_pf *work)
2060 {
2061 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
2062 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
2063 }
2064
2065 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2066 struct kvm_async_pf *work)
2067 {
2068 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
2069 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
2070 }
2071
2072 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2073 struct kvm_async_pf *work)
2074 {
2075 /* s390 will always inject the page directly */
2076 }
2077
2078 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
2079 {
2080 /*
2081 * s390 will always inject the page directly,
2082 * but we still want check_async_completion to cleanup
2083 */
2084 return true;
2085 }
2086
2087 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
2088 {
2089 hva_t hva;
2090 struct kvm_arch_async_pf arch;
2091 int rc;
2092
2093 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2094 return 0;
2095 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
2096 vcpu->arch.pfault_compare)
2097 return 0;
2098 if (psw_extint_disabled(vcpu))
2099 return 0;
2100 if (kvm_s390_vcpu_has_irq(vcpu, 0))
2101 return 0;
2102 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
2103 return 0;
2104 if (!vcpu->arch.gmap->pfault_enabled)
2105 return 0;
2106
2107 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
2108 hva += current->thread.gmap_addr & ~PAGE_MASK;
2109 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2110 return 0;
2111
2112 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
2113 return rc;
2114 }
2115
2116 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2117 {
2118 int rc, cpuflags;
2119
2120 /*
2121 * On s390 notifications for arriving pages will be delivered directly
2122 * to the guest but the house keeping for completed pfaults is
2123 * handled outside the worker.
2124 */
2125 kvm_check_async_pf_completion(vcpu);
2126
2127 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
2128 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2129
2130 if (need_resched())
2131 schedule();
2132
2133 if (test_cpu_flag(CIF_MCCK_PENDING))
2134 s390_handle_mcck();
2135
2136 if (!kvm_is_ucontrol(vcpu->kvm)) {
2137 rc = kvm_s390_deliver_pending_interrupts(vcpu);
2138 if (rc)
2139 return rc;
2140 }
2141
2142 rc = kvm_s390_handle_requests(vcpu);
2143 if (rc)
2144 return rc;
2145
2146 if (guestdbg_enabled(vcpu)) {
2147 kvm_s390_backup_guest_per_regs(vcpu);
2148 kvm_s390_patch_guest_per_regs(vcpu);
2149 }
2150
2151 vcpu->arch.sie_block->icptcode = 0;
2152 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
2153 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
2154 trace_kvm_s390_sie_enter(vcpu, cpuflags);
2155
2156 return 0;
2157 }
2158
2159 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
2160 {
2161 psw_t *psw = &vcpu->arch.sie_block->gpsw;
2162 u8 opcode;
2163 int rc;
2164
2165 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
2166 trace_kvm_s390_sie_fault(vcpu);
2167
2168 /*
2169 * We want to inject an addressing exception, which is defined as a
2170 * suppressing or terminating exception. However, since we came here
2171 * by a DAT access exception, the PSW still points to the faulting
2172 * instruction since DAT exceptions are nullifying. So we've got
2173 * to look up the current opcode to get the length of the instruction
2174 * to be able to forward the PSW.
