Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / arch / s390 / mm / pgtable.c
1 /*
2 * Copyright IBM Corp. 2007, 2011
3 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4 */
5
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 #include <linux/swapops.h>
21 #include <linux/sysctl.h>
22 #include <linux/ksm.h>
23 #include <linux/mman.h>
24
25 #include <asm/pgtable.h>
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30
31 #define ALLOC_ORDER 2
32 #define FRAG_MASK 0x03
33
34 int HPAGE_SHIFT;
35
36 unsigned long *crst_table_alloc(struct mm_struct *mm)
37 {
38 struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
39
40 if (!page)
41 return NULL;
42 return (unsigned long *) page_to_phys(page);
43 }
44
45 void crst_table_free(struct mm_struct *mm, unsigned long *table)
46 {
47 free_pages((unsigned long) table, ALLOC_ORDER);
48 }
49
50 static void __crst_table_upgrade(void *arg)
51 {
52 struct mm_struct *mm = arg;
53
54 if (current->active_mm == mm) {
55 clear_user_asce();
56 set_user_asce(mm);
57 }
58 __tlb_flush_local();
59 }
60
61 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
62 {
63 unsigned long *table, *pgd;
64 unsigned long entry;
65 int flush;
66
67 BUG_ON(limit > (1UL << 53));
68 flush = 0;
69 repeat:
70 table = crst_table_alloc(mm);
71 if (!table)
72 return -ENOMEM;
73 spin_lock_bh(&mm->page_table_lock);
74 if (mm->context.asce_limit < limit) {
75 pgd = (unsigned long *) mm->pgd;
76 if (mm->context.asce_limit <= (1UL << 31)) {
77 entry = _REGION3_ENTRY_EMPTY;
78 mm->context.asce_limit = 1UL << 42;
79 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
80 _ASCE_USER_BITS |
81 _ASCE_TYPE_REGION3;
82 } else {
83 entry = _REGION2_ENTRY_EMPTY;
84 mm->context.asce_limit = 1UL << 53;
85 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
86 _ASCE_USER_BITS |
87 _ASCE_TYPE_REGION2;
88 }
89 crst_table_init(table, entry);
90 pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
91 mm->pgd = (pgd_t *) table;
92 mm->task_size = mm->context.asce_limit;
93 table = NULL;
94 flush = 1;
95 }
96 spin_unlock_bh(&mm->page_table_lock);
97 if (table)
98 crst_table_free(mm, table);
99 if (mm->context.asce_limit < limit)
100 goto repeat;
101 if (flush)
102 on_each_cpu(__crst_table_upgrade, mm, 0);
103 return 0;
104 }
105
106 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
107 {
108 pgd_t *pgd;
109
110 if (current->active_mm == mm) {
111 clear_user_asce();
112 __tlb_flush_mm(mm);
113 }
114 while (mm->context.asce_limit > limit) {
115 pgd = mm->pgd;
116 switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
117 case _REGION_ENTRY_TYPE_R2:
118 mm->context.asce_limit = 1UL << 42;
119 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
120 _ASCE_USER_BITS |
121 _ASCE_TYPE_REGION3;
122 break;
123 case _REGION_ENTRY_TYPE_R3:
124 mm->context.asce_limit = 1UL << 31;
125 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
126 _ASCE_USER_BITS |
127 _ASCE_TYPE_SEGMENT;
128 break;
129 default:
130 BUG();
131 }
132 mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
133 mm->task_size = mm->context.asce_limit;
134 crst_table_free(mm, (unsigned long *) pgd);
135 }
136 if (current->active_mm == mm)
137 set_user_asce(mm);
138 }
139
140 #ifdef CONFIG_PGSTE
141
142 /**
143 * gmap_alloc - allocate a guest address space
144 * @mm: pointer to the parent mm_struct
145 * @limit: maximum size of the gmap address space
146 *
147 * Returns a guest address space structure.
148 */
149 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
150 {
151 struct gmap *gmap;
152 struct page *page;
153 unsigned long *table;
154 unsigned long etype, atype;
155
156 if (limit < (1UL << 31)) {
157 limit = (1UL << 31) - 1;
158 atype = _ASCE_TYPE_SEGMENT;
159 etype = _SEGMENT_ENTRY_EMPTY;
160 } else if (limit < (1UL << 42)) {
161 limit = (1UL << 42) - 1;
162 atype = _ASCE_TYPE_REGION3;
163 etype = _REGION3_ENTRY_EMPTY;
164 } else if (limit < (1UL << 53)) {
165 limit = (1UL << 53) - 1;
166 atype = _ASCE_TYPE_REGION2;
167 etype = _REGION2_ENTRY_EMPTY;
168 } else {
169 limit = -1UL;
170 atype = _ASCE_TYPE_REGION1;
171 etype = _REGION1_ENTRY_EMPTY;
172 }
173 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
174 if (!gmap)
175 goto out;
176 INIT_LIST_HEAD(&gmap->crst_list);
177 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
178 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
179 spin_lock_init(&gmap->guest_table_lock);
180 gmap->mm = mm;
181 page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
182 if (!page)
183 goto out_free;
184 page->index = 0;
185 list_add(&page->lru, &gmap->crst_list);
186 table = (unsigned long *) page_to_phys(page);
187 crst_table_init(table, etype);
188 gmap->table = table;
189 gmap->asce = atype | _ASCE_TABLE_LENGTH |
190 _ASCE_USER_BITS | __pa(table);
191 gmap->asce_end = limit;
192 down_write(&mm->mmap_sem);
193 list_add(&gmap->list, &mm->context.gmap_list);
194 up_write(&mm->mmap_sem);
195 return gmap;
196
197 out_free:
198 kfree(gmap);
199 out:
