Mark arguments to certain syscalls as being const
[deliverable/linux.git] / arch / sparc / kernel / irq_64.c
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/ftrace.h>
24 #include <linux/irq.h>
25 #include <linux/kmemleak.h>
26
27 #include <asm/ptrace.h>
28 #include <asm/processor.h>
29 #include <asm/atomic.h>
30 #include <asm/system.h>
31 #include <asm/irq.h>
32 #include <asm/io.h>
33 #include <asm/iommu.h>
34 #include <asm/upa.h>
35 #include <asm/oplib.h>
36 #include <asm/prom.h>
37 #include <asm/timer.h>
38 #include <asm/smp.h>
39 #include <asm/starfire.h>
40 #include <asm/uaccess.h>
41 #include <asm/cache.h>
42 #include <asm/cpudata.h>
43 #include <asm/auxio.h>
44 #include <asm/head.h>
45 #include <asm/hypervisor.h>
46 #include <asm/cacheflush.h>
47
48 #include "entry.h"
49 #include "cpumap.h"
50 #include "kstack.h"
51
52 #define NUM_IVECS (IMAP_INR + 1)
53
54 struct ino_bucket *ivector_table;
55 unsigned long ivector_table_pa;
56
57 /* On several sun4u processors, it is illegal to mix bypass and
58 * non-bypass accesses. Therefore we access all INO buckets
59 * using bypass accesses only.
60 */
61 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
62 {
63 unsigned long ret;
64
65 __asm__ __volatile__("ldxa [%1] %2, %0"
66 : "=&r" (ret)
67 : "r" (bucket_pa +
68 offsetof(struct ino_bucket,
69 __irq_chain_pa)),
70 "i" (ASI_PHYS_USE_EC));
71
72 return ret;
73 }
74
75 static void bucket_clear_chain_pa(unsigned long bucket_pa)
76 {
77 __asm__ __volatile__("stxa %%g0, [%0] %1"
78 : /* no outputs */
79 : "r" (bucket_pa +
80 offsetof(struct ino_bucket,
81 __irq_chain_pa)),
82 "i" (ASI_PHYS_USE_EC));
83 }
84
85 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
86 {
87 unsigned int ret;
88
89 __asm__ __volatile__("lduwa [%1] %2, %0"
90 : "=&r" (ret)
91 : "r" (bucket_pa +
92 offsetof(struct ino_bucket,
93 __virt_irq)),
94 "i" (ASI_PHYS_USE_EC));
95
96 return ret;
97 }
98
99 static void bucket_set_virt_irq(unsigned long bucket_pa,
100 unsigned int virt_irq)
101 {
102 __asm__ __volatile__("stwa %0, [%1] %2"
103 : /* no outputs */
104 : "r" (virt_irq),
105 "r" (bucket_pa +
106 offsetof(struct ino_bucket,
107 __virt_irq)),
108 "i" (ASI_PHYS_USE_EC));
109 }
110
111 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
112
113 static struct {
114 unsigned int dev_handle;
115 unsigned int dev_ino;
116 unsigned int in_use;
117 } virt_irq_table[NR_IRQS];
118 static DEFINE_SPINLOCK(virt_irq_alloc_lock);
119
120 unsigned char virt_irq_alloc(unsigned int dev_handle,
121 unsigned int dev_ino)
122 {
123 unsigned long flags;
124 unsigned char ent;
125
126 BUILD_BUG_ON(NR_IRQS >= 256);
127
128 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
129
130 for (ent = 1; ent < NR_IRQS; ent++) {
131 if (!virt_irq_table[ent].in_use)
132 break;
133 }
134 if (ent >= NR_IRQS) {
135 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
136 ent = 0;
137 } else {
138 virt_irq_table[ent].dev_handle = dev_handle;
139 virt_irq_table[ent].dev_ino = dev_ino;
140 virt_irq_table[ent].in_use = 1;
141 }
142
143 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
144
145 return ent;
146 }
147
148 #ifdef CONFIG_PCI_MSI
149 void virt_irq_free(unsigned int virt_irq)
150 {
151 unsigned long flags;
152
153 if (virt_irq >= NR_IRQS)
154 return;
155
156 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
157
158 virt_irq_table[virt_irq].in_use = 0;
159
160 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
161 }
162 #endif
163
164 /*
165 * /proc/interrupts printing:
166 */
167
168 int show_interrupts(struct seq_file *p, void *v)
169 {
170 int i = *(loff_t *) v, j;
171 struct irqaction * action;
172 unsigned long flags;
173
174 if (i == 0) {
175 seq_printf(p, " ");
176 for_each_online_cpu(j)
177 seq_printf(p, "CPU%d ",j);
178 seq_putc(p, '\n');
179 }
180
181 if (i < NR_IRQS) {
182 raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
