sh: comment tidying for sh64->sh migration.
[deliverable/linux.git] / arch / sh / kernel / time_64.c
1 /*
2 * arch/sh/kernel/time_64.c
3 *
4 * Copyright (C) 2000, 2001 Paolo Alberelli
5 * Copyright (C) 2003 - 2007 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
7 *
8 * Original TMU/RTC code taken from sh version.
9 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
10 * Some code taken from i386 version.
11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
12 *
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
15 * for more details.
16 */
17 #include <linux/errno.h>
18 #include <linux/rwsem.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/profile.h>
29 #include <linux/smp.h>
30 #include <linux/module.h>
31 #include <linux/bcd.h>
32 #include <linux/timex.h>
33 #include <linux/irq.h>
34 #include <linux/io.h>
35 #include <linux/platform_device.h>
36 #include <asm/cpu/registers.h> /* required by inline __asm__ stmt. */
37 #include <asm/cpu/irq.h>
38 #include <asm/addrspace.h>
39 #include <asm/processor.h>
40 #include <asm/uaccess.h>
41 #include <asm/delay.h>
42
43 #define TMU_TOCR_INIT 0x00
44 #define TMU0_TCR_INIT 0x0020
45 #define TMU_TSTR_INIT 1
46 #define TMU_TSTR_OFF 0
47
48 /* Real Time Clock */
49 #define RTC_BLOCK_OFF 0x01040000
50 #define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF
51 #define RTC_RCR1_CIE 0x10 /* Carry Interrupt Enable */
52 #define RTC_RCR1 (rtc_base + 0x38)
53
54 /* Clock, Power and Reset Controller */
55 #define CPRC_BLOCK_OFF 0x01010000
56 #define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF
57
58 #define FRQCR (cprc_base+0x0)
59 #define WTCSR (cprc_base+0x0018)
60 #define STBCR (cprc_base+0x0030)
61
62 /* Time Management Unit */
63 #define TMU_BLOCK_OFF 0x01020000
64 #define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF
65 #define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0)
66 #define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1)
67 #define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2)
68
69 #define TMU_TOCR tmu_base+0x0 /* Byte access */
70 #define TMU_TSTR tmu_base+0x4 /* Byte access */
71
72 #define TMU0_TCOR TMU0_BASE+0x0 /* Long access */
73 #define TMU0_TCNT TMU0_BASE+0x4 /* Long access */
74 #define TMU0_TCR TMU0_BASE+0x8 /* Word access */
75
76 #define TICK_SIZE (tick_nsec / 1000)
77
78 static unsigned long tmu_base, rtc_base;
79 unsigned long cprc_base;
80
81 /* Variables to allow interpolation of time of day to resolution better than a
82 * jiffy. */
83
84 /* This is effectively protected by xtime_lock */
85 static unsigned long ctc_last_interrupt;
86 static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */
87
88 #define CTC_JIFFY_SCALE_SHIFT 40
89
90 /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */
91 static unsigned long long scaled_recip_ctc_ticks_per_jiffy;
92
93 /* Estimate number of microseconds that have elapsed since the last timer tick,
94 by scaling the delta that has occurred in the CTC register.
95
96 WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at
97 the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this
98 in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm
99 probably needs to use TMU.TCNT0 instead. This will work even if the CPU is
100 sleeping, though will be coarser.
101
102 FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime
103 is running or if the freq or tick arguments of adjtimex are modified after
104 we have calibrated the scaling factor? This will result in either a jump at
105 the end of a tick period, or a wrap backwards at the start of the next one,
106 if the application is reading the time of day often enough. I think we
107 ought to do better than this. For this reason, usecs_per_jiffy is left
108 separated out in the calculation below. This allows some future hook into
109 the adjtime-related stuff in kernel/timer.c to remove this hazard.
110
111 */
112
113 static unsigned long usecs_since_tick(void)
114 {
115 unsigned long long current_ctc;
116 long ctc_ticks_since_interrupt;
117 unsigned long long ull_ctc_ticks_since_interrupt;
118 unsigned long result;
119
120 unsigned long long mul1_out;
121 unsigned long long mul1_out_high;
122 unsigned long long mul2_out_low, mul2_out_high;
123
124 /* Read CTC register */
125 asm ("getcon cr62, %0" : "=r" (current_ctc));
126 /* Note, the CTC counts down on each CPU clock, not up.
