oprofile: introduce module_param oprofile.cpu_type
[deliverable/linux.git] / arch / sparc / kernel / irq_64.c
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <asm/atomic.h>
29 #include <asm/system.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/iommu.h>
33 #include <asm/upa.h>
34 #include <asm/oplib.h>
35 #include <asm/prom.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <asm/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
44 #include <asm/hypervisor.h>
45 #include <asm/cacheflush.h>
46
47 #include "entry.h"
48
49 #define NUM_IVECS (IMAP_INR + 1)
50
51 struct ino_bucket *ivector_table;
52 unsigned long ivector_table_pa;
53
54 /* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses. Therefore we access all INO buckets
56 * using bypass accesses only.
57 */
58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59 {
60 unsigned long ret;
61
62 __asm__ __volatile__("ldxa [%1] %2, %0"
63 : "=&r" (ret)
64 : "r" (bucket_pa +
65 offsetof(struct ino_bucket,
66 __irq_chain_pa)),
67 "i" (ASI_PHYS_USE_EC));
68
69 return ret;
70 }
71
72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
73 {
74 __asm__ __volatile__("stxa %%g0, [%0] %1"
75 : /* no outputs */
76 : "r" (bucket_pa +
77 offsetof(struct ino_bucket,
78 __irq_chain_pa)),
79 "i" (ASI_PHYS_USE_EC));
80 }
81
82 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
83 {
84 unsigned int ret;
85
86 __asm__ __volatile__("lduwa [%1] %2, %0"
87 : "=&r" (ret)
88 : "r" (bucket_pa +
89 offsetof(struct ino_bucket,
90 __virt_irq)),
91 "i" (ASI_PHYS_USE_EC));
92
93 return ret;
94 }
95
96 static void bucket_set_virt_irq(unsigned long bucket_pa,
97 unsigned int virt_irq)
98 {
99 __asm__ __volatile__("stwa %0, [%1] %2"
100 : /* no outputs */
101 : "r" (virt_irq),
102 "r" (bucket_pa +
103 offsetof(struct ino_bucket,
104 __virt_irq)),
105 "i" (ASI_PHYS_USE_EC));
106 }
107
108 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
109
110 static struct {
111 unsigned int dev_handle;
112 unsigned int dev_ino;
113 unsigned int in_use;
114 } virt_irq_table[NR_IRQS];
115 static DEFINE_SPINLOCK(virt_irq_alloc_lock);
116
117 unsigned char virt_irq_alloc(unsigned int dev_handle,
118 unsigned int dev_ino)
119 {
120 unsigned long flags;
121 unsigned char ent;
122
123 BUILD_BUG_ON(NR_IRQS >= 256);
124
125 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
126
127 for (ent = 1; ent < NR_IRQS; ent++) {
128 if (!virt_irq_table[ent].in_use)
129 break;
130 }
131 if (ent >= NR_IRQS) {
132 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
133 ent = 0;
134 } else {
135 virt_irq_table[ent].dev_handle = dev_handle;
136 virt_irq_table[ent].dev_ino = dev_ino;
137 virt_irq_table[ent].in_use = 1;
138 }
139
140 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
141
142 return ent;
143 }
144
145 #ifdef CONFIG_PCI_MSI
146 void virt_irq_free(unsigned int virt_irq)
147 {
148 unsigned long flags;
149
150 if (virt_irq >= NR_IRQS)
151 return;
152
153 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
154
155 virt_irq_table[virt_irq].in_use = 0;
156
157 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
158 }
159 #endif
160
161 /*
162 * /proc/interrupts printing:
163 */
164
165 int show_interrupts(struct seq_file *p, void *v)
166 {
167 int i = *(loff_t *) v, j;
168 struct irqaction * action;
169 unsigned long flags;
170
171 if (i == 0) {
172 seq_printf(p, " ");
173 for_each_online_cpu(j)
174 seq_printf(p, "CPU%d ",j);
175 seq_putc(p, '\n');
176 }
177
178 if (i < NR_IRQS) {
179 spin_lock_irqsave(&irq_desc[i].lock, flags);
180 action = irq_desc[i].action;
181 if (!action)
182 goto skip;
183 seq_printf(p, "%3d: ",i);
184 #ifndef CONFIG_SMP
185 seq_printf(p, "%10u ", kstat_irqs(i));
