997c7e42b1e1d986abc2da48dc906536c1161c3c
[deliverable/linux.git] / arch / sh / mm / cache.c
1 /*
2 * arch/sh/mm/cache.c
3 *
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2002 - 2009 Paul Mundt
6 *
7 * Released under the terms of the GNU GPL v2.0.
8 */
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/mutex.h>
12 #include <linux/fs.h>
13 #include <linux/smp.h>
14 #include <linux/highmem.h>
15 #include <linux/module.h>
16 #include <asm/mmu_context.h>
17 #include <asm/cacheflush.h>
18
19 void (*local_flush_cache_all)(void *args) = cache_noop;
20 void (*local_flush_cache_mm)(void *args) = cache_noop;
21 void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
22 void (*local_flush_cache_page)(void *args) = cache_noop;
23 void (*local_flush_cache_range)(void *args) = cache_noop;
24 void (*local_flush_dcache_page)(void *args) = cache_noop;
25 void (*local_flush_icache_range)(void *args) = cache_noop;
26 void (*local_flush_icache_page)(void *args) = cache_noop;
27 void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
28
29 void (*__flush_wback_region)(void *start, int size);
30 EXPORT_SYMBOL(__flush_wback_region);
31 void (*__flush_purge_region)(void *start, int size);
32 EXPORT_SYMBOL(__flush_purge_region);
33 void (*__flush_invalidate_region)(void *start, int size);
34 EXPORT_SYMBOL(__flush_invalidate_region);
35
36 static inline void noop__flush_region(void *start, int size)
37 {
38 }
39
40 static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
41 int wait)
42 {
43 preempt_disable();
44 smp_call_function(func, info, wait);
45 func(info);
46 preempt_enable();
47 }
48
49 /*
50 * copy_to_user_page
51 * @vma: vm_area_struct holding the pages
52 * @page: struct page
53 * @vaddr: user space address
54 * @dst: address of page in kernel space (possibly from kmap)
55 * @src: source address in kernel logical memory
56 * @len: length of data in bytes (may be less than PAGE_SIZE)
57 *
58 * Copy data into the address space of a process other than the current
59 * process (eg for ptrace).
60 */
61 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
62 unsigned long vaddr, void *dst, const void *src,
63 unsigned long len)
64 {
65 if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
66 !test_bit(PG_dcache_dirty, &page->flags)) {
67 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
68 memcpy(vto, src, len);
69 kunmap_coherent(vto);
70 } else {
71 memcpy(dst, src, len);
72 if (boot_cpu_data.dcache.n_aliases)
73 set_bit(PG_dcache_dirty, &page->flags);
74 }
75
76 if (vma->vm_flags & VM_EXEC)
77 flush_cache_page(vma, vaddr, page_to_pfn(page));
78 }
79
80 void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
81 unsigned long vaddr, void *dst, const void *src,
82 unsigned long len)
83 {
84 if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
85 !test_bit(PG_dcache_dirty, &page->flags)) {
86 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
87 memcpy(dst, vfrom, len);
88 kunmap_coherent(vfrom);
89 } else {
90 memcpy(dst, src, len);
91 if (boot_cpu_data.dcache.n_aliases)
92 set_bit(PG_dcache_dirty, &page->flags);
93 }
94 }
95
96 /*
97 * copy_user_highpage
98 * @to: destination page
99 * @from: source page
100 * @vaddr: address of pages in user address space
101 * @vma: vm_area_struct holding the pages
102 *
103 * This is used in COW implementation to copy data from page @from to
104 * page @to. @from was previousl mapped at @vaddr, and @to will be.
105 * As this is used only in the COW implementation, this means that the
106 * source is unmodified, and so we don't have to worry about cache
107 * aliasing on that side.
108 */
109 #ifdef CONFIG_HIGHMEM
110 /*
111 * If we ever have a real highmem system, this code will need fixing
112 * (as will clear_user/clear_user_highmem), because the kmap potentitally
113 * creates another alias risk.
