Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / arch / sh / mm / cache-sh4.c
1 /*
2 * arch/sh/mm/cache-sh4.c
3 *
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2001 - 2007 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
7 *
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file "COPYING" in the main directory of this archive
10 * for more details.
11 */
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/io.h>
15 #include <linux/mutex.h>
16 #include <asm/mmu_context.h>
17 #include <asm/cacheflush.h>
18
19 /*
20 * The maximum number of pages we support up to when doing ranged dcache
21 * flushing. Anything exceeding this will simply flush the dcache in its
22 * entirety.
23 */
24 #define MAX_DCACHE_PAGES 64 /* XXX: Tune for ways */
25
26 static void __flush_dcache_segment_1way(unsigned long start,
27 unsigned long extent);
28 static void __flush_dcache_segment_2way(unsigned long start,
29 unsigned long extent);
30 static void __flush_dcache_segment_4way(unsigned long start,
31 unsigned long extent);
32
33 static void __flush_cache_4096(unsigned long addr, unsigned long phys,
34 unsigned long exec_offset);
35
36 /*
37 * This is initialised here to ensure that it is not placed in the BSS. If
38 * that were to happen, note that cache_init gets called before the BSS is
39 * cleared, so this would get nulled out which would be hopeless.
40 */
41 static void (*__flush_dcache_segment_fn)(unsigned long, unsigned long) =
42 (void (*)(unsigned long, unsigned long))0xdeadbeef;
43
44 static void compute_alias(struct cache_info *c)
45 {
46 c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
47 c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
48 }
49
50 static void __init emit_cache_params(void)
51 {
52 printk("PVR=%08x CVR=%08x PRR=%08x\n",
53 ctrl_inl(CCN_PVR),
54 ctrl_inl(CCN_CVR),
55 ctrl_inl(CCN_PRR));
56 printk("I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
57 boot_cpu_data.icache.ways,
58 boot_cpu_data.icache.sets,
59 boot_cpu_data.icache.way_incr);
60 printk("I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
61 boot_cpu_data.icache.entry_mask,
62 boot_cpu_data.icache.alias_mask,
63 boot_cpu_data.icache.n_aliases);
64 printk("D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
65 boot_cpu_data.dcache.ways,
66 boot_cpu_data.dcache.sets,
67 boot_cpu_data.dcache.way_incr);
68 printk("D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
69 boot_cpu_data.dcache.entry_mask,
70 boot_cpu_data.dcache.alias_mask,
71 boot_cpu_data.dcache.n_aliases);
72
73 /*
74 * Emit Secondary Cache parameters if the CPU has a probed L2.
75 */
76 if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
77 printk("S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
78 boot_cpu_data.scache.ways,
79 boot_cpu_data.scache.sets,
80 boot_cpu_data.scache.way_incr);
81 printk("S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
82 boot_cpu_data.scache.entry_mask,
83 boot_cpu_data.scache.alias_mask,
84 boot_cpu_data.scache.n_aliases);
85 }
86
87 if (!__flush_dcache_segment_fn)
88 panic("unknown number of cache ways\n");
89 }
90
91 /*
92 * SH-4 has virtually indexed and physically tagged cache.
93 */
94 void __init p3_cache_init(void)
95 {
96 compute_alias(&boot_cpu_data.icache);
97 compute_alias(&boot_cpu_data.dcache);
98 compute_alias(&boot_cpu_data.scache);
99
100 switch (boot_cpu_data.dcache.ways) {
101 case 1:
102 __flush_dcache_segment_fn = __flush_dcache_segment_1way;
103 break;
104 case 2:
105 __flush_dcache_segment_fn = __flush_dcache_segment_2way;
106 break;
107 case 4:
108 __flush_dcache_segment_fn = __flush_dcache_segment_4way;
109 break;
110 default:
111 __flush_dcache_segment_fn = NULL;
112 break;
113 }
114
115 emit_cache_params();
116 }
117
118 /*
119 * Write back the dirty D-caches, but not invalidate them.
120 *
121 * START: Virtual Address (U0, P1, or P3)
122 * SIZE: Size of the region.
123 */
124 void __flush_wback_region(void *start, int size)
125 {
126 unsigned long v;
127 unsigned long begin, end;
128
129 begin = (unsigned long)start & ~(L1_CACHE_BYTES-1);
130 end = ((unsigned long)start + size + L1_CACHE_BYTES-1)
131 & ~(L1_CACHE_BYTES-1);
132 for (v = begin; v < end; v+=L1_CACHE_BYTES) {
133 asm volatile("ocbwb %0"
134 : /* no output */
135 : "m" (__m(v)));
136 }
137 }
138
139 /*
140 * Write back the dirty D-caches and invalidate them.
