ea2804808f39a98c368637b75a060431fd750d54
[deliverable/linux.git] / arch / s390 / mm / vmem.c
1 /*
2 * arch/s390/mm/vmem.c
3 *
4 * Copyright IBM Corp. 2006
5 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6 */
7
8 #include <linux/bootmem.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/hugetlb.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19
20 static DEFINE_MUTEX(vmem_mutex);
21
22 struct memory_segment {
23 struct list_head list;
24 unsigned long start;
25 unsigned long size;
26 };
27
28 static LIST_HEAD(mem_segs);
29
30 static pud_t *vmem_pud_alloc(void)
31 {
32 pud_t *pud = NULL;
33
34 #ifdef CONFIG_64BIT
35 pud = vmemmap_alloc_block(PAGE_SIZE * 4, 0);
36 if (!pud)
37 return NULL;
38 clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
39 #endif
40 return pud;
41 }
42
43 static pmd_t *vmem_pmd_alloc(void)
44 {
45 pmd_t *pmd = NULL;
46
47 #ifdef CONFIG_64BIT
48 pmd = vmemmap_alloc_block(PAGE_SIZE * 4, 0);
49 if (!pmd)
50 return NULL;
51 clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
52 #endif
53 return pmd;
54 }
55
56 static pte_t __ref *vmem_pte_alloc(void)
57 {
58 pte_t *pte;
59
60 if (slab_is_available())
61 pte = (pte_t *) page_table_alloc(&init_mm);
62 else
63 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
64 if (!pte)
65 return NULL;
66 clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
67 PTRS_PER_PTE * sizeof(pte_t));
68 return pte;
69 }
70
71 /*
72 * Add a physical memory range to the 1:1 mapping.
73 */
74 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
75 {
76 unsigned long address;
77 pgd_t *pg_dir;
78 pud_t *pu_dir;
79 pmd_t *pm_dir;
80 pte_t *pt_dir;
81 pte_t pte;
82 int ret = -ENOMEM;
83
84 for (address = start; address < start + size; address += PAGE_SIZE) {
85 pg_dir = pgd_offset_k(address);
86 if (pgd_none(*pg_dir)) {
87 pu_dir = vmem_pud_alloc();
88 if (!pu_dir)
89 goto out;
90 pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
91 }
92
93 pu_dir = pud_offset(pg_dir, address);
94 if (pud_none(*pu_dir)) {
95 pm_dir = vmem_pmd_alloc();
96 if (!pm_dir)
97 goto out;
98 pud_populate_kernel(&init_mm, pu_dir, pm_dir);
99 }
100
101 pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
102 pm_dir = pmd_offset(pu_dir, address);
103
104 #ifdef __s390x__
105 if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
106 (address + HPAGE_SIZE <= start + size) &&
107 (address >= HPAGE_SIZE)) {
108 pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
109 pmd_val(*pm_dir) = pte_val(pte);
110 address += HPAGE_SIZE - PAGE_SIZE;
111 continue;
112 }
113 #endif
114 if (pmd_none(*pm_dir)) {
115 pt_dir = vmem_pte_alloc();
116 if (!pt_dir)
117 goto out;
118 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
119 }
120
121 pt_dir = pte_offset_kernel(pm_dir, address);
122 *pt_dir = pte;
123 }
124 ret = 0;
125 out:
126 flush_tlb_kernel_range(start, start + size);
127 return ret;
128 }
129
130 /*
131 * Remove a physical memory range from the 1:1 mapping.
132 * Currently only invalidates page table entries.
133 */
134 static void vmem_remove_range(unsigned long start, unsigned long size)
135 {
136 unsigned long address;
137 pgd_t *pg_dir;
138 pud_t *pu_dir;
139 pmd_t *pm_dir;
140 pte_t *pt_dir;
141 pte_t pte;
142
143 pte_val(pte) = _PAGE_TYPE_EMPTY;
144 for (address = start; address < start + size; address += PAGE_SIZE) {
145 pg_dir = pgd_offset_k(address);
146 pu_dir = pud_offset(pg_dir, address);
147 if (pud_none(*pu_dir))
148 continue;
149 pm_dir = pmd_offset(pu_dir, address);
150 if (pmd_none(*pm_dir))
151 continue;
152
153 if (pmd_huge(*pm_dir)) {
154 pmd_clear_kernel(pm_dir);
155 address += HPAGE_SIZE - PAGE_SIZE;
156 continue;
157 }
158
159 pt_dir = pte_offset_kernel(pm_dir, address);
160 *pt_dir = pte;
161 }
162 flush_tlb_kernel_range(start, start + size);
163 }
164
165 /*
166 * Add a backed mem_map array to the virtual mem_map array.
167 */
168 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
169 {
170 unsigned long address, start_addr, end_addr;
171 pgd_t *pg_dir;
172 pud_t *pu_dir;
173 pmd_t *pm_dir;
174 pte_t *pt_dir;
175 pte_t pte;
176 int ret = -ENOMEM;
177
178 start_addr = (unsigned long) start;
179 end_addr = (unsigned long) (start + nr);
180
181 for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
182 pg_dir = pgd_offset_k(address);
183 if (pgd_none(*pg_dir)) {
184 pu_dir = vmem_pud_alloc();
185 if (!pu_dir)
186 goto out;
187 pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
188 }
189
190 pu_dir = pud_offset(pg_dir, address);
191 if (pud_none(*pu_dir)) {
192 pm_dir = vmem_pmd_alloc();
193 if (!pm_dir)
194 goto out;
195 pud_populate_kernel(&init_mm, pu_dir, pm_dir);
196 }
197
198 pm_dir = pmd_offset(pu_dir, address);
199 if (pmd_none(*pm_dir)) {
200 pt_dir = vmem_pte_alloc();
201 if (!pt_dir)
202 goto out;
203 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
204 }
205
206 pt_dir = pte_offset_kernel(pm_dir, address);
207 if (pte_none(*pt_dir)) {
208 unsigned long new_page;
209
210 new_page =__pa(vmemmap_alloc_block(PAGE_SIZE, 0));
211 if (!new_page)
212 goto out;
213 pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
214 *pt_dir = pte;
215 }
216 }
217 ret = 0;
218 out:
219 flush_tlb_kernel_range(start_addr, end_addr);
220 return ret;
221 }
222
223 /*
224 * Add memory segment to the segment list if it doesn't overlap with
225 * an already present segment.