183 action = irq_desc[i].action;
184 if (!action)
185 goto skip;
186 seq_printf(p, "%3d: ",i);
187 #ifndef CONFIG_SMP
188 seq_printf(p, "%10u ", kstat_irqs(i));
189 #else
190 for_each_online_cpu(j)
191 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
192 #endif
193 seq_printf(p, " %9s", irq_desc[i].chip->name);
194 seq_printf(p, " %s", action->name);
195
196 for (action=action->next; action; action = action->next)
197 seq_printf(p, ", %s", action->name);
198
199 seq_putc(p, '\n');
200 skip:
201 raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
202 } else if (i == NR_IRQS) {
203 seq_printf(p, "NMI: ");
204 for_each_online_cpu(j)
205 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
206 seq_printf(p, " Non-maskable interrupts\n");
207 }
208 return 0;
209 }
210
211 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
212 {
213 unsigned int tid;
214
215 if (this_is_starfire) {
216 tid = starfire_translate(imap, cpuid);
217 tid <<= IMAP_TID_SHIFT;
218 tid &= IMAP_TID_UPA;
219 } else {
220 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
221 unsigned long ver;
222
223 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
224 if ((ver >> 32UL) == __JALAPENO_ID ||
225 (ver >> 32UL) == __SERRANO_ID) {
226 tid = cpuid << IMAP_TID_SHIFT;
227 tid &= IMAP_TID_JBUS;
228 } else {
229 unsigned int a = cpuid & 0x1f;
230 unsigned int n = (cpuid >> 5) & 0x1f;
231
232 tid = ((a << IMAP_AID_SHIFT) |
233 (n << IMAP_NID_SHIFT));
234 tid &= (IMAP_AID_SAFARI |
235 IMAP_NID_SAFARI);
236 }
237 } else {
238 tid = cpuid << IMAP_TID_SHIFT;
239 tid &= IMAP_TID_UPA;
240 }
241 }
242
243 return tid;
244 }
245
246 struct irq_handler_data {
247 unsigned long iclr;
248 unsigned long imap;
249
250 void (*pre_handler)(unsigned int, void *, void *);
251 void *arg1;
252 void *arg2;
253 };
254
255 #ifdef CONFIG_SMP
256 static int irq_choose_cpu(unsigned int virt_irq, const struct cpumask *affinity)
257 {
258 cpumask_t mask;
259 int cpuid;
260
261 cpumask_copy(&mask, affinity);
262 if (cpus_equal(mask, cpu_online_map)) {
263 cpuid = map_to_cpu(virt_irq);
264 } else {
265 cpumask_t tmp;
266
267 cpus_and(tmp, cpu_online_map, mask);
268 cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp);
269 }
270
271 return cpuid;
272 }
273 #else
274 #define irq_choose_cpu(virt_irq, affinity) \
275 real_hard_smp_processor_id()
276 #endif
277
278 static void sun4u_irq_enable(unsigned int virt_irq)
279 {
280 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
281
282 if (likely(data)) {
283 unsigned long cpuid, imap, val;
284 unsigned int tid;
285
286 cpuid = irq_choose_cpu(virt_irq,
287 irq_desc[virt_irq].affinity);
288 imap = data->imap;
289
290 tid = sun4u_compute_tid(imap, cpuid);
291
292 val = upa_readq(imap);
293 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
294 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
295 val |= tid | IMAP_VALID;
296 upa_writeq(val, imap);
297 upa_writeq(ICLR_IDLE, data->iclr);
298 }
299 }
300
301 static int sun4u_set_affinity(unsigned int virt_irq,
302 const struct cpumask *mask)
303 {
304 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
305
306 if (likely(data)) {
307 unsigned long cpuid, imap, val;
308 unsigned int tid;
309
310 cpuid = irq_choose_cpu(virt_irq, mask);
311 imap = data->imap;
312
313 tid = sun4u_compute_tid(imap, cpuid);
314
315 val = upa_readq(imap);
316 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
317 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
318 val |= tid | IMAP_VALID;
319 upa_writeq(val, imap);
320 upa_writeq(ICLR_IDLE, data->iclr);
321 }
322
323 return 0;
324 }
325
326 /* Don't do anything. The desc->status check for IRQ_DISABLED in
327 * handler_irq() will skip the handler call and that will leave the
328 * interrupt in the sent state. The next ->enable() call will hit the
329 * ICLR register to reset the state machine.