127 Note(2), use long type to get correct wraparound arithmetic when
128 the counter crosses zero. */
129 ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc;
130 ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt;
131
132 /* Inline assembly to do 32x32x32->64 multiplier */
133 asm volatile ("mulu.l %1, %2, %0" :
134 "=r" (mul1_out) :
135 "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy));
136
137 mul1_out_high = mul1_out >> 32;
138
139 asm volatile ("mulu.l %1, %2, %0" :
140 "=r" (mul2_out_low) :
141 "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy));
142
143 #if 1
144 asm volatile ("mulu.l %1, %2, %0" :
145 "=r" (mul2_out_high) :
146 "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy));
147 #endif
148
149 result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT);
150
151 return result;
152 }
153
154 void do_gettimeofday(struct timeval *tv)
155 {
156 unsigned long flags;
157 unsigned long seq;
158 unsigned long usec, sec;
159
160 do {
161 seq = read_seqbegin_irqsave(&xtime_lock, flags);
162 usec = usecs_since_tick();
163 sec = xtime.tv_sec;
164 usec += xtime.tv_nsec / 1000;
165 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
166
167 while (usec >= 1000000) {
168 usec -= 1000000;
169 sec++;
170 }
171
172 tv->tv_sec = sec;
173 tv->tv_usec = usec;
174 }
175
176 int do_settimeofday(struct timespec *tv)
177 {
178 time_t wtm_sec, sec = tv->tv_sec;
179 long wtm_nsec, nsec = tv->tv_nsec;
180
181 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
182 return -EINVAL;
183
184 write_seqlock_irq(&xtime_lock);
185 /*
186 * This is revolting. We need to set "xtime" correctly. However, the
187 * value in this location is the value at the most recent update of
188 * wall time. Discover what correction gettimeofday() would have
189 * made, and then undo it!
190 */
191 nsec -= 1000 * usecs_since_tick();
192
193 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
194 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
195
196 set_normalized_timespec(&xtime, sec, nsec);
197 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
198
199 ntp_clear();
200 write_sequnlock_irq(&xtime_lock);
201 clock_was_set();
202
203 return 0;
204 }
205 EXPORT_SYMBOL(do_settimeofday);
206
207 /* Dummy RTC ops */
208 static void null_rtc_get_time(struct timespec *tv)
209 {
210 tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0);
211 tv->tv_nsec = 0;
212 }
213
214 static int null_rtc_set_time(const time_t secs)
215 {
216 return 0;
217 }
218
219 void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time;
220 int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time;
221
222 /* last time the RTC clock got updated */
223 static long last_rtc_update;
224
225 /*
226 * timer_interrupt() needs to keep up the real-time clock,
227 * as well as call the "do_timer()" routine every clocktick
228 */
229 static inline void do_timer_interrupt(void)
230 {
231 unsigned long long current_ctc;
232 asm ("getcon cr62, %0" : "=r" (current_ctc));
233 ctc_last_interrupt = (unsigned long) current_ctc;
234
235 do_timer(1);
236 #ifndef CONFIG_SMP
237 update_process_times(user_mode(get_irq_regs()));
238 #endif
239 if (current->pid)
240 profile_tick(CPU_PROFILING);
241
242 #ifdef CONFIG_HEARTBEAT
243 if (sh_mv.mv_heartbeat != NULL)
244 sh_mv.mv_heartbeat();
245 #endif
246
247 /*
248 * If we have an externally synchronized Linux clock, then update
249 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
250 * called as close as possible to 500 ms before the new second starts.
251 */
252 if (ntp_synced() &&
253 xtime.tv_sec > last_rtc_update + 660 &&
254 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
255 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
256 if (rtc_sh_set_time(xtime.tv_sec) == 0)
257 last_rtc_update = xtime.tv_sec;
258 else
259 /* do it again in 60 s */
260 last_rtc_update = xtime.tv_sec - 600;
261 }
262 }
263
264 /*
265 * This is the same as the above, except we _also_ save the current
266 * Time Stamp Counter value at the time of the timer interrupt, so that
267 * we later on can estimate the time of day more exactly.