186 #else
187 for_each_online_cpu(j)
188 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
189 #endif
190 seq_printf(p, " %9s", irq_desc[i].chip->typename);
191 seq_printf(p, " %s", action->name);
192
193 for (action=action->next; action; action = action->next)
194 seq_printf(p, ", %s", action->name);
195
196 seq_putc(p, '\n');
197 skip:
198 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
199 } else if (i == NR_IRQS) {
200 seq_printf(p, "NMI: ");
201 for_each_online_cpu(j)
202 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
203 seq_printf(p, " Non-maskable interrupts\n");
204 }
205 return 0;
206 }
207
208 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
209 {
210 unsigned int tid;
211
212 if (this_is_starfire) {
213 tid = starfire_translate(imap, cpuid);
214 tid <<= IMAP_TID_SHIFT;
215 tid &= IMAP_TID_UPA;
216 } else {
217 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
218 unsigned long ver;
219
220 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
221 if ((ver >> 32UL) == __JALAPENO_ID ||
222 (ver >> 32UL) == __SERRANO_ID) {
223 tid = cpuid << IMAP_TID_SHIFT;
224 tid &= IMAP_TID_JBUS;
225 } else {
226 unsigned int a = cpuid & 0x1f;
227 unsigned int n = (cpuid >> 5) & 0x1f;
228
229 tid = ((a << IMAP_AID_SHIFT) |
230 (n << IMAP_NID_SHIFT));
231 tid &= (IMAP_AID_SAFARI |
232 IMAP_NID_SAFARI);;
233 }
234 } else {
235 tid = cpuid << IMAP_TID_SHIFT;
236 tid &= IMAP_TID_UPA;
237 }
238 }
239
240 return tid;
241 }
242
243 struct irq_handler_data {
244 unsigned long iclr;
245 unsigned long imap;
246
247 void (*pre_handler)(unsigned int, void *, void *);
248 void *arg1;
249 void *arg2;
250 };
251
252 #ifdef CONFIG_SMP
253 static int irq_choose_cpu(unsigned int virt_irq)
254 {
255 cpumask_t mask;
256 int cpuid;
257
258 cpumask_copy(&mask, irq_desc[virt_irq].affinity);
259 if (cpus_equal(mask, CPU_MASK_ALL)) {
260 static int irq_rover;
261 static DEFINE_SPINLOCK(irq_rover_lock);
262 unsigned long flags;
263
264 /* Round-robin distribution... */
265 do_round_robin:
266 spin_lock_irqsave(&irq_rover_lock, flags);
267
268 while (!cpu_online(irq_rover)) {
269 if (++irq_rover >= nr_cpu_ids)
270 irq_rover = 0;
271 }
272 cpuid = irq_rover;
273 do {
274 if (++irq_rover >= nr_cpu_ids)
275 irq_rover = 0;
276 } while (!cpu_online(irq_rover));
277
278 spin_unlock_irqrestore(&irq_rover_lock, flags);
279 } else {
280 cpumask_t tmp;
281
282 cpus_and(tmp, cpu_online_map, mask);
283
284 if (cpus_empty(tmp))
285 goto do_round_robin;
286
287 cpuid = first_cpu(tmp);
288 }
289
290 return cpuid;
291 }
292 #else
293 static int irq_choose_cpu(unsigned int virt_irq)
294 {
295 return real_hard_smp_processor_id();
296 }
297 #endif
298
299 static void sun4u_irq_enable(unsigned int virt_irq)
300 {
301 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
302
303 if (likely(data)) {
304 unsigned long cpuid, imap, val;
305 unsigned int tid;
306
307 cpuid = irq_choose_cpu(virt_irq);
308 imap = data->imap;
309
310 tid = sun4u_compute_tid(imap, cpuid);
311
312 val = upa_readq(imap);
313 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
314 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
315 val |= tid | IMAP_VALID;
316 upa_writeq(val, imap);
317 upa_writeq(ICLR_IDLE, data->iclr);
318 }
319 }
320
321 static void sun4u_set_affinity(unsigned int virt_irq,
322 const struct cpumask *mask)
323 {
324 sun4u_irq_enable(virt_irq);
325 }
326
327 /* Don't do anything. The desc->status check for IRQ_DISABLED in
328 * handler_irq() will skip the handler call and that will leave the
329 * interrupt in the sent state. The next ->enable() call will hit the
330 * ICLR register to reset the state machine.