141 *
142 * START: Virtual Address (U0, P1, or P3)
143 * SIZE: Size of the region.
144 */
145 void __flush_purge_region(void *start, int size)
146 {
147 unsigned long v;
148 unsigned long begin, end;
149
150 begin = (unsigned long)start & ~(L1_CACHE_BYTES-1);
151 end = ((unsigned long)start + size + L1_CACHE_BYTES-1)
152 & ~(L1_CACHE_BYTES-1);
153 for (v = begin; v < end; v+=L1_CACHE_BYTES) {
154 asm volatile("ocbp %0"
155 : /* no output */
156 : "m" (__m(v)));
157 }
158 }
159
160 /*
161 * No write back please
162 */
163 void __flush_invalidate_region(void *start, int size)
164 {
165 unsigned long v;
166 unsigned long begin, end;
167
168 begin = (unsigned long)start & ~(L1_CACHE_BYTES-1);
169 end = ((unsigned long)start + size + L1_CACHE_BYTES-1)
170 & ~(L1_CACHE_BYTES-1);
171 for (v = begin; v < end; v+=L1_CACHE_BYTES) {
172 asm volatile("ocbi %0"
173 : /* no output */
174 : "m" (__m(v)));
175 }
176 }
177
178 /*
179 * Write back the range of D-cache, and purge the I-cache.
180 *
181 * Called from kernel/module.c:sys_init_module and routine for a.out format.
182 */
183 void flush_icache_range(unsigned long start, unsigned long end)
184 {
185 flush_cache_all();
186 }
187
188 /*
189 * Write back the D-cache and purge the I-cache for signal trampoline.
190 * .. which happens to be the same behavior as flush_icache_range().
191 * So, we simply flush out a line.
192 */
193 void flush_cache_sigtramp(unsigned long addr)
194 {
195 unsigned long v, index;
196 unsigned long flags;
197 int i;
198
199 v = addr & ~(L1_CACHE_BYTES-1);
200 asm volatile("ocbwb %0"
201 : /* no output */
202 : "m" (__m(v)));
203
204 index = CACHE_IC_ADDRESS_ARRAY |
205 (v & boot_cpu_data.icache.entry_mask);
206
207 local_irq_save(flags);
208 jump_to_P2();
209
210 for (i = 0; i < boot_cpu_data.icache.ways;
211 i++, index += boot_cpu_data.icache.way_incr)
212 ctrl_outl(0, index); /* Clear out Valid-bit */
213
214 back_to_P1();
215 wmb();
216 local_irq_restore(flags);
217 }
218
219 static inline void flush_cache_4096(unsigned long start,
220 unsigned long phys)
221 {
222 unsigned long flags, exec_offset = 0;
223
224 /*
225 * All types of SH-4 require PC to be in P2 to operate on the I-cache.
226 * Some types of SH-4 require PC to be in P2 to operate on the D-cache.
227 */
228 if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
229 (start < CACHE_OC_ADDRESS_ARRAY))
230 exec_offset = 0x20000000;
231
232 local_irq_save(flags);
233 __flush_cache_4096(start | SH_CACHE_ASSOC,
234 P1SEGADDR(phys), exec_offset);
235 local_irq_restore(flags);
236 }
237
238 /*
239 * Write back & invalidate the D-cache of the page.
240 * (To avoid "alias" issues)
241 */
242 void flush_dcache_page(struct page *page)
243 {
244 if (test_bit(PG_mapped, &page->flags)) {
245 unsigned long phys = PHYSADDR(page_address(page));
246 unsigned long addr = CACHE_OC_ADDRESS_ARRAY;
247 int i, n;
248
249 /* Loop all the D-cache */
250 n = boot_cpu_data.dcache.n_aliases;
251 for (i = 0; i < n; i++, addr += 4096)
252 flush_cache_4096(addr, phys);
253 }
254
255 wmb();
256 }
257
258 /* TODO: Selective icache invalidation through IC address array.. */
259 static inline void flush_icache_all(void)
260 {
261 unsigned long flags, ccr;
262
263 local_irq_save(flags);
264 jump_to_P2();
265
266 /* Flush I-cache */
267 ccr = ctrl_inl(CCR);
268 ccr |= CCR_CACHE_ICI;
269 ctrl_outl(ccr, CCR);
270
271 /*
272 * back_to_P1() will take care of the barrier for us, don't add
273 * another one!