114 */
115 #error This code is broken with real HIGHMEM
116 #endif
117 void copy_user_highpage(struct page *to, struct page *from,
118 unsigned long vaddr, struct vm_area_struct *vma)
119 {
120 void *vfrom, *vto;
121
122 vto = kmap_atomic(to, KM_USER1);
123 vfrom = kmap_atomic(from, KM_USER0);
124
125 if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
126 __flush_invalidate_region(vto, PAGE_SIZE);
127
128 if (boot_cpu_data.dcache.n_aliases && page_mapped(from) &&
129 !test_bit(PG_dcache_dirty, &from->flags)) {
130 void *vto_coloured = kmap_coherent(to, vaddr);
131 copy_page(vto_coloured, vfrom);
132 kunmap_coherent(vto_coloured);
133 } else
134 copy_page(vto, vfrom);
135
136 kunmap_atomic(vfrom, KM_USER0);
137 kunmap_atomic(vto, KM_USER1);
138
139 /* Make sure this page is cleared on other CPU's too before using it */
140 smp_wmb();
141 }
142 EXPORT_SYMBOL(copy_user_highpage);
143
144 void clear_user_highpage(struct page *page, unsigned long vaddr)
145 {
146 void *kaddr = kmap_atomic(page, KM_USER0);
147
148 if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK)) {
149 void *vto;
150
151 /* Kernel alias may have modified data in the cache. */
152 __flush_invalidate_region(kaddr, PAGE_SIZE);
153
154 vto = kmap_coherent(page, vaddr);
155 clear_page(vto);
156 kunmap_coherent(vto);
157 } else
158 clear_page(kaddr);
159
160 kunmap_atomic(kaddr, KM_USER0);
161 }
162 EXPORT_SYMBOL(clear_user_highpage);
163
164 void __update_cache(struct vm_area_struct *vma,
165 unsigned long address, pte_t pte)
166 {
167 struct page *page;
168 unsigned long pfn = pte_pfn(pte);
169
170 if (!boot_cpu_data.dcache.n_aliases)
171 return;
172
173 page = pfn_to_page(pfn);
174 if (pfn_valid(pfn)) {
175 int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
176 if (dirty) {
177 unsigned long addr = (unsigned long)page_address(page);
178
179 if (pages_do_alias(addr, address & PAGE_MASK))
180 __flush_purge_region((void *)addr, PAGE_SIZE);
181 }
182 }
183 }
184
185 void __flush_anon_page(struct page *page, unsigned long vmaddr)
186 {
187 unsigned long addr = (unsigned long) page_address(page);
188
189 if (pages_do_alias(addr, vmaddr)) {
190 if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
191 !test_bit(PG_dcache_dirty, &page->flags)) {
192 void *kaddr;
193
194 kaddr = kmap_coherent(page, vmaddr);
195 /* XXX.. For now kunmap_coherent() does a purge */
196 /* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
197 kunmap_coherent(kaddr);
198 } else
199 __flush_purge_region((void *)addr, PAGE_SIZE);
200 }
201 }
202
203 void flush_cache_all(void)
204 {
205 cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
206 }
207 EXPORT_SYMBOL(flush_cache_all);
208
209 void flush_cache_mm(struct mm_struct *mm)
210 {
211 if (boot_cpu_data.dcache.n_aliases == 0)
212 return;
213
214 cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
215 }
216
217 void flush_cache_dup_mm(struct mm_struct *mm)
218 {
219 if (boot_cpu_data.dcache.n_aliases == 0)
220 return;
221
222 cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
223 }
224
225 void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
226 unsigned long pfn)
227 {
228 struct flusher_data data;
229
230 data.vma = vma;
231 data.addr1 = addr;
232 data.addr2 = pfn;
233
234 cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
235 }
236
237 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
238 unsigned long end)
239 {
240 struct flusher_data data;
241
242 data.vma = vma;
243 data.addr1 = start;
244 data.addr2 = end;
245
246 cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
247 }
248 EXPORT_SYMBOL(flush_cache_range);
249
250 void flush_dcache_page(struct page *page)
251 {
252 cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
253 }
254 EXPORT_SYMBOL(flush_dcache_page);