330 *
331 * This scheme is necessary, instead of clearing the Valid bit in the
332 * IMAP register, to handle the case of IMAP registers being shared by
333 * multiple INOs (and thus ICLR registers). Since we use a different
334 * virtual IRQ for each shared IMAP instance, the generic code thinks
335 * there is only one user so it prematurely calls ->disable() on
336 * free_irq().
337 *
338 * We have to provide an explicit ->disable() method instead of using
339 * NULL to get the default. The reason is that if the generic code
340 * sees that, it also hooks up a default ->shutdown method which
341 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
342 */
343 static void sun4u_irq_disable(unsigned int virt_irq)
344 {
345 }
346
347 static void sun4u_irq_eoi(unsigned int virt_irq)
348 {
349 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
350 struct irq_desc *desc = irq_desc + virt_irq;
351
352 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
353 return;
354
355 if (likely(data))
356 upa_writeq(ICLR_IDLE, data->iclr);
357 }
358
359 static void sun4v_irq_enable(unsigned int virt_irq)
360 {
361 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
362 unsigned long cpuid = irq_choose_cpu(virt_irq,
363 irq_desc[virt_irq].affinity);
364 int err;
365
366 err = sun4v_intr_settarget(ino, cpuid);
367 if (err != HV_EOK)
368 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
369 "err(%d)\n", ino, cpuid, err);
370 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
371 if (err != HV_EOK)
372 printk(KERN_ERR "sun4v_intr_setstate(%x): "
373 "err(%d)\n", ino, err);
374 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
375 if (err != HV_EOK)
376 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
377 ino, err);
378 }
379
380 static int sun4v_set_affinity(unsigned int virt_irq,
381 const struct cpumask *mask)
382 {
383 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
384 unsigned long cpuid = irq_choose_cpu(virt_irq, mask);
385 int err;
386
387 err = sun4v_intr_settarget(ino, cpuid);
388 if (err != HV_EOK)
389 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
390 "err(%d)\n", ino, cpuid, err);
391
392 return 0;
393 }
394
395 static void sun4v_irq_disable(unsigned int virt_irq)
396 {
397 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
398 int err;
399
400 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
401 if (err != HV_EOK)
402 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
403 "err(%d)\n", ino, err);
404 }
405
406 static void sun4v_irq_eoi(unsigned int virt_irq)
407 {
408 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
409 struct irq_desc *desc = irq_desc + virt_irq;
410 int err;
411
412 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
413 return;
414
415 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
416 if (err != HV_EOK)
417 printk(KERN_ERR "sun4v_intr_setstate(%x): "
418 "err(%d)\n", ino, err);
419 }
420
421 static void sun4v_virq_enable(unsigned int virt_irq)
422 {
423 unsigned long cpuid, dev_handle, dev_ino;
424 int err;
425
426 cpuid = irq_choose_cpu(virt_irq, irq_desc[virt_irq].affinity);
427
428 dev_handle = virt_irq_table[virt_irq].dev_handle;
429 dev_ino = virt_irq_table[virt_irq].dev_ino;
430
431 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
432 if (err != HV_EOK)
433 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
434 "err(%d)\n",
435 dev_handle, dev_ino, cpuid, err);
436 err = sun4v_vintr_set_state(dev_handle, dev_ino,
437 HV_INTR_STATE_IDLE);
438 if (err != HV_EOK)
439 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
440 "HV_INTR_STATE_IDLE): err(%d)\n",
441 dev_handle, dev_ino, err);
442 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
443 HV_INTR_ENABLED);
444 if (err != HV_EOK)
445 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
446 "HV_INTR_ENABLED): err(%d)\n",
447 dev_handle, dev_ino, err);
448 }
449
450 static int sun4v_virt_set_affinity(unsigned int virt_irq,
451 const struct cpumask *mask)
452 {
453 unsigned long cpuid, dev_handle, dev_ino;
454 int err;
455
456 cpuid = irq_choose_cpu(virt_irq, mask);
457
458 dev_handle = virt_irq_table[virt_irq].dev_handle;
459 dev_ino = virt_irq_table[virt_irq].dev_ino;
460
461 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
462 if (err != HV_EOK)
463 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
464 "err(%d)\n",