274 */
275
276 back_to_P1();
277 local_irq_restore(flags);
278 }
279
280 void flush_dcache_all(void)
281 {
282 (*__flush_dcache_segment_fn)(0UL, boot_cpu_data.dcache.way_size);
283 wmb();
284 }
285
286 void flush_cache_all(void)
287 {
288 flush_dcache_all();
289 flush_icache_all();
290 }
291
292 static void __flush_cache_mm(struct mm_struct *mm, unsigned long start,
293 unsigned long end)
294 {
295 unsigned long d = 0, p = start & PAGE_MASK;
296 unsigned long alias_mask = boot_cpu_data.dcache.alias_mask;
297 unsigned long n_aliases = boot_cpu_data.dcache.n_aliases;
298 unsigned long select_bit;
299 unsigned long all_aliases_mask;
300 unsigned long addr_offset;
301 pgd_t *dir;
302 pmd_t *pmd;
303 pud_t *pud;
304 pte_t *pte;
305 int i;
306
307 dir = pgd_offset(mm, p);
308 pud = pud_offset(dir, p);
309 pmd = pmd_offset(pud, p);
310 end = PAGE_ALIGN(end);
311
312 all_aliases_mask = (1 << n_aliases) - 1;
313
314 do {
315 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) {
316 p &= PMD_MASK;
317 p += PMD_SIZE;
318 pmd++;
319
320 continue;
321 }
322
323 pte = pte_offset_kernel(pmd, p);
324
325 do {
326 unsigned long phys;
327 pte_t entry = *pte;
328
329 if (!(pte_val(entry) & _PAGE_PRESENT)) {
330 pte++;
331 p += PAGE_SIZE;
332 continue;
333 }
334
335 phys = pte_val(entry) & PTE_PHYS_MASK;
336
337 if ((p ^ phys) & alias_mask) {
338 d |= 1 << ((p & alias_mask) >> PAGE_SHIFT);
339 d |= 1 << ((phys & alias_mask) >> PAGE_SHIFT);
340
341 if (d == all_aliases_mask)
342 goto loop_exit;
343 }
344
345 pte++;
346 p += PAGE_SIZE;
347 } while (p < end && ((unsigned long)pte & ~PAGE_MASK));
348 pmd++;
349 } while (p < end);
350
351 loop_exit:
352 addr_offset = 0;
353 select_bit = 1;
354
355 for (i = 0; i < n_aliases; i++) {
356 if (d & select_bit) {
357 (*__flush_dcache_segment_fn)(addr_offset, PAGE_SIZE);
358 wmb();
359 }
360
361 select_bit <<= 1;
362 addr_offset += PAGE_SIZE;
363 }
364 }
365
366 /*
367 * Note : (RPC) since the caches are physically tagged, the only point
368 * of flush_cache_mm for SH-4 is to get rid of aliases from the
369 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
370 * lines can stay resident so long as the virtual address they were
371 * accessed with (hence cache set) is in accord with the physical
372 * address (i.e. tag). It's no different here. So I reckon we don't
373 * need to flush the I-cache, since aliases don't matter for that. We
374 * should try that.
375 *
376 * Caller takes mm->mmap_sem.
377 */
378 void flush_cache_mm(struct mm_struct *mm)
379 {
380 /*
381 * If cache is only 4k-per-way, there are never any 'aliases'. Since
382 * the cache is physically tagged, the data can just be left in there.
383 */
384 if (boot_cpu_data.dcache.n_aliases == 0)
385 return;
386
387 /*
388 * Don't bother groveling around the dcache for the VMA ranges
389 * if there are too many PTEs to make it worthwhile.
390 */
391 if (mm->nr_ptes >= MAX_DCACHE_PAGES)
392 flush_dcache_all();
393 else {
394 struct vm_area_struct *vma;
395
396 /*
397 * In this case there are reasonably sized ranges to flush,
398 * iterate through the VMA list and take care of any aliases.
399 */
400 for (vma = mm->mmap; vma; vma = vma->vm_next)
401 __flush_cache_mm(mm, vma->vm_start, vma->vm_end);
402 }
403
404 /* Only touch the icache if one of the VMAs has VM_EXEC set. */
405 if (mm->exec_vm)
406 flush_icache_all();
407 }
408
409 /*
410 * Write back and invalidate I/D-caches for the page.