2175 */
2176 rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
2177 if (rc)
2178 return kvm_s390_inject_prog_cond(vcpu, rc);
2179 psw->addr = __rewind_psw(*psw, -insn_length(opcode));
2180
2181 return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
2182 }
2183
2184 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
2185 {
2186 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
2187 vcpu->arch.sie_block->icptcode);
2188 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
2189
2190 if (guestdbg_enabled(vcpu))
2191 kvm_s390_restore_guest_per_regs(vcpu);
2192
2193 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
2194 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2195
2196 if (vcpu->arch.sie_block->icptcode > 0) {
2197 int rc = kvm_handle_sie_intercept(vcpu);
2198
2199 if (rc != -EOPNOTSUPP)
2200 return rc;
2201 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
2202 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
2203 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
2204 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
2205 return -EREMOTE;
2206 } else if (exit_reason != -EFAULT) {
2207 vcpu->stat.exit_null++;
2208 return 0;
2209 } else if (kvm_is_ucontrol(vcpu->kvm)) {
2210 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
2211 vcpu->run->s390_ucontrol.trans_exc_code =
2212 current->thread.gmap_addr;
2213 vcpu->run->s390_ucontrol.pgm_code = 0x10;
2214 return -EREMOTE;
2215 } else if (current->thread.gmap_pfault) {
2216 trace_kvm_s390_major_guest_pfault(vcpu);
2217 current->thread.gmap_pfault = 0;
2218 if (kvm_arch_setup_async_pf(vcpu))
2219 return 0;
2220 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2221 }
2222 return vcpu_post_run_fault_in_sie(vcpu);
2223 }
2224
2225 static int __vcpu_run(struct kvm_vcpu *vcpu)
2226 {
2227 int rc, exit_reason;
2228
2229 /*
2230 * We try to hold kvm->srcu during most of vcpu_run (except when run-
2231 * ning the guest), so that memslots (and other stuff) are protected
2232 */
2233 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2234
2235 do {
2236 rc = vcpu_pre_run(vcpu);
2237 if (rc)
2238 break;
2239
2240 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2241 /*
2242 * As PF_VCPU will be used in fault handler, between
2243 * guest_enter and guest_exit should be no uaccess.
2244 */
2245 local_irq_disable();
2246 __kvm_guest_enter();
2247 local_irq_enable();
2248 exit_reason = sie64a(vcpu->arch.sie_block,
2249 vcpu->run->s.regs.gprs);
2250 local_irq_disable();
2251 __kvm_guest_exit();
2252 local_irq_enable();
2253 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2254
2255 rc = vcpu_post_run(vcpu, exit_reason);
2256 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2257
2258 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2259 return rc;
2260 }
2261
2262 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2263 {
2264 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
2265 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
2266 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
2267 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
2268 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
2269 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2270 /* some control register changes require a tlb flush */
2271 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2272 }
2273 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2274 vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
2275 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
2276 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
2277 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
2278 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
2279 }
2280 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
2281 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
2282 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
2283 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2284 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2285 kvm_clear_async_pf_completion_queue(vcpu);
2286 }
2287 kvm_run->kvm_dirty_regs = 0;
2288 }
2289
2290 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2291 {
2292 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
2293 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
2294 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
2295 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2296 kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
2297 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
2298 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
2299 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
2300 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
2301 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
2302 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
2303 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2304 }
2305
2306 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2307 {
2308 int rc;
2309 sigset_t sigsaved;
2310
2311 if (guestdbg_exit_pending(vcpu)) {
2312 kvm_s390_prepare_debug_exit(vcpu);
2313 return 0;
2314 }
2315
2316 if (vcpu->sigset_active)
2317 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2318
2319 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
2320 kvm_s390_vcpu_start(vcpu);
2321 } else if (is_vcpu_stopped(vcpu)) {
2322 pr_err_ratelimited("can't run stopped vcpu %d\n",
2323 vcpu->vcpu_id);
2324 return -EINVAL;
2325 }
2326
