ec464a6b95fe2cbd790bd63c17302a533f239a6e
[deliverable/linux.git] / arch / sh / include / asm / io.h
1 #ifndef __ASM_SH_IO_H
2 #define __ASM_SH_IO_H
3
4 /*
5 * Convention:
6 * read{b,w,l,q}/write{b,w,l,q} are for PCI,
7 * while in{b,w,l}/out{b,w,l} are for ISA
8 *
9 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
10 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
11 *
12 * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers
13 * automatically, there are also __raw versions, which do not.
14 */
15 #include <linux/errno.h>
16 #include <asm/cache.h>
17 #include <asm/addrspace.h>
18 #include <asm/machvec.h>
19 #include <asm/pgtable.h>
20 #include <asm-generic/iomap.h>
21
22 #ifdef __KERNEL__
23 #define __IO_PREFIX generic
24 #include <asm/io_generic.h>
25 #include <asm/io_trapped.h>
26 #include <mach/mangle-port.h>
27
28 #define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v))
29 #define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v))
30 #define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v))
31 #define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v))
32
33 #define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a))
34 #define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a))
35 #define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a))
36 #define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a))
37
38 #define readb_relaxed(c) ({ u8 __v = ioswabb(__raw_readb(c)); __v; })
39 #define readw_relaxed(c) ({ u16 __v = ioswabw(__raw_readw(c)); __v; })
40 #define readl_relaxed(c) ({ u32 __v = ioswabl(__raw_readl(c)); __v; })
41 #define readq_relaxed(c) ({ u64 __v = ioswabq(__raw_readq(c)); __v; })
42
43 #define writeb_relaxed(v,c) ((void)__raw_writeb((__force u8)ioswabb(v),c))
44 #define writew_relaxed(v,c) ((void)__raw_writew((__force u16)ioswabw(v),c))
45 #define writel_relaxed(v,c) ((void)__raw_writel((__force u32)ioswabl(v),c))
46 #define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64)ioswabq(v),c))
47
48 #define readb(a) ({ u8 r_ = readb_relaxed(a); rmb(); r_; })
49 #define readw(a) ({ u16 r_ = readw_relaxed(a); rmb(); r_; })
50 #define readl(a) ({ u32 r_ = readl_relaxed(a); rmb(); r_; })
51 #define readq(a) ({ u64 r_ = readq_relaxed(a); rmb(); r_; })
52
53 #define writeb(v,a) ({ wmb(); writeb_relaxed((v),(a)); })
54 #define writew(v,a) ({ wmb(); writew_relaxed((v),(a)); })
55 #define writel(v,a) ({ wmb(); writel_relaxed((v),(a)); })
56 #define writeq(v,a) ({ wmb(); writeq_relaxed((v),(a)); })
57
58 #define readsb(p,d,l) __raw_readsb(p,d,l)
59 #define readsw(p,d,l) __raw_readsw(p,d,l)
60 #define readsl(p,d,l) __raw_readsl(p,d,l)
61
62 #define writesb(p,d,l) __raw_writesb(p,d,l)
63 #define writesw(p,d,l) __raw_writesw(p,d,l)
64 #define writesl(p,d,l) __raw_writesl(p,d,l)
65
66 #define __BUILD_UNCACHED_IO(bwlq, type) \
67 static inline type read##bwlq##_uncached(unsigned long addr) \
68 { \
69 type ret; \
70 jump_to_uncached(); \
71 ret = __raw_read##bwlq(addr); \
72 back_to_cached(); \
73 return ret; \
74 } \
75 \
76 static inline void write##bwlq##_uncached(type v, unsigned long addr) \
77 { \
78 jump_to_uncached(); \
79 __raw_write##bwlq(v, addr); \
80 back_to_cached(); \
81 }
82
83 __BUILD_UNCACHED_IO(b, u8)
84 __BUILD_UNCACHED_IO(w, u16)
85 __BUILD_UNCACHED_IO(l, u32)
86 __BUILD_UNCACHED_IO(q, u64)
87
88 #define __BUILD_MEMORY_STRING(pfx, bwlq, type) \
89 \
90 static inline void \
91 pfx##writes##bwlq(volatile void __iomem *mem, const void *addr, \
92 unsigned int count) \
93 { \
94 const volatile type *__addr = addr; \
95 \
96 while (count--) { \
97 __raw_write##bwlq(*__addr, mem); \
98 __addr++; \
99 } \
100 } \
101 \
102 static inline void pfx##reads##bwlq(volatile void __iomem *mem, \
103 void *addr, unsigned int count) \
104 { \
105 volatile type *__addr = addr; \
106 \
107 while (count--) { \
108 *__addr = __raw_read##bwlq(mem); \
109 __addr++; \
110 } \
111 }
112
113 __BUILD_MEMORY_STRING(__raw_, b, u8)
114 __BUILD_MEMORY_STRING(__raw_, w, u16)
115
116 #ifdef CONFIG_SUPERH32
117 void __raw_writesl(void __iomem *addr, const void *data, int longlen);
118 void __raw_readsl(const void __iomem *addr, void *data, int longlen);
119 #else
120 __BUILD_MEMORY_STRING(__raw_, l, u32)
121 #endif
122
123 __BUILD_MEMORY_STRING(__raw_, q, u64)
124
125 #ifdef CONFIG_HAS_IOPORT
126
127 /*
128 * Slowdown I/O port space accesses for antique hardware.