411 *
412 * ADDR: Virtual Address (U0 address)
413 * PFN: Physical page number
414 */
415 void flush_cache_page(struct vm_area_struct *vma, unsigned long address,
416 unsigned long pfn)
417 {
418 unsigned long phys = pfn << PAGE_SHIFT;
419 unsigned int alias_mask;
420
421 alias_mask = boot_cpu_data.dcache.alias_mask;
422
423 /* We only need to flush D-cache when we have alias */
424 if ((address^phys) & alias_mask) {
425 /* Loop 4K of the D-cache */
426 flush_cache_4096(
427 CACHE_OC_ADDRESS_ARRAY | (address & alias_mask),
428 phys);
429 /* Loop another 4K of the D-cache */
430 flush_cache_4096(
431 CACHE_OC_ADDRESS_ARRAY | (phys & alias_mask),
432 phys);
433 }
434
435 alias_mask = boot_cpu_data.icache.alias_mask;
436 if (vma->vm_flags & VM_EXEC) {
437 /*
438 * Evict entries from the portion of the cache from which code
439 * may have been executed at this address (virtual). There's
440 * no need to evict from the portion corresponding to the
441 * physical address as for the D-cache, because we know the
442 * kernel has never executed the code through its identity
443 * translation.
444 */
445 flush_cache_4096(
446 CACHE_IC_ADDRESS_ARRAY | (address & alias_mask),
447 phys);
448 }
449 }
450
451 /*
452 * Write back and invalidate D-caches.
453 *
454 * START, END: Virtual Address (U0 address)
455 *
456 * NOTE: We need to flush the _physical_ page entry.
457 * Flushing the cache lines for U0 only isn't enough.
458 * We need to flush for P1 too, which may contain aliases.
459 */
460 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
461 unsigned long end)
462 {
463 /*
464 * If cache is only 4k-per-way, there are never any 'aliases'. Since
465 * the cache is physically tagged, the data can just be left in there.
466 */
467 if (boot_cpu_data.dcache.n_aliases == 0)
468 return;
469
470 /*
471 * Don't bother with the lookup and alias check if we have a
472 * wide range to cover, just blow away the dcache in its
473 * entirety instead. -- PFM.
474 */
475 if (((end - start) >> PAGE_SHIFT) >= MAX_DCACHE_PAGES)
476 flush_dcache_all();
477 else
478 __flush_cache_mm(vma->vm_mm, start, end);
479
480 if (vma->vm_flags & VM_EXEC) {
481 /*
482 * TODO: Is this required??? Need to look at how I-cache
483 * coherency is assured when new programs are loaded to see if
484 * this matters.
485 */
486 flush_icache_all();
487 }
488 }
489
490 /*
491 * flush_icache_user_range
492 * @vma: VMA of the process
493 * @page: page
494 * @addr: U0 address
495 * @len: length of the range (< page size)
496 */
497 void flush_icache_user_range(struct vm_area_struct *vma,
498 struct page *page, unsigned long addr, int len)
499 {
500 flush_cache_page(vma, addr, page_to_pfn(page));
501 mb();
502 }
503
504 /**
505 * __flush_cache_4096
506 *
507 * @addr: address in memory mapped cache array
508 * @phys: P1 address to flush (has to match tags if addr has 'A' bit
509 * set i.e. associative write)
510 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
511 * region else 0x0
512 *
513 * The offset into the cache array implied by 'addr' selects the
514 * 'colour' of the virtual address range that will be flushed. The
515 * operation (purge/write-back) is selected by the lower 2 bits of
516 * 'phys'.
517 */
518 static void __flush_cache_4096(unsigned long addr, unsigned long phys,
519 unsigned long exec_offset)
520 {
521 int way_count;
522 unsigned long base_addr = addr;
523 struct cache_info *dcache;
524 unsigned long way_incr;
525 unsigned long a, ea, p;
526 unsigned long temp_pc;
527
528 dcache = &boot_cpu_data.dcache;
529 /* Write this way for better assembly. */
530 way_count = dcache->ways;
531 way_incr = dcache->way_incr;
532
533 /*
534 * Apply exec_offset (i.e. branch to P2 if required.).