2327 sync_regs(vcpu, kvm_run);
2328
2329 might_fault();
2330 rc = __vcpu_run(vcpu);
2331
2332 if (signal_pending(current) && !rc) {
2333 kvm_run->exit_reason = KVM_EXIT_INTR;
2334 rc = -EINTR;
2335 }
2336
2337 if (guestdbg_exit_pending(vcpu) && !rc) {
2338 kvm_s390_prepare_debug_exit(vcpu);
2339 rc = 0;
2340 }
2341
2342 if (rc == -EREMOTE) {
2343 /* userspace support is needed, kvm_run has been prepared */
2344 rc = 0;
2345 }
2346
2347 store_regs(vcpu, kvm_run);
2348
2349 if (vcpu->sigset_active)
2350 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2351
2352 vcpu->stat.exit_userspace++;
2353 return rc;
2354 }
2355
2356 /*
2357 * store status at address
2358 * we use have two special cases:
2359 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
2360 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
2361 */
2362 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2363 {
2364 unsigned char archmode = 1;
2365 freg_t fprs[NUM_FPRS];
2366 unsigned int px;
2367 u64 clkcomp;
2368 int rc;
2369
2370 px = kvm_s390_get_prefix(vcpu);
2371 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
2372 if (write_guest_abs(vcpu, 163, &archmode, 1))
2373 return -EFAULT;
2374 gpa = 0;
2375 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
2376 if (write_guest_real(vcpu, 163, &archmode, 1))
2377 return -EFAULT;
2378 gpa = px;
2379 } else
2380 gpa -= __LC_FPREGS_SAVE_AREA;
2381
2382 /* manually convert vector registers if necessary */
2383 if (MACHINE_HAS_VX) {
2384 convert_vx_to_fp(fprs, current->thread.fpu.vxrs);
2385 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2386 fprs, 128);
2387 } else {
2388 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2389 vcpu->run->s.regs.vrs, 128);
2390 }
2391 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2392 vcpu->run->s.regs.gprs, 128);
2393 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2394 &vcpu->arch.sie_block->gpsw, 16);
2395 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2396 &px, 4);
2397 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2398 &vcpu->run->s.regs.fpc, 4);
2399 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2400 &vcpu->arch.sie_block->todpr, 4);
2401 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2402 &vcpu->arch.sie_block->cputm, 8);
2403 clkcomp = vcpu->arch.sie_block->ckc >> 8;
2404 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2405 &clkcomp, 8);
2406 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2407 &vcpu->run->s.regs.acrs, 64);
2408 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2409 &vcpu->arch.sie_block->gcr, 128);
2410 return rc ? -EFAULT : 0;
2411 }
2412
2413 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
2414 {
2415 /*
2416 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2417 * copying in vcpu load/put. Lets update our copies before we save
2418 * it into the save area
2419 */
2420 save_fpu_regs();
2421 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2422 save_access_regs(vcpu->run->s.regs.acrs);
2423
2424 return kvm_s390_store_status_unloaded(vcpu, addr);
2425 }
2426
2427 /*
2428 * store additional status at address
2429 */
2430 int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
2431 unsigned long gpa)
2432 {
2433 /* Only bits 0-53 are used for address formation */
2434 if (!(gpa & ~0x3ff))
2435 return 0;
2436
2437 return write_guest_abs(vcpu, gpa & ~0x3ff,
2438 (void *)&vcpu->run->s.regs.vrs, 512);
2439 }
2440
2441 int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
2442 {
2443 if (!test_kvm_facility(vcpu->kvm, 129))
2444 return 0;
2445
2446 /*
2447 * The guest VXRS are in the host VXRs due to the lazy
2448 * copying in vcpu load/put. We can simply call save_fpu_regs()
2449 * to save the current register state because we are in the
2450 * middle of a load/put cycle.
2451 *
2452 * Let's update our copies before we save it into the save area.
2453 */
2454 save_fpu_regs();
2455
2456 return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
2457 }
2458
2459 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2460 {
2461 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2462 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2463 }
2464
2465 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
2466 {
2467 unsigned int i;
2468 struct kvm_vcpu *vcpu;
2469
2470 kvm_for_each_vcpu(i, vcpu, kvm) {
2471 __disable_ibs_on_vcpu(vcpu);
2472 }
2473 }
2474
2475 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2476 {
2477 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2478 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2479 }
2480
2481 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
2482 {
2483 int i, online_vcpus, started_vcpus = 0;
2484
2485 if (!is_vcpu_stopped(vcpu))
2486 return;
2487
2488 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2489 /* Only one cpu at a time may enter/leave the STOPPED state. */
2490 spin_lock(&vcpu->kvm->arch.start_stop_lock);
2491 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2492
2493 for (i = 0; i < online_vcpus; i++) {
2494 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
2495 started_vcpus++;
2496 }
2497
2498 if (started_vcpus == 0) {
2499 /* we're the only active VCPU -> speed it up */
2500 __enable_ibs_on_vcpu(vcpu);
2501 } else if (started_vcpus == 1) {
2502 /*
2503 * As we are starting a second VCPU, we have to disable
2504 * the IBS facility on all VCPUs to remove potentially
2505 * oustanding ENABLE requests.