200 return NULL;
201 }
202 EXPORT_SYMBOL_GPL(gmap_alloc);
203
204 static void gmap_flush_tlb(struct gmap *gmap)
205 {
206 if (MACHINE_HAS_IDTE)
207 __tlb_flush_asce(gmap->mm, gmap->asce);
208 else
209 __tlb_flush_global();
210 }
211
212 static void gmap_radix_tree_free(struct radix_tree_root *root)
213 {
214 struct radix_tree_iter iter;
215 unsigned long indices[16];
216 unsigned long index;
217 void **slot;
218 int i, nr;
219
220 /* A radix tree is freed by deleting all of its entries */
221 index = 0;
222 do {
223 nr = 0;
224 radix_tree_for_each_slot(slot, root, &iter, index) {
225 indices[nr] = iter.index;
226 if (++nr == 16)
227 break;
228 }
229 for (i = 0; i < nr; i++) {
230 index = indices[i];
231 radix_tree_delete(root, index);
232 }
233 } while (nr > 0);
234 }
235
236 /**
237 * gmap_free - free a guest address space
238 * @gmap: pointer to the guest address space structure
239 */
240 void gmap_free(struct gmap *gmap)
241 {
242 struct page *page, *next;
243
244 /* Flush tlb. */
245 if (MACHINE_HAS_IDTE)
246 __tlb_flush_asce(gmap->mm, gmap->asce);
247 else
248 __tlb_flush_global();
249
250 /* Free all segment & region tables. */
251 list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
252 __free_pages(page, ALLOC_ORDER);
253 gmap_radix_tree_free(&gmap->guest_to_host);
254 gmap_radix_tree_free(&gmap->host_to_guest);
255 down_write(&gmap->mm->mmap_sem);
256 list_del(&gmap->list);
257 up_write(&gmap->mm->mmap_sem);
258 kfree(gmap);
259 }
260 EXPORT_SYMBOL_GPL(gmap_free);
261
262 /**
263 * gmap_enable - switch primary space to the guest address space
264 * @gmap: pointer to the guest address space structure
265 */
266 void gmap_enable(struct gmap *gmap)
267 {
268 S390_lowcore.gmap = (unsigned long) gmap;
269 }
270 EXPORT_SYMBOL_GPL(gmap_enable);
271
272 /**
273 * gmap_disable - switch back to the standard primary address space
274 * @gmap: pointer to the guest address space structure
275 */
276 void gmap_disable(struct gmap *gmap)
277 {
278 S390_lowcore.gmap = 0UL;
279 }
280 EXPORT_SYMBOL_GPL(gmap_disable);
281
282 /*
283 * gmap_alloc_table is assumed to be called with mmap_sem held
284 */
285 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
286 unsigned long init, unsigned long gaddr)
287 {
288 struct page *page;
289 unsigned long *new;
290
291 /* since we dont free the gmap table until gmap_free we can unlock */
292 page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
293 if (!page)
294 return -ENOMEM;
295 new = (unsigned long *) page_to_phys(page);
296 crst_table_init(new, init);
297 spin_lock(&gmap->mm->page_table_lock);
298 if (*table & _REGION_ENTRY_INVALID) {
299 list_add(&page->lru, &gmap->crst_list);
300 *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
301 (*table & _REGION_ENTRY_TYPE_MASK);
302 page->index = gaddr;
303 page = NULL;
304 }
305 spin_unlock(&gmap->mm->page_table_lock);
306 if (page)
307 __free_pages(page, ALLOC_ORDER);
308 return 0;
309 }
310
311 /**
312 * __gmap_segment_gaddr - find virtual address from segment pointer
313 * @entry: pointer to a segment table entry in the guest address space
314 *
315 * Returns the virtual address in the guest address space for the segment
316 */
317 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
318 {
319 struct page *page;
320 unsigned long offset, mask;
321
322 offset = (unsigned long) entry / sizeof(unsigned long);
323 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
324 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
325 page = virt_to_page((void *)((unsigned long) entry & mask));
326 return page->index + offset;
327 }
328
329 /**
330 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
331 * @gmap: pointer to the guest address space structure
332 * @vmaddr: address in the host process address space
333 *
334 * Returns 1 if a TLB flush is required
335 */
336 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
337 {
338 unsigned long *entry;
339 int flush = 0;
340
341 spin_lock(&gmap->guest_table_lock);
342 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
343 if (entry) {
344 flush = (*entry != _SEGMENT_ENTRY_INVALID);
345 *entry = _SEGMENT_ENTRY_INVALID;
346 }
347 spin_unlock(&gmap->guest_table_lock);
348 return flush;
349 }
350
351 /**
352 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
353 * @gmap: pointer to the guest address space structure
354 * @gaddr: address in the guest address space
355 *
356 * Returns 1 if a TLB flush is required
357 */
358 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
359 {
360 unsigned long vmaddr;
361
362 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
363 gaddr >> PMD_SHIFT);
364 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
365 }
366
367 /**
368 * gmap_unmap_segment - unmap segment from the guest address space
369 * @gmap: pointer to the guest address space structure
370 * @to: address in the guest address space
371 * @len: length of the memory area to unmap
372 *
373 * Returns 0 if the unmap succeeded, -EINVAL if not.