226 */
227 static int insert_memory_segment(struct memory_segment *seg)
228 {
229 struct memory_segment *tmp;
230
231 if (seg->start + seg->size >= VMEM_MAX_PHYS ||
232 seg->start + seg->size < seg->start)
233 return -ERANGE;
234
235 list_for_each_entry(tmp, &mem_segs, list) {
236 if (seg->start >= tmp->start + tmp->size)
237 continue;
238 if (seg->start + seg->size <= tmp->start)
239 continue;
240 return -ENOSPC;
241 }
242 list_add(&seg->list, &mem_segs);
243 return 0;
244 }
245
246 /*
247 * Remove memory segment from the segment list.
248 */
249 static void remove_memory_segment(struct memory_segment *seg)
250 {
251 list_del(&seg->list);
252 }
253
254 static void __remove_shared_memory(struct memory_segment *seg)
255 {
256 remove_memory_segment(seg);
257 vmem_remove_range(seg->start, seg->size);
258 }
259
260 int vmem_remove_mapping(unsigned long start, unsigned long size)
261 {
262 struct memory_segment *seg;
263 int ret;
264
265 mutex_lock(&vmem_mutex);
266
267 ret = -ENOENT;
268 list_for_each_entry(seg, &mem_segs, list) {
269 if (seg->start == start && seg->size == size)
270 break;
271 }
272
273 if (seg->start != start || seg->size != size)
274 goto out;
275
276 ret = 0;
277 __remove_shared_memory(seg);
278 kfree(seg);
279 out:
280 mutex_unlock(&vmem_mutex);
281 return ret;
282 }
283
284 int vmem_add_mapping(unsigned long start, unsigned long size)
285 {
286 struct memory_segment *seg;
287 int ret;
288
289 mutex_lock(&vmem_mutex);
290 ret = -ENOMEM;
291 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
292 if (!seg)
293 goto out;
294 seg->start = start;
295 seg->size = size;
296
297 ret = insert_memory_segment(seg);
298 if (ret)
299 goto out_free;
300
301 ret = vmem_add_mem(start, size, 0);
302 if (ret)
303 goto out_remove;
304 goto out;
305
306 out_remove:
307 __remove_shared_memory(seg);
308 out_free:
309 kfree(seg);
310 out:
311 mutex_unlock(&vmem_mutex);
312 return ret;
313 }
314
315 /*
316 * map whole physical memory to virtual memory (identity mapping)
317 * we reserve enough space in the vmalloc area for vmemmap to hotplug
318 * additional memory segments.
319 */
320 void __init vmem_map_init(void)
321 {
322 unsigned long ro_start, ro_end;
323 unsigned long start, end;
324 int i;
325
326 INIT_LIST_HEAD(&init_mm.context.crst_list);
327 INIT_LIST_HEAD(&init_mm.context.pgtable_list);
328 init_mm.context.noexec = 0;
329 ro_start = ((unsigned long)&_stext) & PAGE_MASK;
330 ro_end = PFN_ALIGN((unsigned long)&_eshared);
331 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
332 start = memory_chunk[i].addr;
333 end = memory_chunk[i].addr + memory_chunk[i].size;
334 if (start >= ro_end || end <= ro_start)
335 vmem_add_mem(start, end - start, 0);
336 else if (start >= ro_start && end <= ro_end)
337 vmem_add_mem(start, end - start, 1);
338 else if (start >= ro_start) {
339 vmem_add_mem(start, ro_end - start, 1);
340 vmem_add_mem(ro_end, end - ro_end, 0);
341 } else if (end < ro_end) {
342 vmem_add_mem(start, ro_start - start, 0);
343 vmem_add_mem(ro_start, end - ro_start, 1);
344 } else {
345 vmem_add_mem(start, ro_start - start, 0);
346 vmem_add_mem(ro_start, ro_end - ro_start, 1);
347 vmem_add_mem(ro_end, end - ro_end, 0);
348 }
349 }
350 }
351
352 /*
353 * Convert memory chunk array to a memory segment list so there is a single
354 * list that contains both r/w memory and shared memory segments.
355 */
356 static int __init vmem_convert_memory_chunk(void)
357 {
358 struct memory_segment *seg;
359 int i;
360
361 mutex_lock(&vmem_mutex);
362 for (i = 0; i < MEMORY_CHUNKS; i++) {
363 if (!memory_chunk[i].size)
364 continue;
365 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
366 if (!seg)
367 panic("Out of memory...\n");
368 seg->start = memory_chunk[i].addr;
369 seg->size = memory_chunk[i].size;
370 insert_memory_segment(seg);
371 }
372 mutex_unlock(&vmem_mutex);
373 return 0;
374 }
375
376 core_initcall(vmem_convert_memory_chunk);
This page took 0.044682 seconds and 4 git commands to generate.