255
256 void flush_icache_range(unsigned long start, unsigned long end)
257 {
258 struct flusher_data data;
259
260 data.vma = NULL;
261 data.addr1 = start;
262 data.addr2 = end;
263
264 cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
265 }
266
267 void flush_icache_page(struct vm_area_struct *vma, struct page *page)
268 {
269 /* Nothing uses the VMA, so just pass the struct page along */
270 cacheop_on_each_cpu(local_flush_icache_page, page, 1);
271 }
272
273 void flush_cache_sigtramp(unsigned long address)
274 {
275 cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
276 }
277
278 static void compute_alias(struct cache_info *c)
279 {
280 c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
281 c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
282 }
283
284 static void __init emit_cache_params(void)
285 {
286 printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
287 boot_cpu_data.icache.ways,
288 boot_cpu_data.icache.sets,
289 boot_cpu_data.icache.way_incr);
290 printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
291 boot_cpu_data.icache.entry_mask,
292 boot_cpu_data.icache.alias_mask,
293 boot_cpu_data.icache.n_aliases);
294 printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
295 boot_cpu_data.dcache.ways,
296 boot_cpu_data.dcache.sets,
297 boot_cpu_data.dcache.way_incr);
298 printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
299 boot_cpu_data.dcache.entry_mask,
300 boot_cpu_data.dcache.alias_mask,
301 boot_cpu_data.dcache.n_aliases);
302
303 /*
304 * Emit Secondary Cache parameters if the CPU has a probed L2.
305 */
306 if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
307 printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
308 boot_cpu_data.scache.ways,
309 boot_cpu_data.scache.sets,
310 boot_cpu_data.scache.way_incr);
311 printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
312 boot_cpu_data.scache.entry_mask,
313 boot_cpu_data.scache.alias_mask,
314 boot_cpu_data.scache.n_aliases);
315 }
316 }
317
318 void __init cpu_cache_init(void)
319 {
320 unsigned int cache_disabled = 0;
321
322 #ifdef CCR
323 cache_disabled = !(__raw_readl(CCR) & CCR_CACHE_ENABLE);
324 #endif
325
326 compute_alias(&boot_cpu_data.icache);
327 compute_alias(&boot_cpu_data.dcache);
328 compute_alias(&boot_cpu_data.scache);
329
330 __flush_wback_region = noop__flush_region;
331 __flush_purge_region = noop__flush_region;
332 __flush_invalidate_region = noop__flush_region;
333
334 /*
335 * No flushing is necessary in the disabled cache case so we can
336 * just keep the noop functions in local_flush_..() and __flush_..()
337 */
338 if (unlikely(cache_disabled))
339 goto skip;
340
341 if (boot_cpu_data.family == CPU_FAMILY_SH2) {
342 extern void __weak sh2_cache_init(void);
343
344 sh2_cache_init();
345 }
346
347 if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
348 extern void __weak sh2a_cache_init(void);
349
350 sh2a_cache_init();
351 }
352
353 if (boot_cpu_data.family == CPU_FAMILY_SH3) {
354 extern void __weak sh3_cache_init(void);
355
356 sh3_cache_init();
357
358 if ((boot_cpu_data.type == CPU_SH7705) &&
359 (boot_cpu_data.dcache.sets == 512)) {
360 extern void __weak sh7705_cache_init(void);
361
362 sh7705_cache_init();
363 }
364 }
365
366 if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
367 (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
368 (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
369 extern void __weak sh4_cache_init(void);
370
371 sh4_cache_init();
372 }
373
374 if (boot_cpu_data.family == CPU_FAMILY_SH5) {
375 extern void __weak sh5_cache_init(void);
376
377 sh5_cache_init();
378 }
379
380 skip:
381 emit_cache_params();
382 }
This page took 0.041192 seconds and 4 git commands to generate.