268 */
269 static irqreturn_t timer_interrupt(int irq, void *dev_id)
270 {
271 unsigned long timer_status;
272
273 /* Clear UNF bit */
274 timer_status = ctrl_inw(TMU0_TCR);
275 timer_status &= ~0x100;
276 ctrl_outw(timer_status, TMU0_TCR);
277
278 /*
279 * Here we are in the timer irq handler. We just have irqs locally
280 * disabled but we don't know if the timer_bh is running on the other
281 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
282 * the irq version of write_lock because as just said we have irq
283 * locally disabled. -arca
284 */
285 write_lock(&xtime_lock);
286 do_timer_interrupt();
287 write_unlock(&xtime_lock);
288
289 return IRQ_HANDLED;
290 }
291
292
293 static __init unsigned int get_cpu_hz(void)
294 {
295 unsigned int count;
296 unsigned long __dummy;
297 unsigned long ctc_val_init, ctc_val;
298
299 /*
300 ** Regardless the toolchain, force the compiler to use the
301 ** arbitrary register r3 as a clock tick counter.
302 ** NOTE: r3 must be in accordance with sh64_rtc_interrupt()
303 */
304 register unsigned long long __rtc_irq_flag __asm__ ("r3");
305
306 local_irq_enable();
307 do {} while (ctrl_inb(rtc_base) != 0);
308 ctrl_outb(RTC_RCR1_CIE, RTC_RCR1); /* Enable carry interrupt */
309
310 /*
311 * r3 is arbitrary. CDC does not support "=z".
312 */
313 ctc_val_init = 0xffffffff;
314 ctc_val = ctc_val_init;
315
316 asm volatile("gettr tr0, %1\n\t"
317 "putcon %0, " __CTC "\n\t"
318 "and %2, r63, %2\n\t"
319 "pta $+4, tr0\n\t"
320 "beq/l %2, r63, tr0\n\t"
321 "ptabs %1, tr0\n\t"
322 "getcon " __CTC ", %0\n\t"
323 : "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag)
324 : "0" (0));
325 local_irq_disable();
326 /*
327 * SH-3:
328 * CPU clock = 4 stages * loop
329 * tst rm,rm if id ex
330 * bt/s 1b if id ex
331 * add #1,rd if id ex
332 * (if) pipe line stole
333 * tst rm,rm if id ex
334 * ....
335 *
336 *
337 * SH-4:
338 * CPU clock = 6 stages * loop
339 * I don't know why.
340 * ....
341 *
342 * SH-5:
343 * Use CTC register to count. This approach returns the right value
344 * even if the I-cache is disabled (e.g. whilst debugging.)
345 *
346 */
347
348 count = ctc_val_init - ctc_val; /* CTC counts down */
349
350 /*
351 * This really is count by the number of clock cycles
352 * by the ratio between a complete R64CNT
353 * wrap-around (128) and CUI interrupt being raised (64).
354 */
355 return count*2;
356 }
357
358 static irqreturn_t sh64_rtc_interrupt(int irq, void *dev_id)
359 {
360 struct pt_regs *regs = get_irq_regs();
361
362 ctrl_outb(0, RTC_RCR1); /* Disable Carry Interrupts */
363 regs->regs[3] = 1; /* Using r3 */
364
365 return IRQ_HANDLED;
366 }
367
368 static struct irqaction irq0 = {
369 .handler = timer_interrupt,
370 .flags = IRQF_DISABLED,
371 .mask = CPU_MASK_NONE,
372 .name = "timer",
373 };
374 static struct irqaction irq1 = {
375 .handler = sh64_rtc_interrupt,
376 .flags = IRQF_DISABLED,
377 .mask = CPU_MASK_NONE,
378 .name = "rtc",
379 };
380
381 void __init time_init(void)
382 {
383 unsigned int cpu_clock, master_clock, bus_clock, module_clock;
384 unsigned long interval;
385 unsigned long frqcr, ifc, pfc;
386 static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 };
387 #define bfc_table ifc_table /* Same */
388 #define pfc_table ifc_table /* Same */
389
390 tmu_base = onchip_remap(TMU_BASE, 1024, "TMU");
391 if (!tmu_base) {
392 panic("Unable to remap TMU\n");
393 }
394
395 rtc_base = onchip_remap(RTC_BASE, 1024, "RTC");