331 *
332 * This scheme is necessary, instead of clearing the Valid bit in the
333 * IMAP register, to handle the case of IMAP registers being shared by
334 * multiple INOs (and thus ICLR registers). Since we use a different
335 * virtual IRQ for each shared IMAP instance, the generic code thinks
336 * there is only one user so it prematurely calls ->disable() on
337 * free_irq().
338 *
339 * We have to provide an explicit ->disable() method instead of using
340 * NULL to get the default. The reason is that if the generic code
341 * sees that, it also hooks up a default ->shutdown method which
342 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
343 */
344 static void sun4u_irq_disable(unsigned int virt_irq)
345 {
346 }
347
348 static void sun4u_irq_eoi(unsigned int virt_irq)
349 {
350 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
351 struct irq_desc *desc = irq_desc + virt_irq;
352
353 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
354 return;
355
356 if (likely(data))
357 upa_writeq(ICLR_IDLE, data->iclr);
358 }
359
360 static void sun4v_irq_enable(unsigned int virt_irq)
361 {
362 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
363 unsigned long cpuid = irq_choose_cpu(virt_irq);
364 int err;
365
366 err = sun4v_intr_settarget(ino, cpuid);
367 if (err != HV_EOK)
368 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
369 "err(%d)\n", ino, cpuid, err);
370 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
371 if (err != HV_EOK)
372 printk(KERN_ERR "sun4v_intr_setstate(%x): "
373 "err(%d)\n", ino, err);
374 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
375 if (err != HV_EOK)
376 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
377 ino, err);
378 }
379
380 static void sun4v_set_affinity(unsigned int virt_irq,
381 const struct cpumask *mask)
382 {
383 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
384 unsigned long cpuid = irq_choose_cpu(virt_irq);
385 int err;
386
387 err = sun4v_intr_settarget(ino, cpuid);
388 if (err != HV_EOK)
389 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
390 "err(%d)\n", ino, cpuid, err);
391 }
392
393 static void sun4v_irq_disable(unsigned int virt_irq)
394 {
395 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
396 int err;
397
398 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
399 if (err != HV_EOK)
400 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
401 "err(%d)\n", ino, err);
402 }
403
404 static void sun4v_irq_eoi(unsigned int virt_irq)
405 {
406 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
407 struct irq_desc *desc = irq_desc + virt_irq;
408 int err;
409
410 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
411 return;
412
413 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
414 if (err != HV_EOK)
415 printk(KERN_ERR "sun4v_intr_setstate(%x): "
416 "err(%d)\n", ino, err);
417 }
418
419 static void sun4v_virq_enable(unsigned int virt_irq)
420 {
421 unsigned long cpuid, dev_handle, dev_ino;
422 int err;
423
424 cpuid = irq_choose_cpu(virt_irq);
425
426 dev_handle = virt_irq_table[virt_irq].dev_handle;
427 dev_ino = virt_irq_table[virt_irq].dev_ino;
428
429 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
430 if (err != HV_EOK)
431 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
432 "err(%d)\n",
433 dev_handle, dev_ino, cpuid, err);
434 err = sun4v_vintr_set_state(dev_handle, dev_ino,
435 HV_INTR_STATE_IDLE);
436 if (err != HV_EOK)
437 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
438 "HV_INTR_STATE_IDLE): err(%d)\n",
439 dev_handle, dev_ino, err);
440 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
441 HV_INTR_ENABLED);
442 if (err != HV_EOK)
443 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
444 "HV_INTR_ENABLED): err(%d)\n",
445 dev_handle, dev_ino, err);
446 }
447
448 static void sun4v_virt_set_affinity(unsigned int virt_irq,
449 const struct cpumask *mask)
450 {
451 unsigned long cpuid, dev_handle, dev_ino;
452 int err;
453
454 cpuid = irq_choose_cpu(virt_irq);
455
456 dev_handle = virt_irq_table[virt_irq].dev_handle;
457 dev_ino = virt_irq_table[virt_irq].dev_ino;
458
459 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
460 if (err != HV_EOK)
461 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
462 "err(%d)\n",
463 dev_handle, dev_ino, cpuid, err);
464 }
465