465 dev_handle, dev_ino, cpuid, err);
466
467 return 0;
468 }
469
470 static void sun4v_virq_disable(unsigned int virt_irq)
471 {
472 unsigned long dev_handle, dev_ino;
473 int err;
474
475 dev_handle = virt_irq_table[virt_irq].dev_handle;
476 dev_ino = virt_irq_table[virt_irq].dev_ino;
477
478 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
479 HV_INTR_DISABLED);
480 if (err != HV_EOK)
481 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
482 "HV_INTR_DISABLED): err(%d)\n",
483 dev_handle, dev_ino, err);
484 }
485
486 static void sun4v_virq_eoi(unsigned int virt_irq)
487 {
488 struct irq_desc *desc = irq_desc + virt_irq;
489 unsigned long dev_handle, dev_ino;
490 int err;
491
492 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
493 return;
494
495 dev_handle = virt_irq_table[virt_irq].dev_handle;
496 dev_ino = virt_irq_table[virt_irq].dev_ino;
497
498 err = sun4v_vintr_set_state(dev_handle, dev_ino,
499 HV_INTR_STATE_IDLE);
500 if (err != HV_EOK)
501 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
502 "HV_INTR_STATE_IDLE): err(%d)\n",
503 dev_handle, dev_ino, err);
504 }
505
506 static struct irq_chip sun4u_irq = {
507 .name = "sun4u",
508 .enable = sun4u_irq_enable,
509 .disable = sun4u_irq_disable,
510 .eoi = sun4u_irq_eoi,
511 .set_affinity = sun4u_set_affinity,
512 };
513
514 static struct irq_chip sun4v_irq = {
515 .name = "sun4v",
516 .enable = sun4v_irq_enable,
517 .disable = sun4v_irq_disable,
518 .eoi = sun4v_irq_eoi,
519 .set_affinity = sun4v_set_affinity,
520 };
521
522 static struct irq_chip sun4v_virq = {
523 .name = "vsun4v",
524 .enable = sun4v_virq_enable,
525 .disable = sun4v_virq_disable,
526 .eoi = sun4v_virq_eoi,
527 .set_affinity = sun4v_virt_set_affinity,
528 };
529
530 static void pre_flow_handler(unsigned int virt_irq,
531 struct irq_desc *desc)
532 {
533 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
534 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
535
536 data->pre_handler(ino, data->arg1, data->arg2);
537
538 handle_fasteoi_irq(virt_irq, desc);
539 }
540
541 void irq_install_pre_handler(int virt_irq,
542 void (*func)(unsigned int, void *, void *),
543 void *arg1, void *arg2)
544 {
545 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
546 struct irq_desc *desc = irq_desc + virt_irq;
547
548 data->pre_handler = func;
549 data->arg1 = arg1;
550 data->arg2 = arg2;
551
552 desc->handle_irq = pre_flow_handler;
553 }
554
555 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
556 {
557 struct ino_bucket *bucket;
558 struct irq_handler_data *data;
559 unsigned int virt_irq;
560 int ino;
561
562 BUG_ON(tlb_type == hypervisor);
563
564 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
565 bucket = &ivector_table[ino];
566 virt_irq = bucket_get_virt_irq(__pa(bucket));
567 if (!virt_irq) {
568 virt_irq = virt_irq_alloc(0, ino);
569 bucket_set_virt_irq(__pa(bucket), virt_irq);
570 set_irq_chip_and_handler_name(virt_irq,
571 &sun4u_irq,
572 handle_fasteoi_irq,
573 "IVEC");
574 }
575
576 data = get_irq_chip_data(virt_irq);
577 if (unlikely(data))
578 goto out;
579
580 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
581 if (unlikely(!data)) {
582 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
583 prom_halt();
584 }
585 set_irq_chip_data(virt_irq, data);
586
587 data->imap = imap;
588 data->iclr = iclr;
589
590 out:
591 return virt_irq;
592 }
593
594 static unsigned int sun4v_build_common(unsigned long sysino,
595 struct irq_chip *chip)
596 {
597 struct ino_bucket *bucket;
598 struct irq_handler_data *data;
599 unsigned int virt_irq;
600
601 BUG_ON(tlb_type != hypervisor);
602
603 bucket = &ivector_table[sysino];
604 virt_irq = bucket_get_virt_irq(__pa(bucket));
605 if (!virt_irq) {
606 virt_irq = virt_irq_alloc(0, sysino);
607 bucket_set_virt_irq(__pa(bucket), virt_irq);
608 set_irq_chip_and_handler_name(virt_irq, chip,
609 handle_fasteoi_irq,
610 "IVEC");
611 }
612
613 data = get_irq_chip_data(virt_irq);
614 if (unlikely(data))
615 goto out;
616
617 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
618 if (unlikely(!data)) {
619 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
620 prom_halt();
621 }
622 set_irq_chip_data(virt_irq, data);
623
624 /* Catch accidental accesses to these things. IMAP/ICLR handling
625 * is done by hypervisor calls on sun4v platforms, not by direct
626 * register accesses.