374 */
375 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
376 {
377 unsigned long off;
378 int flush;
379
380 if ((to | len) & (PMD_SIZE - 1))
381 return -EINVAL;
382 if (len == 0 || to + len < to)
383 return -EINVAL;
384
385 flush = 0;
386 down_write(&gmap->mm->mmap_sem);
387 for (off = 0; off < len; off += PMD_SIZE)
388 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
389 up_write(&gmap->mm->mmap_sem);
390 if (flush)
391 gmap_flush_tlb(gmap);
392 return 0;
393 }
394 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
395
396 /**
397 * gmap_mmap_segment - map a segment to the guest address space
398 * @gmap: pointer to the guest address space structure
399 * @from: source address in the parent address space
400 * @to: target address in the guest address space
401 * @len: length of the memory area to map
402 *
403 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
404 */
405 int gmap_map_segment(struct gmap *gmap, unsigned long from,
406 unsigned long to, unsigned long len)
407 {
408 unsigned long off;
409 int flush;
410
411 if ((from | to | len) & (PMD_SIZE - 1))
412 return -EINVAL;
413 if (len == 0 || from + len < from || to + len < to ||
414 from + len > TASK_MAX_SIZE || to + len > gmap->asce_end)
415 return -EINVAL;
416
417 flush = 0;
418 down_write(&gmap->mm->mmap_sem);
419 for (off = 0; off < len; off += PMD_SIZE) {
420 /* Remove old translation */
421 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
422 /* Store new translation */
423 if (radix_tree_insert(&gmap->guest_to_host,
424 (to + off) >> PMD_SHIFT,
425 (void *) from + off))
426 break;
427 }
428 up_write(&gmap->mm->mmap_sem);
429 if (flush)
430 gmap_flush_tlb(gmap);
431 if (off >= len)
432 return 0;
433 gmap_unmap_segment(gmap, to, len);
434 return -ENOMEM;
435 }
436 EXPORT_SYMBOL_GPL(gmap_map_segment);
437
438 /**
439 * __gmap_translate - translate a guest address to a user space address
440 * @gmap: pointer to guest mapping meta data structure
441 * @gaddr: guest address
442 *
443 * Returns user space address which corresponds to the guest address or
444 * -EFAULT if no such mapping exists.
445 * This function does not establish potentially missing page table entries.
446 * The mmap_sem of the mm that belongs to the address space must be held
447 * when this function gets called.
448 */
449 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
450 {
451 unsigned long vmaddr;
452
453 vmaddr = (unsigned long)
454 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
455 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
456 }
457 EXPORT_SYMBOL_GPL(__gmap_translate);
458
459 /**
460 * gmap_translate - translate a guest address to a user space address
461 * @gmap: pointer to guest mapping meta data structure
462 * @gaddr: guest address
463 *
464 * Returns user space address which corresponds to the guest address or
465 * -EFAULT if no such mapping exists.
466 * This function does not establish potentially missing page table entries.
467 */
468 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
469 {
470 unsigned long rc;
471
472 down_read(&gmap->mm->mmap_sem);
473 rc = __gmap_translate(gmap, gaddr);
474 up_read(&gmap->mm->mmap_sem);
475 return rc;
476 }
477 EXPORT_SYMBOL_GPL(gmap_translate);
478
479 /**
480 * gmap_unlink - disconnect a page table from the gmap shadow tables
481 * @gmap: pointer to guest mapping meta data structure
482 * @table: pointer to the host page table
483 * @vmaddr: vm address associated with the host page table
484 */
485 static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
486 unsigned long vmaddr)
487 {
488 struct gmap *gmap;
489 int flush;
490
491 list_for_each_entry(gmap, &mm->context.gmap_list, list) {
492 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
493 if (flush)
494 gmap_flush_tlb(gmap);
495 }
496 }
497
498 /**
499 * gmap_link - set up shadow page tables to connect a host to a guest address
500 * @gmap: pointer to guest mapping meta data structure
501 * @gaddr: guest address
502 * @vmaddr: vm address
503 *
504 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
505 * if the vm address is already mapped to a different guest segment.
506 * The mmap_sem of the mm that belongs to the address space must be held
507 * when this function gets called.
508 */
509 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
510 {
511 struct mm_struct *mm;
512 unsigned long *table;
513 spinlock_t *ptl;
514 pgd_t *pgd;
515 pud_t *pud;
516 pmd_t *pmd;
517 int rc;
518
519 /* Create higher level tables in the gmap page table */
520 table = gmap->table;
521 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
522 table += (gaddr >> 53) & 0x7ff;
523 if ((*table & _REGION_ENTRY_INVALID) &&
524 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
525 gaddr & 0xffe0000000000000UL))
526 return -ENOMEM;
527 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
528 }
529 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
530 table += (gaddr >> 42) & 0x7ff;
531 if ((*table & _REGION_ENTRY_INVALID) &&
532 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
533 gaddr & 0xfffffc0000000000UL))
534 return -ENOMEM;
535 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
536 }
537 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
538 table += (gaddr >> 31) & 0x7ff;
539 if ((*table & _REGION_ENTRY_INVALID) &&
540 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
541 gaddr & 0xffffffff80000000UL))
542 return -ENOMEM;
543 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
544 }
545 table += (gaddr >> 20) & 0x7ff;
546 /* Walk the parent mm page table */
547 mm = gmap->mm;
548 pgd = pgd_offset(mm, vmaddr);
549 VM_BUG_ON(pgd_none(*pgd));
550 pud = pud_offset(pgd, vmaddr);
551 VM_BUG_ON(pud_none(*pud));
552 pmd = pmd_offset(pud, vmaddr);
553 VM_BUG_ON(pmd_none(*pmd));
554 /* large pmds cannot yet be handled */
555 if (pmd_large(*pmd))
556 return -EFAULT;
557 /* Link gmap segment table entry location to page table. */
558 rc = radix_tree_preload(GFP_KERNEL);
559 if (rc)
560 return rc;
561 ptl = pmd_lock(mm, pmd);
562 spin_lock(&gmap->guest_table_lock);
563 if (*table == _SEGMENT_ENTRY_INVALID) {
564 rc = radix_tree_insert(&gmap->host_to_guest,
565 vmaddr >> PMD_SHIFT, table);
566 if (!rc)
567 *table = pmd_val(*pmd);
568 } else
569 rc = 0;
570 spin_unlock(&gmap->guest_table_lock);
571 spin_unlock(ptl);
572 radix_tree_preload_end();
573 return rc;
574 }
575
576 /**
577 * gmap_fault - resolve a fault on a guest address
578 * @gmap: pointer to guest mapping meta data structure
579 * @gaddr: guest address
580 * @fault_flags: flags to pass down to handle_mm_fault()
581 *
582 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
583 * if the vm address is already mapped to a different guest segment.