466 static void sun4v_virq_disable(unsigned int virt_irq)
467 {
468 unsigned long dev_handle, dev_ino;
469 int err;
470
471 dev_handle = virt_irq_table[virt_irq].dev_handle;
472 dev_ino = virt_irq_table[virt_irq].dev_ino;
473
474 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
475 HV_INTR_DISABLED);
476 if (err != HV_EOK)
477 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
478 "HV_INTR_DISABLED): err(%d)\n",
479 dev_handle, dev_ino, err);
480 }
481
482 static void sun4v_virq_eoi(unsigned int virt_irq)
483 {
484 struct irq_desc *desc = irq_desc + virt_irq;
485 unsigned long dev_handle, dev_ino;
486 int err;
487
488 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
489 return;
490
491 dev_handle = virt_irq_table[virt_irq].dev_handle;
492 dev_ino = virt_irq_table[virt_irq].dev_ino;
493
494 err = sun4v_vintr_set_state(dev_handle, dev_ino,
495 HV_INTR_STATE_IDLE);
496 if (err != HV_EOK)
497 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
498 "HV_INTR_STATE_IDLE): err(%d)\n",
499 dev_handle, dev_ino, err);
500 }
501
502 static struct irq_chip sun4u_irq = {
503 .typename = "sun4u",
504 .enable = sun4u_irq_enable,
505 .disable = sun4u_irq_disable,
506 .eoi = sun4u_irq_eoi,
507 .set_affinity = sun4u_set_affinity,
508 };
509
510 static struct irq_chip sun4v_irq = {
511 .typename = "sun4v",
512 .enable = sun4v_irq_enable,
513 .disable = sun4v_irq_disable,
514 .eoi = sun4v_irq_eoi,
515 .set_affinity = sun4v_set_affinity,
516 };
517
518 static struct irq_chip sun4v_virq = {
519 .typename = "vsun4v",
520 .enable = sun4v_virq_enable,
521 .disable = sun4v_virq_disable,
522 .eoi = sun4v_virq_eoi,
523 .set_affinity = sun4v_virt_set_affinity,
524 };
525
526 static void pre_flow_handler(unsigned int virt_irq,
527 struct irq_desc *desc)
528 {
529 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
530 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
531
532 data->pre_handler(ino, data->arg1, data->arg2);
533
534 handle_fasteoi_irq(virt_irq, desc);
535 }
536
537 void irq_install_pre_handler(int virt_irq,
538 void (*func)(unsigned int, void *, void *),
539 void *arg1, void *arg2)
540 {
541 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
542 struct irq_desc *desc = irq_desc + virt_irq;
543
544 data->pre_handler = func;
545 data->arg1 = arg1;
546 data->arg2 = arg2;
547
548 desc->handle_irq = pre_flow_handler;
549 }
550
551 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
552 {
553 struct ino_bucket *bucket;
554 struct irq_handler_data *data;
555 unsigned int virt_irq;
556 int ino;
557
558 BUG_ON(tlb_type == hypervisor);
559
560 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
561 bucket = &ivector_table[ino];
562 virt_irq = bucket_get_virt_irq(__pa(bucket));
563 if (!virt_irq) {
564 virt_irq = virt_irq_alloc(0, ino);
565 bucket_set_virt_irq(__pa(bucket), virt_irq);
566 set_irq_chip_and_handler_name(virt_irq,
567 &sun4u_irq,
568 handle_fasteoi_irq,
569 "IVEC");
570 }
571
572 data = get_irq_chip_data(virt_irq);
573 if (unlikely(data))
574 goto out;
575
576 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
577 if (unlikely(!data)) {
578 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
579 prom_halt();
580 }
581 set_irq_chip_data(virt_irq, data);
582
583 data->imap = imap;
584 data->iclr = iclr;
585
586 out:
587 return virt_irq;
588 }
589
590 static unsigned int sun4v_build_common(unsigned long sysino,
591 struct irq_chip *chip)
592 {
593 struct ino_bucket *bucket;
594 struct irq_handler_data *data;
595 unsigned int virt_irq;
596
597 BUG_ON(tlb_type != hypervisor);
598
599 bucket = &ivector_table[sysino];
600 virt_irq = bucket_get_virt_irq(__pa(bucket));
601 if (!virt_irq) {
602 virt_irq = virt_irq_alloc(0, sysino);
603 bucket_set_virt_irq(__pa(bucket), virt_irq);
604 set_irq_chip_and_handler_name(virt_irq, chip,
605 handle_fasteoi_irq,
606 "IVEC");
607 }
608
609 data = get_irq_chip_data(virt_irq);
610 if (unlikely(data))
611 goto out;
612
613 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
614 if (unlikely(!data)) {
615 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
616 prom_halt();
617 }
618 set_irq_chip_data(virt_irq, data);
619
620 /* Catch accidental accesses to these things. IMAP/ICLR handling
621 * is done by hypervisor calls on sun4v platforms, not by direct
622 * register accesses.