535 *
536 * FIXME:
537 *
538 * If I write "=r" for the (temp_pc), it puts this in r6 hence
539 * trashing exec_offset before it's been added on - why? Hence
540 * "=&r" as a 'workaround'
541 */
542 asm volatile("mov.l 1f, %0\n\t"
543 "add %1, %0\n\t"
544 "jmp @%0\n\t"
545 "nop\n\t"
546 ".balign 4\n\t"
547 "1: .long 2f\n\t"
548 "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
549
550 /*
551 * We know there will be >=1 iteration, so write as do-while to avoid
552 * pointless nead-of-loop check for 0 iterations.
553 */
554 do {
555 ea = base_addr + PAGE_SIZE;
556 a = base_addr;
557 p = phys;
558
559 do {
560 *(volatile unsigned long *)a = p;
561 /*
562 * Next line: intentionally not p+32, saves an add, p
563 * will do since only the cache tag bits need to
564 * match.
565 */
566 *(volatile unsigned long *)(a+32) = p;
567 a += 64;
568 p += 64;
569 } while (a < ea);
570
571 base_addr += way_incr;
572 } while (--way_count != 0);
573 }
574
575 /*
576 * Break the 1, 2 and 4 way variants of this out into separate functions to
577 * avoid nearly all the overhead of having the conditional stuff in the function
578 * bodies (+ the 1 and 2 way cases avoid saving any registers too).
579 */
580 static void __flush_dcache_segment_1way(unsigned long start,
581 unsigned long extent_per_way)
582 {
583 unsigned long orig_sr, sr_with_bl;
584 unsigned long base_addr;
585 unsigned long way_incr, linesz, way_size;
586 struct cache_info *dcache;
587 register unsigned long a0, a0e;
588
589 asm volatile("stc sr, %0" : "=r" (orig_sr));
590 sr_with_bl = orig_sr | (1<<28);
591 base_addr = ((unsigned long)&empty_zero_page[0]);
592
593 /*
594 * The previous code aligned base_addr to 16k, i.e. the way_size of all
595 * existing SH-4 D-caches. Whilst I don't see a need to have this
596 * aligned to any better than the cache line size (which it will be
597 * anyway by construction), let's align it to at least the way_size of
598 * any existing or conceivable SH-4 D-cache. -- RPC
599 */
600 base_addr = ((base_addr >> 16) << 16);
601 base_addr |= start;
602
603 dcache = &boot_cpu_data.dcache;
604 linesz = dcache->linesz;
605 way_incr = dcache->way_incr;
606 way_size = dcache->way_size;
607
608 a0 = base_addr;
609 a0e = base_addr + extent_per_way;
610 do {
611 asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
612 asm volatile("movca.l r0, @%0\n\t"
613 "ocbi @%0" : : "r" (a0));
614 a0 += linesz;
615 asm volatile("movca.l r0, @%0\n\t"
616 "ocbi @%0" : : "r" (a0));
617 a0 += linesz;
618 asm volatile("movca.l r0, @%0\n\t"
619 "ocbi @%0" : : "r" (a0));
620 a0 += linesz;
621 asm volatile("movca.l r0, @%0\n\t"
622 "ocbi @%0" : : "r" (a0));
623 asm volatile("ldc %0, sr" : : "r" (orig_sr));
624 a0 += linesz;
625 } while (a0 < a0e);
626 }
627
628 static void __flush_dcache_segment_2way(unsigned long start,
629 unsigned long extent_per_way)
630 {
631 unsigned long orig_sr, sr_with_bl;
632 unsigned long base_addr;
633 unsigned long way_incr, linesz, way_size;
634 struct cache_info *dcache;
635 register unsigned long a0, a1, a0e;
636
637 asm volatile("stc sr, %0" : "=r" (orig_sr));
638 sr_with_bl = orig_sr | (1<<28);
639 base_addr = ((unsigned long)&empty_zero_page[0]);
640
641 /* See comment under 1-way above */
642 base_addr = ((base_addr >> 16) << 16);
643 base_addr |= start;
644