2506 */
2507 __disable_ibs_on_all_vcpus(vcpu->kvm);
2508 }
2509
2510 atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2511 /*
2512 * Another VCPU might have used IBS while we were offline.
2513 * Let's play safe and flush the VCPU at startup.
2514 */
2515 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2516 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2517 return;
2518 }
2519
2520 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
2521 {
2522 int i, online_vcpus, started_vcpus = 0;
2523 struct kvm_vcpu *started_vcpu = NULL;
2524
2525 if (is_vcpu_stopped(vcpu))
2526 return;
2527
2528 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2529 /* Only one cpu at a time may enter/leave the STOPPED state. */
2530 spin_lock(&vcpu->kvm->arch.start_stop_lock);
2531 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2532
2533 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2534 kvm_s390_clear_stop_irq(vcpu);
2535
2536 atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2537 __disable_ibs_on_vcpu(vcpu);
2538
2539 for (i = 0; i < online_vcpus; i++) {
2540 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
2541 started_vcpus++;
2542 started_vcpu = vcpu->kvm->vcpus[i];
2543 }
2544 }
2545
2546 if (started_vcpus == 1) {
2547 /*
2548 * As we only have one VCPU left, we want to enable the
2549 * IBS facility for that VCPU to speed it up.
2550 */
2551 __enable_ibs_on_vcpu(started_vcpu);
2552 }
2553
2554 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2555 return;
2556 }
2557
2558 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
2559 struct kvm_enable_cap *cap)
2560 {
2561 int r;
2562
2563 if (cap->flags)
2564 return -EINVAL;
2565
2566 switch (cap->cap) {
2567 case KVM_CAP_S390_CSS_SUPPORT:
2568 if (!vcpu->kvm->arch.css_support) {
2569 vcpu->kvm->arch.css_support = 1;
2570 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2571 trace_kvm_s390_enable_css(vcpu->kvm);
2572 }
2573 r = 0;
2574 break;
2575 default:
2576 r = -EINVAL;
2577 break;
2578 }
2579 return r;
2580 }
2581
2582 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
2583 struct kvm_s390_mem_op *mop)
2584 {
2585 void __user *uaddr = (void __user *)mop->buf;
2586 void *tmpbuf = NULL;
2587 int r, srcu_idx;
2588 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
2589 | KVM_S390_MEMOP_F_CHECK_ONLY;
2590
2591 if (mop->flags & ~supported_flags)
2592 return -EINVAL;
2593
2594 if (mop->size > MEM_OP_MAX_SIZE)
2595 return -E2BIG;
2596
2597 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2598 tmpbuf = vmalloc(mop->size);
2599 if (!tmpbuf)
2600 return -ENOMEM;
2601 }
2602
2603 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2604
2605 switch (mop->op) {
2606 case KVM_S390_MEMOP_LOGICAL_READ:
2607 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2608 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
2609 break;
2610 }
2611 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
2612 if (r == 0) {
2613 if (copy_to_user(uaddr, tmpbuf, mop->size))
2614 r = -EFAULT;
2615 }
2616 break;
2617 case KVM_S390_MEMOP_LOGICAL_WRITE:
2618 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2619 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
2620 break;
2621 }
2622 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2623 r = -EFAULT;
2624 break;
2625 }
2626 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
2627 break;
2628 default:
2629 r = -EINVAL;
2630 }
2631
2632 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2633