623 */
624 data->imap = ~0UL;
625 data->iclr = ~0UL;
626
627 out:
628 return virt_irq;
629 }
630
631 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
632 {
633 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
634
635 return sun4v_build_common(sysino, &sun4v_irq);
636 }
637
638 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
639 {
640 struct irq_handler_data *data;
641 unsigned long hv_err, cookie;
642 struct ino_bucket *bucket;
643 struct irq_desc *desc;
644 unsigned int virt_irq;
645
646 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
647 if (unlikely(!bucket))
648 return 0;
649 __flush_dcache_range((unsigned long) bucket,
650 ((unsigned long) bucket +
651 sizeof(struct ino_bucket)));
652
653 virt_irq = virt_irq_alloc(devhandle, devino);
654 bucket_set_virt_irq(__pa(bucket), virt_irq);
655
656 set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
657 handle_fasteoi_irq,
658 "IVEC");
659
660 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
661 if (unlikely(!data))
662 return 0;
663
664 /* In order to make the LDC channel startup sequence easier,
665 * especially wrt. locking, we do not let request_irq() enable
666 * the interrupt.
667 */
668 desc = irq_desc + virt_irq;
669 desc->status |= IRQ_NOAUTOEN;
670
671 set_irq_chip_data(virt_irq, data);
672
673 /* Catch accidental accesses to these things. IMAP/ICLR handling
674 * is done by hypervisor calls on sun4v platforms, not by direct
675 * register accesses.
676 */
677 data->imap = ~0UL;
678 data->iclr = ~0UL;
679
680 cookie = ~__pa(bucket);
681 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
682 if (hv_err) {
683 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
684 "err=%lu\n", devhandle, devino, hv_err);
685 prom_halt();
686 }
687
688 return virt_irq;
689 }
690
691 void ack_bad_irq(unsigned int virt_irq)
692 {
693 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
694
695 if (!ino)
696 ino = 0xdeadbeef;
697
698 printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
699 ino, virt_irq);
700 }
701
702 void *hardirq_stack[NR_CPUS];
703 void *softirq_stack[NR_CPUS];
704
705 static __attribute__((always_inline)) void *set_hardirq_stack(void)
706 {
707 void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
708
709 __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
710 if (orig_sp < sp ||
711 orig_sp > (sp + THREAD_SIZE)) {
712 sp += THREAD_SIZE - 192 - STACK_BIAS;
713 __asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
714 }
715
716 return orig_sp;
717 }
718 static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
719 {
720 __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
721 }
722
723 void handler_irq(int irq, struct pt_regs *regs)
724 {
725 unsigned long pstate, bucket_pa;
726 struct pt_regs *old_regs;
727 void *orig_sp;
728
729 clear_softint(1 << irq);
730
731 old_regs = set_irq_regs(regs);
732 irq_enter();
733
734 /* Grab an atomic snapshot of the pending IVECs. */
735 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
736 "wrpr %0, %3, %%pstate\n\t"
737 "ldx [%2], %1\n\t"
738 "stx %%g0, [%2]\n\t"
739 "wrpr %0, 0x0, %%pstate\n\t"
740 : "=&r" (pstate), "=&r" (bucket_pa)
741 : "r" (irq_work_pa(smp_processor_id())),
742 "i" (PSTATE_IE)
743 : "memory");
744
745 orig_sp = set_hardirq_stack();
746
747 while (bucket_pa) {
748 struct irq_desc *desc;
749 unsigned long next_pa;
750 unsigned int virt_irq;
751
752 next_pa = bucket_get_chain_pa(bucket_pa);
753 virt_irq = bucket_get_virt_irq(bucket_pa);
754 bucket_clear_chain_pa(bucket_pa);
755
756 desc = irq_desc + virt_irq;
757