396 if (!rtc_base) {
397 panic("Unable to remap RTC\n");
398 }
399
400 cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC");
401 if (!cprc_base) {
402 panic("Unable to remap CPRC\n");
403 }
404
405 rtc_sh_get_time(&xtime);
406
407 setup_irq(TIMER_IRQ, &irq0);
408 setup_irq(RTC_IRQ, &irq1);
409
410 /* Check how fast it is.. */
411 cpu_clock = get_cpu_hz();
412
413 /* Note careful order of operations to maintain reasonable precision and avoid overflow. */
414 scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ));
415
416 free_irq(RTC_IRQ, NULL);
417
418 printk("CPU clock: %d.%02dMHz\n",
419 (cpu_clock / 1000000), (cpu_clock % 1000000)/10000);
420 {
421 unsigned short bfc;
422 frqcr = ctrl_inl(FRQCR);
423 ifc = ifc_table[(frqcr>> 6) & 0x0007];
424 bfc = bfc_table[(frqcr>> 3) & 0x0007];
425 pfc = pfc_table[(frqcr>> 12) & 0x0007];
426 master_clock = cpu_clock * ifc;
427 bus_clock = master_clock/bfc;
428 }
429
430 printk("Bus clock: %d.%02dMHz\n",
431 (bus_clock/1000000), (bus_clock % 1000000)/10000);
432 module_clock = master_clock/pfc;
433 printk("Module clock: %d.%02dMHz\n",
434 (module_clock/1000000), (module_clock % 1000000)/10000);
435 interval = (module_clock/(HZ*4));
436
437 printk("Interval = %ld\n", interval);
438
439 current_cpu_data.cpu_clock = cpu_clock;
440 current_cpu_data.master_clock = master_clock;
441 current_cpu_data.bus_clock = bus_clock;
442 current_cpu_data.module_clock = module_clock;
443
444 /* Start TMU0 */
445 ctrl_outb(TMU_TSTR_OFF, TMU_TSTR);
446 ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
447 ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
448 ctrl_outl(interval, TMU0_TCOR);
449 ctrl_outl(interval, TMU0_TCNT);
450 ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
451 }
452
453 void enter_deep_standby(void)
454 {
455 /* Disable watchdog timer */
456 ctrl_outl(0xa5000000, WTCSR);
457 /* Configure deep standby on sleep */
458 ctrl_outl(0x03, STBCR);
459
460 #ifdef CONFIG_SH_ALPHANUMERIC
461 {
462 extern void mach_alphanum(int position, unsigned char value);
463 extern void mach_alphanum_brightness(int setting);
464 char halted[] = "Halted. ";
465 int i;
466 mach_alphanum_brightness(6); /* dimmest setting above off */
467 for (i=0; i<8; i++) {
468 mach_alphanum(i, halted[i]);
469 }
470 asm __volatile__ ("synco");
471 }
472 #endif
473
474 asm __volatile__ ("sleep");
475 asm __volatile__ ("synci");
476 asm __volatile__ ("nop");
477 asm __volatile__ ("nop");
478 asm __volatile__ ("nop");
479 asm __volatile__ ("nop");
480 panic("Unexpected wakeup!\n");
481 }
482
483 static struct resource rtc_resources[] = {
484 [0] = {
485 /* RTC base, filled in by rtc_init */
486 .flags = IORESOURCE_IO,
487 },
488 [1] = {
489 /* Period IRQ */
490 .start = IRQ_PRI,
491 .flags = IORESOURCE_IRQ,
492 },
493 [2] = {
494 /* Carry IRQ */
495 .start = IRQ_CUI,
496 .flags = IORESOURCE_IRQ,
497 },
498 [3] = {
499 /* Alarm IRQ */
500 .start = IRQ_ATI,
501 .flags = IORESOURCE_IRQ,
502 },
503 };
504
505 static struct platform_device rtc_device = {
506 .name = "sh-rtc",
507 .id = -1,
508 .num_resources = ARRAY_SIZE(rtc_resources),
509 .resource = rtc_resources,
510 };
511
512 static int __init rtc_init(void)
513 {
514 rtc_resources[0].start = rtc_base;
515 rtc_resources[0].end = rtc_resources[0].start + 0x58 - 1;
516
517 return platform_device_register(&rtc_device);
518 }
519 device_initcall(rtc_init);
This page took 0.065233 seconds and 5 git commands to generate.