2634 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
2635 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
2636
2637 vfree(tmpbuf);
2638 return r;
2639 }
2640
2641 long kvm_arch_vcpu_ioctl(struct file *filp,
2642 unsigned int ioctl, unsigned long arg)
2643 {
2644 struct kvm_vcpu *vcpu = filp->private_data;
2645 void __user *argp = (void __user *)arg;
2646 int idx;
2647 long r;
2648
2649 switch (ioctl) {
2650 case KVM_S390_IRQ: {
2651 struct kvm_s390_irq s390irq;
2652
2653 r = -EFAULT;
2654 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
2655 break;
2656 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2657 break;
2658 }
2659 case KVM_S390_INTERRUPT: {
2660 struct kvm_s390_interrupt s390int;
2661 struct kvm_s390_irq s390irq;
2662
2663 r = -EFAULT;
2664 if (copy_from_user(&s390int, argp, sizeof(s390int)))
2665 break;
2666 if (s390int_to_s390irq(&s390int, &s390irq))
2667 return -EINVAL;
2668 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2669 break;
2670 }
2671 case KVM_S390_STORE_STATUS:
2672 idx = srcu_read_lock(&vcpu->kvm->srcu);
2673 r = kvm_s390_vcpu_store_status(vcpu, arg);
2674 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2675 break;
2676 case KVM_S390_SET_INITIAL_PSW: {
2677 psw_t psw;
2678
2679 r = -EFAULT;
2680 if (copy_from_user(&psw, argp, sizeof(psw)))
2681 break;
2682 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
2683 break;
2684 }
2685 case KVM_S390_INITIAL_RESET:
2686 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
2687 break;
2688 case KVM_SET_ONE_REG:
2689 case KVM_GET_ONE_REG: {
2690 struct kvm_one_reg reg;
2691 r = -EFAULT;
2692 if (copy_from_user(&reg, argp, sizeof(reg)))
2693 break;
2694 if (ioctl == KVM_SET_ONE_REG)
2695 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
2696 else
2697 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
2698 break;
2699 }
2700 #ifdef CONFIG_KVM_S390_UCONTROL
2701 case KVM_S390_UCAS_MAP: {
2702 struct kvm_s390_ucas_mapping ucasmap;
2703
2704 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
2705 r = -EFAULT;
2706 break;
2707 }
2708
2709 if (!kvm_is_ucontrol(vcpu->kvm)) {
2710 r = -EINVAL;
2711 break;
2712 }
2713
2714 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
2715 ucasmap.vcpu_addr, ucasmap.length);
2716 break;
2717 }
2718 case KVM_S390_UCAS_UNMAP: {
2719 struct kvm_s390_ucas_mapping ucasmap;
2720
2721 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
2722 r = -EFAULT;
2723 break;
2724 }
2725
2726 if (!kvm_is_ucontrol(vcpu->kvm)) {
2727 r = -EINVAL;
2728 break;
2729 }
2730
2731 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
2732 ucasmap.length);
2733 break;
2734 }
2735 #endif
2736 case KVM_S390_VCPU_FAULT: {
2737 r = gmap_fault(vcpu->arch.gmap, arg, 0);
2738 break;
2739 }
2740 case KVM_ENABLE_CAP:
2741 {
2742 struct kvm_enable_cap cap;
2743 r = -EFAULT;
2744 if (copy_from_user(&cap, argp, sizeof(cap)))
2745 break;
2746 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2747 break;
2748 }
2749 case KVM_S390_MEM_OP: {
2750 struct kvm_s390_mem_op mem_op;
2751
2752 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
2753 r = kvm_s390_guest_mem_op(vcpu, &mem_op);
2754 else
2755 r = -EFAULT;
2756 break;
2757 }
2758 case KVM_S390_SET_IRQ_STATE: {
2759 struct kvm_s390_irq_state irq_state;
2760
2761 r = -EFAULT;
2762 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
2763 break;
2764 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
2765 irq_state.len == 0 ||
2766 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