129 */
130 #undef CONF_SLOWDOWN_IO
131
132 /*
133 * On SuperH I/O ports are memory mapped, so we access them using normal
134 * load/store instructions. sh_io_port_base is the virtual address to
135 * which all ports are being mapped.
136 */
137 extern const unsigned long sh_io_port_base;
138
139 static inline void __set_io_port_base(unsigned long pbase)
140 {
141 *(unsigned long *)&sh_io_port_base = pbase;
142 barrier();
143 }
144
145 #ifdef CONFIG_GENERIC_IOMAP
146 #define __ioport_map ioport_map
147 #else
148 extern void __iomem *__ioport_map(unsigned long addr, unsigned int size);
149 #endif
150
151 #ifdef CONF_SLOWDOWN_IO
152 #define SLOW_DOWN_IO __raw_readw(sh_io_port_base)
153 #else
154 #define SLOW_DOWN_IO
155 #endif
156
157 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
158 \
159 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
160 { \
161 volatile type *__addr; \
162 \
163 __addr = __ioport_map(port, sizeof(type)); \
164 *__addr = val; \
165 slow; \
166 } \
167 \
168 static inline type pfx##in##bwlq##p(unsigned long port) \
169 { \
170 volatile type *__addr; \
171 type __val; \
172 \
173 __addr = __ioport_map(port, sizeof(type)); \
174 __val = *__addr; \
175 slow; \
176 \
177 return __val; \
178 }
179
180 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
181 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
182 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
183
184 #define BUILDIO_IOPORT(bwlq, type) \
185 __BUILD_IOPORT_PFX(, bwlq, type)
186
187 BUILDIO_IOPORT(b, u8)
188 BUILDIO_IOPORT(w, u16)
189 BUILDIO_IOPORT(l, u32)
190 BUILDIO_IOPORT(q, u64)
191
192 #define __BUILD_IOPORT_STRING(bwlq, type) \
193 \
194 static inline void outs##bwlq(unsigned long port, const void *addr, \
195 unsigned int count) \
196 { \
197 const volatile type *__addr = addr; \
198 \
199 while (count--) { \
200 out##bwlq(*__addr, port); \
201 __addr++; \
202 } \
203 } \
204 \
205 static inline void ins##bwlq(unsigned long port, void *addr, \
206 unsigned int count) \
207 { \
208 volatile type *__addr = addr; \
209 \
210 while (count--) { \
211 *__addr = in##bwlq(port); \
212 __addr++; \
213 } \
214 }
215
216 __BUILD_IOPORT_STRING(b, u8)
217 __BUILD_IOPORT_STRING(w, u16)
218 __BUILD_IOPORT_STRING(l, u32)
219 __BUILD_IOPORT_STRING(q, u64)
220
221 #endif
222
223 #define IO_SPACE_LIMIT 0xffffffff
224
225 /* synco on SH-4A, otherwise a nop */
226 #define mmiowb() wmb()
227
228 /* We really want to try and get these to memcpy etc */
229 void memcpy_fromio(void *, const volatile void __iomem *, unsigned long);
230 void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
231 void memset_io(volatile void __iomem *, int, unsigned long);
232
233 /* Quad-word real-mode I/O, don't ask.. */
234 unsigned long long peek_real_address_q(unsigned long long addr);
235 unsigned long long poke_real_address_q(unsigned long long addr,
236 unsigned long long val);
237
238 #if !defined(CONFIG_MMU)
239 #define virt_to_phys(address) ((unsigned long)(address))
240 #define phys_to_virt(address) ((void *)(address))
241 #else
242 #define virt_to_phys(address) (__pa(address))
243 #define phys_to_virt(address) (__va(address))
244 #endif
245
246 /*
247 * On 32-bit SH, we traditionally have the whole physical address space
248 * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
249 * not need to do anything but place the address in the proper segment.