584 */
585 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
586 unsigned int fault_flags)
587 {
588 unsigned long vmaddr;
589 int rc;
590
591 down_read(&gmap->mm->mmap_sem);
592 vmaddr = __gmap_translate(gmap, gaddr);
593 if (IS_ERR_VALUE(vmaddr)) {
594 rc = vmaddr;
595 goto out_up;
596 }
597 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) {
598 rc = -EFAULT;
599 goto out_up;
600 }
601 rc = __gmap_link(gmap, gaddr, vmaddr);
602 out_up:
603 up_read(&gmap->mm->mmap_sem);
604 return rc;
605 }
606 EXPORT_SYMBOL_GPL(gmap_fault);
607
608 static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
609 {
610 if (!non_swap_entry(entry))
611 dec_mm_counter(mm, MM_SWAPENTS);
612 else if (is_migration_entry(entry)) {
613 struct page *page = migration_entry_to_page(entry);
614
615 if (PageAnon(page))
616 dec_mm_counter(mm, MM_ANONPAGES);
617 else
618 dec_mm_counter(mm, MM_FILEPAGES);
619 }
620 free_swap_and_cache(entry);
621 }
622
623 /*
624 * this function is assumed to be called with mmap_sem held
625 */
626 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
627 {
628 unsigned long vmaddr, ptev, pgstev;
629 pte_t *ptep, pte;
630 spinlock_t *ptl;
631 pgste_t pgste;
632
633 /* Find the vm address for the guest address */
634 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
635 gaddr >> PMD_SHIFT);
636 if (!vmaddr)
637 return;
638 vmaddr |= gaddr & ~PMD_MASK;
639 /* Get pointer to the page table entry */
640 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
641 if (unlikely(!ptep))
642 return;
643 pte = *ptep;
644 if (!pte_swap(pte))
645 goto out_pte;
646 /* Zap unused and logically-zero pages */
647 pgste = pgste_get_lock(ptep);
648 pgstev = pgste_val(pgste);
649 ptev = pte_val(pte);
650 if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
651 ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
652 gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
653 pte_clear(gmap->mm, vmaddr, ptep);
654 }
655 pgste_set_unlock(ptep, pgste);
656 out_pte:
657 pte_unmap_unlock(ptep, ptl);
658 }
659 EXPORT_SYMBOL_GPL(__gmap_zap);
660
661 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
662 {
663 unsigned long gaddr, vmaddr, size;
664 struct vm_area_struct *vma;
665
666 down_read(&gmap->mm->mmap_sem);
667 for (gaddr = from; gaddr < to;
668 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
669 /* Find the vm address for the guest address */
670 vmaddr = (unsigned long)
671 radix_tree_lookup(&gmap->guest_to_host,
672 gaddr >> PMD_SHIFT);
673 if (!vmaddr)
674 continue;
675 vmaddr |= gaddr & ~PMD_MASK;
676 /* Find vma in the parent mm */
677 vma = find_vma(gmap->mm, vmaddr);
678 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
679 zap_page_range(vma, vmaddr, size, NULL);
680 }
681 up_read(&gmap->mm->mmap_sem);
682 }
683 EXPORT_SYMBOL_GPL(gmap_discard);
684
685 static LIST_HEAD(gmap_notifier_list);
686 static DEFINE_SPINLOCK(gmap_notifier_lock);
687
688 /**
689 * gmap_register_ipte_notifier - register a pte invalidation callback
690 * @nb: pointer to the gmap notifier block
691 */
692 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
693 {
694 spin_lock(&gmap_notifier_lock);
695 list_add(&nb->list, &gmap_notifier_list);
696 spin_unlock(&gmap_notifier_lock);
697 }
698 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
699
700 /**
701 * gmap_unregister_ipte_notifier - remove a pte invalidation callback
702 * @nb: pointer to the gmap notifier block
703 */
704 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
705 {
706 spin_lock(&gmap_notifier_lock);
707 list_del_init(&nb->list);
708 spin_unlock(&gmap_notifier_lock);
709 }
710 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
711
712 /**
713 * gmap_ipte_notify - mark a range of ptes for invalidation notification
714 * @gmap: pointer to guest mapping meta data structure
715 * @gaddr: virtual address in the guest address space
716 * @len: size of area
717 *
718 * Returns 0 if for each page in the given range a gmap mapping exists and
719 * the invalidation notification could be set. If the gmap mapping is missing
720 * for one or more pages -EFAULT is returned. If no memory could be allocated
721 * -ENOMEM is returned. This function establishes missing page table entries.