627 */
628 data->imap = ~0UL;
629 data->iclr = ~0UL;
630
631 out:
632 return virt_irq;
633 }
634
635 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
636 {
637 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
638
639 return sun4v_build_common(sysino, &sun4v_irq);
640 }
641
642 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
643 {
644 struct irq_handler_data *data;
645 unsigned long hv_err, cookie;
646 struct ino_bucket *bucket;
647 struct irq_desc *desc;
648 unsigned int virt_irq;
649
650 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
651 if (unlikely(!bucket))
652 return 0;
653
654 /* The only reference we store to the IRQ bucket is
655 * by physical address which kmemleak can't see, tell
656 * it that this object explicitly is not a leak and
657 * should be scanned.
658 */
659 kmemleak_not_leak(bucket);
660
661 __flush_dcache_range((unsigned long) bucket,
662 ((unsigned long) bucket +
663 sizeof(struct ino_bucket)));
664
665 virt_irq = virt_irq_alloc(devhandle, devino);
666 bucket_set_virt_irq(__pa(bucket), virt_irq);
667
668 set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
669 handle_fasteoi_irq,
670 "IVEC");
671
672 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
673 if (unlikely(!data))
674 return 0;
675
676 /* In order to make the LDC channel startup sequence easier,
677 * especially wrt. locking, we do not let request_irq() enable
678 * the interrupt.
679 */
680 desc = irq_desc + virt_irq;
681 desc->status |= IRQ_NOAUTOEN;
682
683 set_irq_chip_data(virt_irq, data);
684
685 /* Catch accidental accesses to these things. IMAP/ICLR handling
686 * is done by hypervisor calls on sun4v platforms, not by direct
687 * register accesses.
688 */
689 data->imap = ~0UL;
690 data->iclr = ~0UL;
691
692 cookie = ~__pa(bucket);
693 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
694 if (hv_err) {
695 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
696 "err=%lu\n", devhandle, devino, hv_err);
697 prom_halt();
698 }
699
700 return virt_irq;
701 }
702
703 void ack_bad_irq(unsigned int virt_irq)
704 {
705 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
706
707 if (!ino)
708 ino = 0xdeadbeef;
709
710 printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
711 ino, virt_irq);
712 }
713
714 void *hardirq_stack[NR_CPUS];
715 void *softirq_stack[NR_CPUS];
716
717 void __irq_entry handler_irq(int irq, struct pt_regs *regs)
718 {
719 unsigned long pstate, bucket_pa;
720 struct pt_regs *old_regs;
721 void *orig_sp;
722
723 clear_softint(1 << irq);
724
725 old_regs = set_irq_regs(regs);
726 irq_enter();
727
728 /* Grab an atomic snapshot of the pending IVECs. */
729 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
730 "wrpr %0, %3, %%pstate\n\t"
731 "ldx [%2], %1\n\t"
732 "stx %%g0, [%2]\n\t"
733 "wrpr %0, 0x0, %%pstate\n\t"
734 : "=&r" (pstate), "=&r" (bucket_pa)
735 : "r" (irq_work_pa(smp_processor_id())),
736 "i" (PSTATE_IE)
737 : "memory");
738
739 orig_sp = set_hardirq_stack();
740
741 while (bucket_pa) {
742 struct irq_desc *desc;
743 unsigned long next_pa;
744 unsigned int virt_irq;
745
746 next_pa = bucket_get_chain_pa(bucket_pa);
747 virt_irq = bucket_get_virt_irq(bucket_pa);
748 bucket_clear_chain_pa(bucket_pa);
749
750 desc = irq_desc + virt_irq;
751
752 if (!(desc->status & IRQ_DISABLED))
753 desc->handle_irq(virt_irq, desc);
754
755 bucket_pa = next_pa;