758 if (!(desc->status & IRQ_DISABLED))
759 desc->handle_irq(virt_irq, desc);
760
761 bucket_pa = next_pa;
762 }
763
764 restore_hardirq_stack(orig_sp);
765
766 irq_exit();
767 set_irq_regs(old_regs);
768 }
769
770 void do_softirq(void)
771 {
772 unsigned long flags;
773
774 if (in_interrupt())
775 return;
776
777 local_irq_save(flags);
778
779 if (local_softirq_pending()) {
780 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
781
782 sp += THREAD_SIZE - 192 - STACK_BIAS;
783
784 __asm__ __volatile__("mov %%sp, %0\n\t"
785 "mov %1, %%sp"
786 : "=&r" (orig_sp)
787 : "r" (sp));
788 __do_softirq();
789 __asm__ __volatile__("mov %0, %%sp"
790 : : "r" (orig_sp));
791 }
792
793 local_irq_restore(flags);
794 }
795
796 #ifdef CONFIG_HOTPLUG_CPU
797 void fixup_irqs(void)
798 {
799 unsigned int irq;
800
801 for (irq = 0; irq < NR_IRQS; irq++) {
802 unsigned long flags;
803
804 spin_lock_irqsave(&irq_desc[irq].lock, flags);
805 if (irq_desc[irq].action &&
806 !(irq_desc[irq].status & IRQ_PER_CPU)) {
807 if (irq_desc[irq].chip->set_affinity)
808 irq_desc[irq].chip->set_affinity(irq,
809 irq_desc[irq].affinity);
810 }
811 spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
812 }
813
814 tick_ops->disable_irq();
815 }
816 #endif
817
818 struct sun5_timer {
819 u64 count0;
820 u64 limit0;
821 u64 count1;
822 u64 limit1;
823 };
824
825 static struct sun5_timer *prom_timers;
826 static u64 prom_limit0, prom_limit1;
827
828 static void map_prom_timers(void)
829 {
830 struct device_node *dp;
831 const unsigned int *addr;
832
833 /* PROM timer node hangs out in the top level of device siblings... */
834 dp = of_find_node_by_path("/");
835 dp = dp->child;
836 while (dp) {
837 if (!strcmp(dp->name, "counter-timer"))
838 break;
839 dp = dp->sibling;
840 }
841
842 /* Assume if node is not present, PROM uses different tick mechanism
843 * which we should not care about.
844 */
845 if (!dp) {
846 prom_timers = (struct sun5_timer *) 0;
847 return;
848 }
849
850 /* If PROM is really using this, it must be mapped by him. */
851 addr = of_get_property(dp, "address", NULL);
852 if (!addr) {
853 prom_printf("PROM does not have timer mapped, trying to continue.\n");
854 prom_timers = (struct sun5_timer *) 0;
855 return;
856 }
857 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
858 }
859
860 static void kill_prom_timer(void)
861 {
862 if (!prom_timers)
863 return;
864
865 /* Save them away for later. */
866 prom_limit0 = prom_timers->limit0;
867 prom_limit1 = prom_timers->limit1;
868
869 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
870 * We turn both off here just to be paranoid.
871 */
872 prom_timers->limit0 = 0;
873 prom_timers->limit1 = 0;
874
875 /* Wheee, eat the interrupt packet too... */
876 __asm__ __volatile__(
877 " mov 0x40, %%g2\n"
878 " ldxa [%%g0] %0, %%g1\n"
879 " ldxa [%%g2] %1, %%g1\n"
880 " stxa %%g0, [%%g0] %0\n"
881 " membar #Sync\n"
882 : /* no outputs */
883 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
884 : "g1", "g2");
885 }
886
887 void notrace init_irqwork_curcpu(void)
888 {
889 int cpu = hard_smp_processor_id();
890
891 trap_block[cpu].irq_worklist_pa = 0UL;
892 }
893
894 /* Please be very careful with register_one_mondo() and
895 * sun4v_register_mondo_queues().
896 *
897 * On SMP this gets invoked from the CPU trampoline before
898 * the cpu has fully taken over the trap table from OBP,
899 * and it's kernel stack + %g6 thread register state is
900 * not fully cooked yet.
901 *
902 * Therefore you cannot make any OBP calls, not even prom_printf,
903 * from these two routines.