722 */
723 int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
724 {
725 unsigned long addr;
726 spinlock_t *ptl;
727 pte_t *ptep, entry;
728 pgste_t pgste;
729 int rc = 0;
730
731 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
732 return -EINVAL;
733 down_read(&gmap->mm->mmap_sem);
734 while (len) {
735 /* Convert gmap address and connect the page tables */
736 addr = __gmap_translate(gmap, gaddr);
737 if (IS_ERR_VALUE(addr)) {
738 rc = addr;
739 break;
740 }
741 /* Get the page mapped */
742 if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
743 rc = -EFAULT;
744 break;
745 }
746 rc = __gmap_link(gmap, gaddr, addr);
747 if (rc)
748 break;
749 /* Walk the process page table, lock and get pte pointer */
750 ptep = get_locked_pte(gmap->mm, addr, &ptl);
751 VM_BUG_ON(!ptep);
752 /* Set notification bit in the pgste of the pte */
753 entry = *ptep;
754 if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
755 pgste = pgste_get_lock(ptep);
756 pgste_val(pgste) |= PGSTE_IN_BIT;
757 pgste_set_unlock(ptep, pgste);
758 gaddr += PAGE_SIZE;
759 len -= PAGE_SIZE;
760 }
761 pte_unmap_unlock(ptep, ptl);
762 }
763 up_read(&gmap->mm->mmap_sem);
764 return rc;
765 }
766 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
767
768 /**
769 * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
770 * @mm: pointer to the process mm_struct
771 * @addr: virtual address in the process address space
772 * @pte: pointer to the page table entry
773 *
774 * This function is assumed to be called with the page table lock held
775 * for the pte to notify.
776 */
777 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
778 {
779 unsigned long offset, gaddr;
780 unsigned long *table;
781 struct gmap_notifier *nb;
782 struct gmap *gmap;
783
784 offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
785 offset = offset * (4096 / sizeof(pte_t));
786 spin_lock(&gmap_notifier_lock);
787 list_for_each_entry(gmap, &mm->context.gmap_list, list) {
788 table = radix_tree_lookup(&gmap->host_to_guest,
789 vmaddr >> PMD_SHIFT);
790 if (!table)
791 continue;
792 gaddr = __gmap_segment_gaddr(table) + offset;
793 list_for_each_entry(nb, &gmap_notifier_list, list)
794 nb->notifier_call(gmap, gaddr);
795 }
796 spin_unlock(&gmap_notifier_lock);
797 }
798 EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
799
800 static inline int page_table_with_pgste(struct page *page)
801 {
802 return atomic_read(&page->_mapcount) == 0;
803 }
804
805 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
806 {
807 struct page *page;
808 unsigned long *table;
809
810 page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
811 if (!page)
812 return NULL;
813 if (!pgtable_page_ctor(page)) {
814 __free_page(page);
815 return NULL;
816 }
817 atomic_set(&page->_mapcount, 0);
818 table = (unsigned long *) page_to_phys(page);
819 clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
820 clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
821 return table;
822 }
823
824 static inline void page_table_free_pgste(unsigned long *table)
825 {
826 struct page *page;
827
828 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
829 pgtable_page_dtor(page);
830 atomic_set(&page->_mapcount, -1);
831 __free_page(page);
832 }
833
834 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
835 unsigned long key, bool nq)
836 {
837 spinlock_t *ptl;
838 pgste_t old, new;
839 pte_t *ptep;
840
841 down_read(&mm->mmap_sem);
842 retry:
843 ptep = get_locked_pte(mm, addr, &ptl);
844 if (unlikely(!ptep)) {
845 up_read(&mm->mmap_sem);
846 return -EFAULT;
847 }
848 if (!(pte_val(*ptep) & _PAGE_INVALID) &&
849 (pte_val(*ptep) & _PAGE_PROTECT)) {
850 pte_unmap_unlock(ptep, ptl);
851 if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) {
852 up_read(&mm->mmap_sem);
853 return -EFAULT;
854 }
855 goto retry;
856 }
857
858 new = old = pgste_get_lock(ptep);
859 pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
860 PGSTE_ACC_BITS | PGSTE_FP_BIT);
861 pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
862 pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
863 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
864 unsigned long address, bits, skey;
865
866 address = pte_val(*ptep) & PAGE_MASK;
867 skey = (unsigned long) page_get_storage_key(address);
868 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
869 skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
870 /* Set storage key ACC and FP */
871 page_set_storage_key(address, skey, !nq);
872 /* Merge host changed & referenced into pgste */
873 pgste_val(new) |= bits << 52;
874 }
875 /* changing the guest storage key is considered a change of the page */
876 if ((pgste_val(new) ^ pgste_val(old)) &
877 (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
878 pgste_val(new) |= PGSTE_UC_BIT;
879
880 pgste_set_unlock(ptep, new);
881 pte_unmap_unlock(ptep, ptl);
882 up_read(&mm->mmap_sem);
883 return 0;
884 }
885 EXPORT_SYMBOL(set_guest_storage_key);
886