2767 r = -EINVAL;
2768 break;
2769 }
2770 r = kvm_s390_set_irq_state(vcpu,
2771 (void __user *) irq_state.buf,
2772 irq_state.len);
2773 break;
2774 }
2775 case KVM_S390_GET_IRQ_STATE: {
2776 struct kvm_s390_irq_state irq_state;
2777
2778 r = -EFAULT;
2779 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
2780 break;
2781 if (irq_state.len == 0) {
2782 r = -EINVAL;
2783 break;
2784 }
2785 r = kvm_s390_get_irq_state(vcpu,
2786 (__u8 __user *) irq_state.buf,
2787 irq_state.len);
2788 break;
2789 }
2790 default:
2791 r = -ENOTTY;
2792 }
2793 return r;
2794 }
2795
2796 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2797 {
2798 #ifdef CONFIG_KVM_S390_UCONTROL
2799 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
2800 && (kvm_is_ucontrol(vcpu->kvm))) {
2801 vmf->page = virt_to_page(vcpu->arch.sie_block);
2802 get_page(vmf->page);
2803 return 0;
2804 }
2805 #endif
2806 return VM_FAULT_SIGBUS;
2807 }
2808
2809 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2810 unsigned long npages)
2811 {
2812 return 0;
2813 }
2814
2815 /* Section: memory related */
2816 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2817 struct kvm_memory_slot *memslot,
2818 const struct kvm_userspace_memory_region *mem,
2819 enum kvm_mr_change change)
2820 {
2821 /* A few sanity checks. We can have memory slots which have to be
2822 located/ended at a segment boundary (1MB). The memory in userland is
2823 ok to be fragmented into various different vmas. It is okay to mmap()
2824 and munmap() stuff in this slot after doing this call at any time */
2825
2826 if (mem->userspace_addr & 0xffffful)
2827 return -EINVAL;
2828
2829 if (mem->memory_size & 0xffffful)
2830 return -EINVAL;
2831
2832 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
2833 return -EINVAL;
2834
2835 return 0;
2836 }
2837
2838 void kvm_arch_commit_memory_region(struct kvm *kvm,
2839 const struct kvm_userspace_memory_region *mem,
2840 const struct kvm_memory_slot *old,
2841 const struct kvm_memory_slot *new,
2842 enum kvm_mr_change change)
2843 {
2844 int rc;
2845
2846 /* If the basics of the memslot do not change, we do not want
2847 * to update the gmap. Every update causes several unnecessary
2848 * segment translation exceptions. This is usually handled just
2849 * fine by the normal fault handler + gmap, but it will also
2850 * cause faults on the prefix page of running guest CPUs.
2851 */
2852 if (old->userspace_addr == mem->userspace_addr &&
2853 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
2854 old->npages * PAGE_SIZE == mem->memory_size)
2855 return;
2856
2857 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
2858 mem->guest_phys_addr, mem->memory_size);
2859 if (rc)
2860 pr_warn("failed to commit memory region\n");
2861 return;
2862 }
2863
2864 static int __init kvm_s390_init(void)
2865 {
2866 if (!sclp.has_sief2) {
2867 pr_info("SIE not available\n");
2868 return -ENODEV;
2869 }
2870
2871 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2872 }
2873
2874 static void __exit kvm_s390_exit(void)
2875 {
2876 kvm_exit();
2877 }
2878
2879 module_init(kvm_s390_init);
2880 module_exit(kvm_s390_exit);
2881
2882 /*
2883 * Enable autoloading of the kvm module.
2884 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
2885 * since x86 takes a different approach.
2886 */
2887 #include <linux/miscdevice.h>
2888 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2889 MODULE_ALIAS("devname:kvm");
This page took 0.091534 seconds and 6 git commands to generate.