250 * This is true for P1 and P2 addresses, as well as some P3 ones.
251 * However, most of the P3 addresses and newer cores using extended
252 * addressing need to map through page tables, so the ioremap()
253 * implementation becomes a bit more complicated.
254 *
255 * See arch/sh/mm/ioremap.c for additional notes on this.
256 *
257 * We cheat a bit and always return uncachable areas until we've fixed
258 * the drivers to handle caching properly.
259 *
260 * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
261 * doesn't exist, so everything must go through page tables.
262 */
263 #ifdef CONFIG_MMU
264 void __iomem *__ioremap_caller(phys_addr_t offset, unsigned long size,
265 pgprot_t prot, void *caller);
266 void __iounmap(void __iomem *addr);
267
268 static inline void __iomem *
269 __ioremap(phys_addr_t offset, unsigned long size, pgprot_t prot)
270 {
271 return __ioremap_caller(offset, size, prot, __builtin_return_address(0));
272 }
273
274 static inline void __iomem *
275 __ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot)
276 {
277 #ifdef CONFIG_29BIT
278 phys_addr_t last_addr = offset + size - 1;
279
280 /*
281 * For P1 and P2 space this is trivial, as everything is already
282 * mapped. Uncached access for P1 addresses are done through P2.
283 * In the P3 case or for addresses outside of the 29-bit space,
284 * mapping must be done by the PMB or by using page tables.
285 */
286 if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
287 u64 flags = pgprot_val(prot);
288
289 /*
290 * Anything using the legacy PTEA space attributes needs
291 * to be kicked down to page table mappings.
292 */
293 if (unlikely(flags & _PAGE_PCC_MASK))
294 return NULL;
295 if (unlikely(flags & _PAGE_CACHABLE))
296 return (void __iomem *)P1SEGADDR(offset);
297
298 return (void __iomem *)P2SEGADDR(offset);
299 }
300
301 /* P4 above the store queues are always mapped. */
302 if (unlikely(offset >= P3_ADDR_MAX))
303 return (void __iomem *)P4SEGADDR(offset);
304 #endif
305
306 return NULL;
307 }
308
309 static inline void __iomem *
310 __ioremap_mode(phys_addr_t offset, unsigned long size, pgprot_t prot)
311 {
312 void __iomem *ret;
313
314 ret = __ioremap_trapped(offset, size);
315 if (ret)
316 return ret;
317
318 ret = __ioremap_29bit(offset, size, prot);
319 if (ret)
320 return ret;
321
322 return __ioremap(offset, size, prot);
323 }
324 #else
325 #define __ioremap(offset, size, prot) ((void __iomem *)(offset))
326 #define __ioremap_mode(offset, size, prot) ((void __iomem *)(offset))
327 #define __iounmap(addr) do { } while (0)
328 #endif /* CONFIG_MMU */
329
330 static inline void __iomem *ioremap(phys_addr_t offset, unsigned long size)
331 {
332 return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE);
333 }
334
335 static inline void __iomem *
336 ioremap_cache(phys_addr_t offset, unsigned long size)
337 {
338 return __ioremap_mode(offset, size, PAGE_KERNEL);
339 }
340
341 #ifdef CONFIG_HAVE_IOREMAP_PROT
342 static inline void __iomem *
343 ioremap_prot(phys_addr_t offset, unsigned long size, unsigned long flags)
344 {
345 return __ioremap_mode(offset, size, __pgprot(flags));
346 }
347 #endif
348
349 #ifdef CONFIG_IOREMAP_FIXED
350 extern void __iomem *ioremap_fixed(phys_addr_t, unsigned long, pgprot_t);
351 extern int iounmap_fixed(void __iomem *);
352 extern void ioremap_fixed_init(void);
353 #else
354 static inline void __iomem *
355 ioremap_fixed(phys_addr_t phys_addr, unsigned long size, pgprot_t prot)
356 {
357 BUG();
358 return NULL;
359 }
360
361 static inline void ioremap_fixed_init(void) { }
362 static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; }
363 #endif
364
365 #define ioremap_nocache ioremap
366 #define iounmap __iounmap
367
368 /*
369 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
370 * access
371 */
372 #define xlate_dev_mem_ptr(p) __va(p)
373
374 /*
375 * Convert a virtual cached pointer to an uncached pointer
376 */
377 #define xlate_dev_kmem_ptr(p) p
378
379 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE
380 int valid_phys_addr_range(unsigned long addr, size_t size);
381 int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
382
383 #endif /* __KERNEL__ */
384
385 #endif /* __ASM_SH_IO_H */
This page took 0.038331 seconds and 4 git commands to generate.