887 unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr)
888 {
889 spinlock_t *ptl;
890 pgste_t pgste;
891 pte_t *ptep;
892 uint64_t physaddr;
893 unsigned long key = 0;
894
895 down_read(&mm->mmap_sem);
896 ptep = get_locked_pte(mm, addr, &ptl);
897 if (unlikely(!ptep)) {
898 up_read(&mm->mmap_sem);
899 return -EFAULT;
900 }
901 pgste = pgste_get_lock(ptep);
902
903 if (pte_val(*ptep) & _PAGE_INVALID) {
904 key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56;
905 key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56;
906 key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48;
907 key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48;
908 } else {
909 physaddr = pte_val(*ptep) & PAGE_MASK;
910 key = page_get_storage_key(physaddr);
911
912 /* Reflect guest's logical view, not physical */
913 if (pgste_val(pgste) & PGSTE_GR_BIT)
914 key |= _PAGE_REFERENCED;
915 if (pgste_val(pgste) & PGSTE_GC_BIT)
916 key |= _PAGE_CHANGED;
917 }
918
919 pgste_set_unlock(ptep, pgste);
920 pte_unmap_unlock(ptep, ptl);
921 up_read(&mm->mmap_sem);
922 return key;
923 }
924 EXPORT_SYMBOL(get_guest_storage_key);
925
926 static int page_table_allocate_pgste_min = 0;
927 static int page_table_allocate_pgste_max = 1;
928 int page_table_allocate_pgste = 0;
929 EXPORT_SYMBOL(page_table_allocate_pgste);
930
931 static struct ctl_table page_table_sysctl[] = {
932 {
933 .procname = "allocate_pgste",
934 .data = &page_table_allocate_pgste,
935 .maxlen = sizeof(int),
936 .mode = S_IRUGO | S_IWUSR,
937 .proc_handler = proc_dointvec,
938 .extra1 = &page_table_allocate_pgste_min,
939 .extra2 = &page_table_allocate_pgste_max,
940 },
941 { }
942 };
943
944 static struct ctl_table page_table_sysctl_dir[] = {
945 {
946 .procname = "vm",
947 .maxlen = 0,
948 .mode = 0555,
949 .child = page_table_sysctl,
950 },
951 { }
952 };
953
954 static int __init page_table_register_sysctl(void)
955 {
956 return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
957 }
958 __initcall(page_table_register_sysctl);
959
960 #else /* CONFIG_PGSTE */
961
962 static inline int page_table_with_pgste(struct page *page)
963 {
964 return 0;
965 }
966
967 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
968 {
969 return NULL;
970 }
971
972 static inline void page_table_free_pgste(unsigned long *table)
973 {
974 }
975
976 static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
977 unsigned long vmaddr)
978 {
979 }
980
981 #endif /* CONFIG_PGSTE */
982
983 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
984 {
985 unsigned int old, new;
986
987 do {
988 old = atomic_read(v);
989 new = old ^ bits;
990 } while (atomic_cmpxchg(v, old, new) != old);
991 return new;
992 }
993
994 /*
995 * page table entry allocation/free routines.
996 */
997 unsigned long *page_table_alloc(struct mm_struct *mm)
998 {
999 unsigned long *uninitialized_var(table);
1000 struct page *uninitialized_var(page);
1001 unsigned int mask, bit;
1002
1003 if (mm_alloc_pgste(mm))
1004 return page_table_alloc_pgste(mm);
1005 /* Allocate fragments of a 4K page as 1K/2K page table */
1006 spin_lock_bh(&mm->context.list_lock);
1007 mask = FRAG_MASK;
1008 if (!list_empty(&mm->context.pgtable_list)) {
1009 page = list_first_entry(&mm->context.pgtable_list,
1010 struct page, lru);
1011 table = (unsigned long *) page_to_phys(page);
1012 mask = atomic_read(&page->_mapcount);
1013 mask = mask | (mask >> 4);
1014 }
1015 if ((mask & FRAG_MASK) == FRAG_MASK) {
1016 spin_unlock_bh(&mm->context.list_lock);
1017 page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
1018 if (!page)
1019 return NULL;
1020 if (!pgtable_page_ctor(page)) {
1021 __free_page(page);
1022 return NULL;
1023 }
1024 atomic_set(&page->_mapcount, 1);
1025 table = (unsigned long *) page_to_phys(page);
1026 clear_table(table, _PAGE_INVALID, PAGE_SIZE);
1027 spin_lock_bh(&mm->context.list_lock);
1028 list_add(&page->lru, &mm->context.pgtable_list);
1029 } else {
1030 for (bit = 1; mask & bit; bit <<= 1)
1031 table += PTRS_PER_PTE;
1032 mask = atomic_xor_bits(&page->_mapcount, bit);
1033 if ((mask & FRAG_MASK) == FRAG_MASK)
1034 list_del(&page->lru);
1035 }
1036 spin_unlock_bh(&mm->context.list_lock);
1037 return table;
1038 }
1039
1040 void page_table_free(struct mm_struct *mm, unsigned long *table)
1041 {
1042 struct page *page;
1043 unsigned int bit, mask;
1044
1045 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1046 if (page_table_with_pgste(page))
1047 return page_table_free_pgste(table);
1048 /* Free 1K/2K page table fragment of a 4K page */
1049 bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
1050 spin_lock_bh(&mm->context.list_lock);
1051 if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1052 list_del(&page->lru);
1053 mask = atomic_xor_bits(&page->_mapcount, bit);
1054 if (mask & FRAG_MASK)
1055 list_add(&page->lru, &mm->context.pgtable_list);
1056 spin_unlock_bh(&mm->context.list_lock);
1057 if (mask == 0) {
1058 pgtable_page_dtor(page);