756 }
757
758 restore_hardirq_stack(orig_sp);
759
760 irq_exit();
761 set_irq_regs(old_regs);
762 }
763
764 void do_softirq(void)
765 {
766 unsigned long flags;
767
768 if (in_interrupt())
769 return;
770
771 local_irq_save(flags);
772
773 if (local_softirq_pending()) {
774 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
775
776 sp += THREAD_SIZE - 192 - STACK_BIAS;
777
778 __asm__ __volatile__("mov %%sp, %0\n\t"
779 "mov %1, %%sp"
780 : "=&r" (orig_sp)
781 : "r" (sp));
782 __do_softirq();
783 __asm__ __volatile__("mov %0, %%sp"
784 : : "r" (orig_sp));
785 }
786
787 local_irq_restore(flags);
788 }
789
790 #ifdef CONFIG_HOTPLUG_CPU
791 void fixup_irqs(void)
792 {
793 unsigned int irq;
794
795 for (irq = 0; irq < NR_IRQS; irq++) {
796 unsigned long flags;
797
798 raw_spin_lock_irqsave(&irq_desc[irq].lock, flags);
799 if (irq_desc[irq].action &&
800 !(irq_desc[irq].status & IRQ_PER_CPU)) {
801 if (irq_desc[irq].chip->set_affinity)
802 irq_desc[irq].chip->set_affinity(irq,
803 irq_desc[irq].affinity);
804 }
805 raw_spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
806 }
807
808 tick_ops->disable_irq();
809 }
810 #endif
811
812 struct sun5_timer {
813 u64 count0;
814 u64 limit0;
815 u64 count1;
816 u64 limit1;
817 };
818
819 static struct sun5_timer *prom_timers;
820 static u64 prom_limit0, prom_limit1;
821
822 static void map_prom_timers(void)
823 {
824 struct device_node *dp;
825 const unsigned int *addr;
826
827 /* PROM timer node hangs out in the top level of device siblings... */
828 dp = of_find_node_by_path("/");
829 dp = dp->child;
830 while (dp) {
831 if (!strcmp(dp->name, "counter-timer"))
832 break;
833 dp = dp->sibling;
834 }
835
836 /* Assume if node is not present, PROM uses different tick mechanism
837 * which we should not care about.
838 */
839 if (!dp) {
840 prom_timers = (struct sun5_timer *) 0;
841 return;
842 }
843
844 /* If PROM is really using this, it must be mapped by him. */
845 addr = of_get_property(dp, "address", NULL);
846 if (!addr) {
847 prom_printf("PROM does not have timer mapped, trying to continue.\n");
848 prom_timers = (struct sun5_timer *) 0;
849 return;
850 }
851 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
852 }
853
854 static void kill_prom_timer(void)
855 {
856 if (!prom_timers)
857 return;
858
859 /* Save them away for later. */
860 prom_limit0 = prom_timers->limit0;
861 prom_limit1 = prom_timers->limit1;
862
863 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
864 * We turn both off here just to be paranoid.
865 */
866 prom_timers->limit0 = 0;
867 prom_timers->limit1 = 0;
868
869 /* Wheee, eat the interrupt packet too... */
870 __asm__ __volatile__(
871 " mov 0x40, %%g2\n"
872 " ldxa [%%g0] %0, %%g1\n"
873 " ldxa [%%g2] %1, %%g1\n"
874 " stxa %%g0, [%%g0] %0\n"
875 " membar #Sync\n"
876 : /* no outputs */
877 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
878 : "g1", "g2");
879 }
880
881 void notrace init_irqwork_curcpu(void)
882 {
883 int cpu = hard_smp_processor_id();
884
885 trap_block[cpu].irq_worklist_pa = 0UL;
886 }
887
888 /* Please be very careful with register_one_mondo() and
889 * sun4v_register_mondo_queues().
890 *
891 * On SMP this gets invoked from the CPU trampoline before
892 * the cpu has fully taken over the trap table from OBP,
893 * and it's kernel stack + %g6 thread register state is
894 * not fully cooked yet.