904 */
905 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
906 {
907 unsigned long num_entries = (qmask + 1) / 64;
908 unsigned long status;
909
910 status = sun4v_cpu_qconf(type, paddr, num_entries);
911 if (status != HV_EOK) {
912 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
913 "err %lu\n", type, paddr, num_entries, status);
914 prom_halt();
915 }
916 }
917
918 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
919 {
920 struct trap_per_cpu *tb = &trap_block[this_cpu];
921
922 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
923 tb->cpu_mondo_qmask);
924 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
925 tb->dev_mondo_qmask);
926 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
927 tb->resum_qmask);
928 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
929 tb->nonresum_qmask);
930 }
931
932 static void __init alloc_one_mondo(unsigned long *pa_ptr, unsigned long qmask)
933 {
934 unsigned long size = PAGE_ALIGN(qmask + 1);
935 void *p = __alloc_bootmem(size, size, 0);
936 if (!p) {
937 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
938 prom_halt();
939 }
940
941 *pa_ptr = __pa(p);
942 }
943
944 static void __init alloc_one_kbuf(unsigned long *pa_ptr, unsigned long qmask)
945 {
946 unsigned long size = PAGE_ALIGN(qmask + 1);
947 void *p = __alloc_bootmem(size, size, 0);
948
949 if (!p) {
950 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
951 prom_halt();
952 }
953
954 *pa_ptr = __pa(p);
955 }
956
957 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
958 {
959 #ifdef CONFIG_SMP
960 void *page;
961
962 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
963
964 page = alloc_bootmem_pages(PAGE_SIZE);
965 if (!page) {
966 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
967 prom_halt();
968 }
969
970 tb->cpu_mondo_block_pa = __pa(page);
971 tb->cpu_list_pa = __pa(page + 64);
972 #endif
973 }
974
975 /* Allocate mondo and error queues for all possible cpus. */
976 static void __init sun4v_init_mondo_queues(void)
977 {
978 int cpu;
979
980 for_each_possible_cpu(cpu) {
981 struct trap_per_cpu *tb = &trap_block[cpu];
982
983 alloc_one_mondo(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
984 alloc_one_mondo(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
985 alloc_one_mondo(&tb->resum_mondo_pa, tb->resum_qmask);
986 alloc_one_kbuf(&tb->resum_kernel_buf_pa, tb->resum_qmask);
987 alloc_one_mondo(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
988 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa,
989 tb->nonresum_qmask);
990 }
991 }
992
993 static void __init init_send_mondo_info(void)
994 {
995 int cpu;
996
997 for_each_possible_cpu(cpu) {
998 struct trap_per_cpu *tb = &trap_block[cpu];
999
1000 init_cpu_send_mondo_info(tb);
1001 }
1002 }
1003
1004 static struct irqaction timer_irq_action = {
1005 .name = "timer",
1006 };
1007
1008 /* Only invoked on boot processor. */
1009 void __init init_IRQ(void)
1010 {
1011 unsigned long size;
1012
1013 map_prom_timers();
1014 kill_prom_timer();
1015
1016 size = sizeof(struct ino_bucket) * NUM_IVECS;
1017 ivector_table = alloc_bootmem(size);
1018 if (!ivector_table) {
1019 prom_printf("Fatal error, cannot allocate ivector_table\n");
1020 prom_halt();
1021 }
1022 __flush_dcache_range((unsigned long) ivector_table,
1023 ((unsigned long) ivector_table) + size);
1024
1025 ivector_table_pa = __pa(ivector_table);
1026
1027 if (tlb_type == hypervisor)
1028 sun4v_init_mondo_queues();
1029
1030 init_send_mondo_info();
1031
1032 if (tlb_type == hypervisor) {
1033 /* Load up the boot cpu's entries. */
1034 sun4v_register_mondo_queues(hard_smp_processor_id());
1035 }
1036
1037 /* We need to clear any IRQ's pending in the soft interrupt
1038 * registers, a spurious one could be left around from the
1039 * PROM timer which we just disabled.
1040 */
1041 clear_softint(get_softint());
1042
1043 /* Now that ivector table is initialized, it is safe
1044 * to receive IRQ vector traps. We will normally take
1045 * one or two right now, in case some device PROM used
1046 * to boot us wants to speak to us. We just ignore them.
1047 */
1048 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1049 "or %%g1, %0, %%g1\n\t"
1050 "wrpr %%g1, 0x0, %%pstate"
1051 : /* No outputs */
1052 : "i" (PSTATE_IE)
1053 : "g1");
1054
1055 irq_desc[0].action = &timer_irq_action;
1056 }
This page took 0.073264 seconds and 5 git commands to generate.