1059 atomic_set(&page->_mapcount, -1);
1060 __free_page(page);
1061 }
1062 }
1063
1064 static void __page_table_free_rcu(void *table, unsigned bit)
1065 {
1066 struct page *page;
1067
1068 if (bit == FRAG_MASK)
1069 return page_table_free_pgste(table);
1070 /* Free 1K/2K page table fragment of a 4K page */
1071 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1072 if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
1073 pgtable_page_dtor(page);
1074 atomic_set(&page->_mapcount, -1);
1075 __free_page(page);
1076 }
1077 }
1078
1079 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1080 unsigned long vmaddr)
1081 {
1082 struct mm_struct *mm;
1083 struct page *page;
1084 unsigned int bit, mask;
1085
1086 mm = tlb->mm;
1087 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1088 if (page_table_with_pgste(page)) {
1089 gmap_unlink(mm, table, vmaddr);
1090 table = (unsigned long *) (__pa(table) | FRAG_MASK);
1091 tlb_remove_table(tlb, table);
1092 return;
1093 }
1094 bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
1095 spin_lock_bh(&mm->context.list_lock);
1096 if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1097 list_del(&page->lru);
1098 mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
1099 if (mask & FRAG_MASK)
1100 list_add_tail(&page->lru, &mm->context.pgtable_list);
1101 spin_unlock_bh(&mm->context.list_lock);
1102 table = (unsigned long *) (__pa(table) | (bit << 4));
1103 tlb_remove_table(tlb, table);
1104 }
1105
1106 static void __tlb_remove_table(void *_table)
1107 {
1108 const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
1109 void *table = (void *)((unsigned long) _table & ~mask);
1110 unsigned type = (unsigned long) _table & mask;
1111
1112 if (type)
1113 __page_table_free_rcu(table, type);
1114 else
1115 free_pages((unsigned long) table, ALLOC_ORDER);
1116 }
1117
1118 static void tlb_remove_table_smp_sync(void *arg)
1119 {
1120 /* Simply deliver the interrupt */
1121 }
1122
1123 static void tlb_remove_table_one(void *table)
1124 {
1125 /*
1126 * This isn't an RCU grace period and hence the page-tables cannot be
1127 * assumed to be actually RCU-freed.
1128 *
1129 * It is however sufficient for software page-table walkers that rely
1130 * on IRQ disabling. See the comment near struct mmu_table_batch.
1131 */
1132 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1133 __tlb_remove_table(table);
1134 }
1135
1136 static void tlb_remove_table_rcu(struct rcu_head *head)
1137 {
1138 struct mmu_table_batch *batch;
1139 int i;
1140
1141 batch = container_of(head, struct mmu_table_batch, rcu);
1142
1143 for (i = 0; i < batch->nr; i++)
1144 __tlb_remove_table(batch->tables[i]);
1145
1146 free_page((unsigned long)batch);
1147 }
1148
1149 void tlb_table_flush(struct mmu_gather *tlb)
1150 {
1151 struct mmu_table_batch **batch = &tlb->batch;
1152
1153 if (*batch) {
1154 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1155 *batch = NULL;
1156 }
1157 }
1158
1159 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1160 {
1161 struct mmu_table_batch **batch = &tlb->batch;
1162
1163 tlb->mm->context.flush_mm = 1;
1164 if (*batch == NULL) {
1165 *batch = (struct mmu_table_batch *)
1166 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1167 if (*batch == NULL) {
1168 __tlb_flush_mm_lazy(tlb->mm);
1169 tlb_remove_table_one(table);
1170 return;
1171 }
1172 (*batch)->nr = 0;
1173 }
1174 (*batch)->tables[(*batch)->nr++] = table;
1175 if ((*batch)->nr == MAX_TABLE_BATCH)
1176 tlb_flush_mmu(tlb);
1177 }
1178
1179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1180 static inline void thp_split_vma(struct vm_area_struct *vma)
1181 {
1182 unsigned long addr;
1183
1184 for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1185 follow_page(vma, addr, FOLL_SPLIT);
1186 }
1187
1188 static inline void thp_split_mm(struct mm_struct *mm)
1189 {
1190 struct vm_area_struct *vma;
1191
1192 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1193 thp_split_vma(vma);
1194 vma->vm_flags &= ~VM_HUGEPAGE;
1195 vma->vm_flags |= VM_NOHUGEPAGE;
1196 }
1197 mm->def_flags |= VM_NOHUGEPAGE;
1198 }
1199 #else
1200 static inline void thp_split_mm(struct mm_struct *mm)
1201 {
1202 }
1203 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1204
1205 /*
1206 * switch on pgstes for its userspace process (for kvm)
1207 */
1208 int s390_enable_sie(void)
1209 {
1210 struct mm_struct *mm = current->mm;
1211
1212 /* Do we have pgstes? if yes, we are done */
1213 if (mm_has_pgste(mm))
1214 return 0;
1215 /* Fail if the page tables are 2K */
1216 if (!mm_alloc_pgste(mm))
1217 return -EINVAL;
1218 down_write(&mm->mmap_sem);
1219 mm->context.has_pgste = 1;
1220 /* split thp mappings and disable thp for future mappings */
1221 thp_split_mm(mm);
1222 up_write(&mm->mmap_sem);
1223 return 0;
1224 }
1225 EXPORT_SYMBOL_GPL(s390_enable_sie);
1226
1227 /*
1228 * Enable storage key handling from now on and initialize the storage
1229 * keys with the default key.