645 dcache = &boot_cpu_data.dcache;
646 linesz = dcache->linesz;
647 way_incr = dcache->way_incr;
648 way_size = dcache->way_size;
649
650 a0 = base_addr;
651 a1 = a0 + way_incr;
652 a0e = base_addr + extent_per_way;
653 do {
654 asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
655 asm volatile("movca.l r0, @%0\n\t"
656 "movca.l r0, @%1\n\t"
657 "ocbi @%0\n\t"
658 "ocbi @%1" : :
659 "r" (a0), "r" (a1));
660 a0 += linesz;
661 a1 += linesz;
662 asm volatile("movca.l r0, @%0\n\t"
663 "movca.l r0, @%1\n\t"
664 "ocbi @%0\n\t"
665 "ocbi @%1" : :
666 "r" (a0), "r" (a1));
667 a0 += linesz;
668 a1 += linesz;
669 asm volatile("movca.l r0, @%0\n\t"
670 "movca.l r0, @%1\n\t"
671 "ocbi @%0\n\t"
672 "ocbi @%1" : :
673 "r" (a0), "r" (a1));
674 a0 += linesz;
675 a1 += linesz;
676 asm volatile("movca.l r0, @%0\n\t"
677 "movca.l r0, @%1\n\t"
678 "ocbi @%0\n\t"
679 "ocbi @%1" : :
680 "r" (a0), "r" (a1));
681 asm volatile("ldc %0, sr" : : "r" (orig_sr));
682 a0 += linesz;
683 a1 += linesz;
684 } while (a0 < a0e);
685 }
686
687 static void __flush_dcache_segment_4way(unsigned long start,
688 unsigned long extent_per_way)
689 {
690 unsigned long orig_sr, sr_with_bl;
691 unsigned long base_addr;
692 unsigned long way_incr, linesz, way_size;
693 struct cache_info *dcache;
694 register unsigned long a0, a1, a2, a3, a0e;
695
696 asm volatile("stc sr, %0" : "=r" (orig_sr));
697 sr_with_bl = orig_sr | (1<<28);
698 base_addr = ((unsigned long)&empty_zero_page[0]);
699
700 /* See comment under 1-way above */
701 base_addr = ((base_addr >> 16) << 16);
702 base_addr |= start;
703
704 dcache = &boot_cpu_data.dcache;
705 linesz = dcache->linesz;
706 way_incr = dcache->way_incr;
707 way_size = dcache->way_size;
708
709 a0 = base_addr;
710 a1 = a0 + way_incr;
711 a2 = a1 + way_incr;
712 a3 = a2 + way_incr;
713 a0e = base_addr + extent_per_way;
714 do {
715 asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
716 asm volatile("movca.l r0, @%0\n\t"
717 "movca.l r0, @%1\n\t"
718 "movca.l r0, @%2\n\t"
719 "movca.l r0, @%3\n\t"
720 "ocbi @%0\n\t"
721 "ocbi @%1\n\t"
722 "ocbi @%2\n\t"
723 "ocbi @%3\n\t" : :
724 "r" (a0), "r" (a1), "r" (a2), "r" (a3));
725 a0 += linesz;
726 a1 += linesz;
727 a2 += linesz;
728 a3 += linesz;
729 asm volatile("movca.l r0, @%0\n\t"
730 "movca.l r0, @%1\n\t"
731 "movca.l r0, @%2\n\t"
732 "movca.l r0, @%3\n\t"
733 "ocbi @%0\n\t"
734 "ocbi @%1\n\t"
735 "ocbi @%2\n\t"
736 "ocbi @%3\n\t" : :
737 "r" (a0), "r" (a1), "r" (a2), "r" (a3));
738 a0 += linesz;
739 a1 += linesz;
740 a2 += linesz;
741 a3 += linesz;
742 asm volatile("movca.l r0, @%0\n\t"
743 "movca.l r0, @%1\n\t"
744 "movca.l r0, @%2\n\t"
745 "movca.l r0, @%3\n\t"
746 "ocbi @%0\n\t"
747 "ocbi @%1\n\t"
748 "ocbi @%2\n\t"
749 "ocbi @%3\n\t" : :
750 "r" (a0), "r" (a1), "r" (a2), "r" (a3));
751 a0 += linesz;
752 a1 += linesz;
753 a2 += linesz;
754 a3 += linesz;
755 asm volatile("movca.l r0, @%0\n\t"
756 "movca.l r0, @%1\n\t"
757 "movca.l r0, @%2\n\t"
758 "movca.l r0, @%3\n\t"
759 "ocbi @%0\n\t"
760 "ocbi @%1\n\t"
761 "ocbi @%2\n\t"
762 "ocbi @%3\n\t" : :
763 "r" (a0), "r" (a1), "r" (a2), "r" (a3));
764 asm volatile("ldc %0, sr" : : "r" (orig_sr));
765 a0 += linesz;
766 a1 += linesz;
767 a2 += linesz;
768 a3 += linesz;
769 } while (a0 < a0e);
770 }
This page took 0.045515 seconds and 5 git commands to generate.