895 *
896 * Therefore you cannot make any OBP calls, not even prom_printf,
897 * from these two routines.
898 */
899 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
900 {
901 unsigned long num_entries = (qmask + 1) / 64;
902 unsigned long status;
903
904 status = sun4v_cpu_qconf(type, paddr, num_entries);
905 if (status != HV_EOK) {
906 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
907 "err %lu\n", type, paddr, num_entries, status);
908 prom_halt();
909 }
910 }
911
912 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
913 {
914 struct trap_per_cpu *tb = &trap_block[this_cpu];
915
916 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
917 tb->cpu_mondo_qmask);
918 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
919 tb->dev_mondo_qmask);
920 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
921 tb->resum_qmask);
922 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
923 tb->nonresum_qmask);
924 }
925
926 /* Each queue region must be a power of 2 multiple of 64 bytes in
927 * size. The base real address must be aligned to the size of the
928 * region. Thus, an 8KB queue must be 8KB aligned, for example.
929 */
930 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
931 {
932 unsigned long size = PAGE_ALIGN(qmask + 1);
933 unsigned long order = get_order(size);
934 unsigned long p;
935
936 p = __get_free_pages(GFP_KERNEL, order);
937 if (!p) {
938 prom_printf("SUN4V: Error, cannot allocate queue.\n");
939 prom_halt();
940 }
941
942 *pa_ptr = __pa(p);
943 }
944
945 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
946 {
947 #ifdef CONFIG_SMP
948 unsigned long page;
949
950 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
951
952 page = get_zeroed_page(GFP_KERNEL);
953 if (!page) {
954 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
955 prom_halt();
956 }
957
958 tb->cpu_mondo_block_pa = __pa(page);
959 tb->cpu_list_pa = __pa(page + 64);
960 #endif
961 }
962
963 /* Allocate mondo and error queues for all possible cpus. */
964 static void __init sun4v_init_mondo_queues(void)
965 {
966 int cpu;
967
968 for_each_possible_cpu(cpu) {
969 struct trap_per_cpu *tb = &trap_block[cpu];
970
971 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
972 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
973 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
974 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
975 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
976 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
977 tb->nonresum_qmask);
978 }
979 }
980
981 static void __init init_send_mondo_info(void)
982 {
983 int cpu;
984
985 for_each_possible_cpu(cpu) {
986 struct trap_per_cpu *tb = &trap_block[cpu];
987
988 init_cpu_send_mondo_info(tb);
989 }
990 }
991
992 static struct irqaction timer_irq_action = {
993 .name = "timer",
994 };
995
996 /* Only invoked on boot processor. */
997 void __init init_IRQ(void)
998 {
999 unsigned long size;
1000
1001 map_prom_timers();
1002 kill_prom_timer();
1003
1004 size = sizeof(struct ino_bucket) * NUM_IVECS;
1005 ivector_table = kzalloc(size, GFP_KERNEL);
1006 if (!ivector_table) {
1007 prom_printf("Fatal error, cannot allocate ivector_table\n");
1008 prom_halt();
1009 }
1010 __flush_dcache_range((unsigned long) ivector_table,
1011 ((unsigned long) ivector_table) + size);
1012
1013 ivector_table_pa = __pa(ivector_table);
1014
1015 if (tlb_type == hypervisor)
1016 sun4v_init_mondo_queues();
1017
1018 init_send_mondo_info();
1019
1020 if (tlb_type == hypervisor) {
1021 /* Load up the boot cpu's entries. */
1022 sun4v_register_mondo_queues(hard_smp_processor_id());
1023 }
1024
1025 /* We need to clear any IRQ's pending in the soft interrupt
1026 * registers, a spurious one could be left around from the
1027 * PROM timer which we just disabled.
1028 */
1029 clear_softint(get_softint());
1030
1031 /* Now that ivector table is initialized, it is safe
1032 * to receive IRQ vector traps. We will normally take
1033 * one or two right now, in case some device PROM used
1034 * to boot us wants to speak to us. We just ignore them.
1035 */
1036 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1037 "or %%g1, %0, %%g1\n\t"
1038 "wrpr %%g1, 0x0, %%pstate"
1039 : /* No outputs */
1040 : "i" (PSTATE_IE)
1041 : "g1");
1042
1043 irq_desc[0].action = &timer_irq_action;
1044 }
This page took 0.066401 seconds and 5 git commands to generate.