1230 */
1231 static int __s390_enable_skey(pte_t *pte, unsigned long addr,
1232 unsigned long next, struct mm_walk *walk)
1233 {
1234 unsigned long ptev;
1235 pgste_t pgste;
1236
1237 pgste = pgste_get_lock(pte);
1238 /*
1239 * Remove all zero page mappings,
1240 * after establishing a policy to forbid zero page mappings
1241 * following faults for that page will get fresh anonymous pages
1242 */
1243 if (is_zero_pfn(pte_pfn(*pte))) {
1244 ptep_flush_direct(walk->mm, addr, pte);
1245 pte_val(*pte) = _PAGE_INVALID;
1246 }
1247 /* Clear storage key */
1248 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
1249 PGSTE_GR_BIT | PGSTE_GC_BIT);
1250 ptev = pte_val(*pte);
1251 if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE))
1252 page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1);
1253 pgste_set_unlock(pte, pgste);
1254 return 0;
1255 }
1256
1257 int s390_enable_skey(void)
1258 {
1259 struct mm_walk walk = { .pte_entry = __s390_enable_skey };
1260 struct mm_struct *mm = current->mm;
1261 struct vm_area_struct *vma;
1262 int rc = 0;
1263
1264 down_write(&mm->mmap_sem);
1265 if (mm_use_skey(mm))
1266 goto out_up;
1267
1268 mm->context.use_skey = 1;
1269 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1270 if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
1271 MADV_UNMERGEABLE, &vma->vm_flags)) {
1272 mm->context.use_skey = 0;
1273 rc = -ENOMEM;
1274 goto out_up;
1275 }
1276 }
1277 mm->def_flags &= ~VM_MERGEABLE;
1278
1279 walk.mm = mm;
1280 walk_page_range(0, TASK_SIZE, &walk);
1281
1282 out_up:
1283 up_write(&mm->mmap_sem);
1284 return rc;
1285 }
1286 EXPORT_SYMBOL_GPL(s390_enable_skey);
1287
1288 /*
1289 * Reset CMMA state, make all pages stable again.
1290 */
1291 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
1292 unsigned long next, struct mm_walk *walk)
1293 {
1294 pgste_t pgste;
1295
1296 pgste = pgste_get_lock(pte);
1297 pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
1298 pgste_set_unlock(pte, pgste);
1299 return 0;
1300 }
1301
1302 void s390_reset_cmma(struct mm_struct *mm)
1303 {
1304 struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
1305
1306 down_write(&mm->mmap_sem);
1307 walk.mm = mm;
1308 walk_page_range(0, TASK_SIZE, &walk);
1309 up_write(&mm->mmap_sem);
1310 }
1311 EXPORT_SYMBOL_GPL(s390_reset_cmma);
1312
1313 /*
1314 * Test and reset if a guest page is dirty
1315 */
1316 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1317 {
1318 pte_t *pte;
1319 spinlock_t *ptl;
1320 bool dirty = false;
1321
1322 pte = get_locked_pte(gmap->mm, address, &ptl);
1323 if (unlikely(!pte))
1324 return false;
1325
1326 if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1327 dirty = true;
1328
1329 spin_unlock(ptl);
1330 return dirty;
1331 }
1332 EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1333
1334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1335 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1336 pmd_t *pmdp)
1337 {
1338 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1339 /* No need to flush TLB
1340 * On s390 reference bits are in storage key and never in TLB */
1341 return pmdp_test_and_clear_young(vma, address, pmdp);
1342 }
1343
1344 int pmdp_set_access_flags(struct vm_area_struct *vma,
1345 unsigned long address, pmd_t *pmdp,
1346 pmd_t entry, int dirty)
1347 {
1348 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1349
1350 entry = pmd_mkyoung(entry);
1351 if (dirty)
1352 entry = pmd_mkdirty(entry);
1353 if (pmd_same(*pmdp, entry))
1354 return 0;
1355 pmdp_invalidate(vma, address, pmdp);
1356 set_pmd_at(vma->vm_mm, address, pmdp, entry);
1357 return 1;
1358 }
1359
1360 static void pmdp_splitting_flush_sync(void *arg)
1361 {
1362 /* Simply deliver the interrupt */
1363 }
1364
1365 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1366 pmd_t *pmdp)
1367 {
1368 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1369 if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1370 (unsigned long *) pmdp)) {
1371 /* need to serialize against gup-fast (IRQ disabled) */
1372 smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1373 }
1374 }
1375
1376 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1377 pgtable_t pgtable)
1378 {
1379 struct list_head *lh = (struct list_head *) pgtable;
1380
1381 assert_spin_locked(pmd_lockptr(mm, pmdp));
1382
1383 /* FIFO */
1384 if (!pmd_huge_pte(mm, pmdp))
1385 INIT_LIST_HEAD(lh);
1386 else
1387 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1388 pmd_huge_pte(mm, pmdp) = pgtable;
1389 }
1390
1391 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1392 {
1393 struct list_head *lh;
1394 pgtable_t pgtable;
1395 pte_t *ptep;
1396
1397 assert_spin_locked(pmd_lockptr(mm, pmdp));
1398
1399 /* FIFO */
1400 pgtable = pmd_huge_pte(mm, pmdp);
1401 lh = (struct list_head *) pgtable;
1402 if (list_empty(lh))
1403 pmd_huge_pte(mm, pmdp) = NULL;
1404 else {
1405 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1406 list_del(lh);
1407 }
1408 ptep = (pte_t *) pgtable;
1409 pte_val(*ptep) = _PAGE_INVALID;
1410 ptep++;
1411 pte_val(*ptep) = _PAGE_INVALID;
1412 return pgtable;
1413 }
1414 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
This page took 0.095901 seconds and 5 git commands to generate.